Performance Analysis of Protocols RIP & EIGRP

Jeevan Prasad Adhikari

Abstract: The Routing Information Protocol (RIP) is one of the Internet’s first widely used routing protocol. It is still useful in local and medium area networks. RIP is classified as a distance-vector routing protocol, which employs the hop count as a routing metric. The maximum number of hops allowed for RIP is 15[3]. A hop count of 16 is considered an infinite distance viewing such distance as unreachable and undesirable route in it routing process. This hop count limits the size of network that RIP operate.

EIGRP is a Cisco-proprietary routing protocol that is based on IGRP. EIGRP supports CIDR and VLSM, allowing network designers to maximize address space. EIGRP is often described as a hybrid routing protocol that offers the best of distance vector and link-state algorithms. EIGRP is an advanced routing protocol that relies on features commonly associated with link-state protocols. This paper consist of comparisons of RIP and EIGRP, it includes the various trouble resolving techniques and traffic handling techniques during communication in simple as well in bulky networks[5].

Key Words :- Routing Protocols RIP, IGRP, EIGRP.

I. INTRODUCTION

RIP is one of the most enduring of all routing protocols[2]. It’s a very simple protocol, based on distance-vector (or Bellman-Ford, as it’s also known) routing algorithms that predates ARPANet (the Advanced Research Projects Agency Network). To be exact, these algorithms were originally described academically by R. E. Bellman, L. R. Ford, Jr., and D. R. Fullerston between 1957 and 1962. During the 1960s, these algorithms were widely deployed by various companies and marketed under different names. RIP version 2, or RIPv2 as it is more commonly known, was first proposed as an update to RIP in RFC1388 in January 1993.

Enhanced Interior Gateway Routing Protocol (EIGRP) or Enhanced IGRP is a Cisco proprietary routing protocol utilizing the Diffusing Update Algorithm (DUAL). It is a hybrid protocol as it incorporates features of a Distance Vector routing protocol and features of a Link State routing protocol. EIGRP is an ideal choice for large, multiprotocol networks built primarily on Cisco routers. In the context of routing protocol performance, each of them has different architecture, adaptability, route processing delays and convergence capabilities[7].

II. FUNDAMENTALS

RIP is a classful protocol, which means that it doesn’t carry subnet mask information in its routing update. It is incapable of supporting variable length subnet masking (VLSM) and discontiguous networks.

RIP enables devices to exchange information about networks that they are directly connected to, as well as any other networks that they have learned from other RIP devices[5]. Since RIP calculates the best route to a destination based solely on how many hops it is to the destination network, RIP tends to be inefficient in network using more than one LAN protocol, such as Fast Ethernet and serial or Token Ring. This is because RIP prefers paths with the shortest hop count. The path with the shortest hop count might be over the slowest link in the network[4]. RIP cannot handle more than 15 hops. Anything more than 15 hops away is considered unreachable by RIP. This fact is used by RIP to prevent routing loops.

Packet Type

III. ROUTING INFORMATION PROTOCOL

The RIP message format is shown below. Each message contains command entry and a version number and can contain entries for up to 25 routes. Each route entry includes an address family identifier, the IP address reachable by the route, and the hop count for the route[3].

<table>
<thead>
<tr>
<th>command</th>
<th>version</th>
<th>Zeroses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Family ID</td>
<td>Zeroses</td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td>Zeroses</td>
<td></td>
</tr>
<tr>
<td>Metric</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Command will always be set to either one, signifying a Request message, or two, signifying a Response message. There are other commands, but they are all either obsolete or reserved for private use.

Version will be set to one for RIPv1.

Address Family Identifier is set to two for IP. The only exception to this is a request for a router’s full route table.

IP Address is the address of the destination of the route. This entry might be a major network address, a subnet, or a host route.

Metric is a hop count between 1 and 16.

RIP TIMERS

<table>
<thead>
<tr>
<th>TIMER</th>
<th>DEFAULT</th>
<th>CONTROLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update</td>
<td>30 sec.</td>
<td>Interval between route update advertisements</td>
</tr>
<tr>
<td>Hold-Down</td>
<td>90 sec.</td>
<td>Period a route is withdrawn from the table to prevent a routing loop</td>
</tr>
</tbody>
</table>

Manuscript received on April, 2013.
Jeevan Prasad Adhikari, Ph.D Pursuing CMI Meghalaya,India.
EIGRP
The IP header of an EIGRP packet specifies protocol number 88, and the maximum length of the packet will be the IP maximum transmission unit (MTU) of the interface on which it is transmitted—usually 1500 octets.

EIGRP Reliable Transport Protocol

Five types of EIGRP packets exist, further categorized as reliable packets and unreliable packets. The reliable EIGRP packets are as follows[5]:

Update—Update packets contain EIGRP routing updates sent to an EIGRP neighbor.
Query—Queries are sent to neighbors when a route is not available and the router needs to ask the status of the route for fast convergence.
Reply—Reply packets to the queries contain the status of the route being queried for.

The unreliable EIGRP packets are as follows:

Hello—Hello packets are used to establish EIGRP neighbor relationships across a link.
Acknowledgment—Acknowledgment packets ensure reliable delivery of EIGRP packets.

EIGRP Tables

1. **Route Table**—where the best route (successor) to each destination is kept
2. **Topology Table**—where all the feasible routes are kept (feasible successor), but also contains successor routes. *Up to six valid routes for any destination will be stored.*
3. **Neighbor Table**—where EIGRP neighbors and info about them are kept

Advertised Distance vs. Feasible Distance

1. **Advertised Distance** is the distance from a neighbor (next hop router) to the destination network. It is also referred to as the “AD”.
2. **Feasible Distance** is the AD + the metric to reach the neighbor advertising the AD. It is also referred to as the “FD”. The FD is also considered the EIGRP “metric”.

EIGRP Metric

The metric is calculated using the following equation (of which the “K” values are ON (1) or OFF (0)): \[
\text{FD} = [K1 * \text{bandwidth} + ((K2 * \text{bandwidth}) / (256 - \text{load})) + K3 * \text{delay}] * [K5 / (\text{reliability} + K4)]
\]

Remember that K values must match on all routers in the EIGRP ASN[5]. The only values that are taken into account are bandwidth and delay. Additionally, load and reliability can be used.

The default K values are:
1. K1 = 1
2. K2 = 0
3. K3 = 1
4. K4 = 0
5. K5 = 0

The default metric takes only bandwidth and delay into consideration. Additionally, MTU never plays a part of the equation.

Bandwidth is the link with the least amount of bandwidth. Assuming it is 64Kb you would use it to divide 10,000,000 and then multiply by 256. So 10,000,000 / 64 = 256.

The “delay” value is cumulative. Delay is associated to each interface in milliseconds, and as a particular route crosses router after router (hops) the delay becomes cumulative. We can use the show interface command to see the delay value associated to an interface. Sum up all of the delays, and convert in to 10’s of milliseconds, then divide by 256.

Figure 1.2 shows the EIGRP packet header. Notice that following the autonomous systems number are the Type/Length/Value (TLV) triplets. Some common TLVs are the EIGRP parameter TLV, the IP internal route TLV, and the IP external route TLV[3].

<table>
<thead>
<tr>
<th>0</th>
<th>8</th>
<th>16</th>
<th>24</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Opcode</td>
<td>Checksum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flags</td>
<td>Sequence</td>
<td>Acknowledgement</td>
<td>Autonomous System Numbers</td>
<td></td>
</tr>
<tr>
<td>TLVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.2. EIGRP Packet Header

The EIGRP packet parameters are described as follows:

- **Version**—Specifies different versions of EIGRP. Version 2 of EIGRP was implemented beginning with Cisco IOS Software Releases 10.3(11), 11.0(8), and 11.1(3). EIGRP Version 2 is the most recent version that contains many enhancements to improve the stability and scalability of EIGRP[5].
- **Opcode**—Specifies the types of EIGRP packets contained. Opcode 1 is the update packet, opcode 3 is the query, opcode 4 is the reply, and opcode 5 is the EIGRP hello packet.
- **Checksum**—Used as the regular IP checksum, calculated based on the entire EIGRP packet, excluding the IP header.
- **Flags**—Involves only two flags now. The flag indicates either an init for new neighbor relationship or the conditional receive for EIGRP RTP.
- **Sequence**—Specifies the sequence number used by the EIGRP RTP.
- **Acknowledgment**—Used to acknowledge the receipt of an EIGRP reliable packet.

Autonomous System Number—Specifies the number for the identification of EIGRP network range.

IV. CONFIGURATION:

Configuration between 2 Routers, Ethernet, Pc connection to each side, ip addresses are given[3].
show ip protocols

Routing Protocol is "rip"
Incoming update filter list for all interfaces is not set
Outgoing update filter list for all interfaces is not set
Invalid after 180 seconds, hold down 180
Sending updates every 30 seconds, next due in 4 seconds
Routing for Networks:
 172.16.0.0
 172.16.1.0
 172.16.2.0
Automatic network summarization is in effect
Maximum path: 4

R1(config)#ip address 172.16.1.1 255.255.255.0
R1(config-if)#int fa0/0
R1(config-if)#no shutdown
R1(config)#router RIP
R1(config-router)#network 172.16.1.0
R1(config-router)#network 172.16.2.0
R1(config-router)#end

R1(config)#copy running-config startup-config
Or
R1#wr me (short for write memory)

Step 4: Adding IP Addresses
R1#config t
R1(config)#int fa0/0
R1(config-if)#ip address 172.16.1.1 255.255.255.0
R1(config-if)#no shutdown
R1(config-if)#int s0/0
R1(config-if)#ip address 172.16.2.1 255.255.255.0
R1(config-if)#clock rate 64000
R1(config-if)#no shutdown
R1(config-if)#end
R1#config t
R1(config)#router RIP
R1(config-router)#network 172.16.1.0
R1(config-router)#network 172.16.2.0
R1(config-router)#end
R1#

R1#show ip protocols
Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 4 seconds
Invalid after 180 seconds, hold down 180, flushed after 240
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Redistributing: rip
Default version control: send version 1, receive any version
Interface Send Recv Triggered RIP Key-chain
FastEthernet0/0 1 2 1
Serial0/0 1 2 1
Automatic network summarization is in effect

R1#show ip int brief
Interface IP-Address OK? Method Status Protocol
FastEthernet0/0 172.16.1.1 YES manual up up
Serial0/0 172.16.2.1 YES manual up up
R1#config t
R1(config)#no ip routing
R1(config)#ip routing
R1(config)#router eigrp 10
R1(config-router)#network 172.16.2.0
R1(config-router)#network 172.16.1.0
R1(config-router)#no auto-summary
R1(config-router)#^Z
R1#

R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2,
E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
172.16.0.0/24 is subnetted, 3 subnets
C 172.16.1.0 is directly connected, FastEthernet0/0
C 172.16.2.0 is directly connected, Serial0/0
D 172.16.3.0 [90/20514560] via 172.16.2.2, 00:06:07, Serial0/0

R1#show ip eigrp topology
IP-EIGRP Topology Table for AS 10
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
 r - Reply status
P 172.16.1.0/24, 1 successors, FD is 28160
 via Connected, FastEthernet0/0
P 172.16.2.0/24, 1 successors, FD is 20512000
 via Connected, Serial0/0
P 172.16.3.0/24, 1 successors, FD is 28160
 via 172.16.2.2 (20514560/28160), Serial0/0

R1#show ip eigrp neighbors
IP-EIGRP neighbors for process 10
H Address Interface Hold Uptime SRTT RTO Q Seq (sec) (ms) Cnt Num
0 172.16.2.2 Se0/0 13 00:07:04 40 1000 0 3

R1#
router(config)#hostname R2
R2(config)#enable secret cisco
R2(config)#line vty 0 4
R2(config-line)#password cisco
R2(config-line)#login
R2(config)#^Z
R2#
copy running-config startup-config
Or
R2#write memory (short for write memory)
Step 4: Adding IP Addresses
R2(config)#int fa0/0
R2(config-if)#ip address 172.16.3.1 255.255.255.0
R2(config-if)#no shutdown
R2(config-if)#int s0/0
R2(config-if)#ip address 172.16.2.2 255.255.255.0
R1(config-if)#no shutdown
R2(config)#router RIP
R2(config-router)#network 172.16.2.0
R1(config-router)#network 172.16.3.0
R2(config-router)#end
R1#
RouterA(config)#router RIP
R2(config-router)#network 172.16.2.0
R1(config-router)#network 172.16.3.0
R2(config-router)#no auto-summary
R2(config-router)#end
R2#
%SYS-5-CONFIG_I: Configured from console by console
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
172.16.0.0/24 is subnetted, 3 subnets
D 172.16.1.0 [90/20514560] via 172.16.2.1, 00:20:08, Serial0/0
C 172.16.2.0 is directly connected, Serial0/0
C 172.16.3.0 is directly connected, FastEthernet0/0
R2#show ip eigrp neighbors
IP-EIGRP neighbors for process 10
Address Interface Hold Uptime Cnt Num
0 172.16.2.1 Se0/0 10 00:20:44 40 1000 0 3
PC>ping 172.16.2.1
Pinging 172.16.2.1 with 32 bytes of data:
Reply from 172.16.2.1: bytes=32 time=156ms TTL=126
Reply from 172.16.2.1: bytes=32 time=93ms TTL=126
Reply from 172.16.2.1: bytes=32 time=78ms TTL=126
Reply from 172.16.2.1: bytes=32 time=94ms TTL=126
Pinging 172.16.3.2 with 32 bytes of data:
Reply from 172.16.3.2: bytes=32 time=156ms TTL=126
Reply from 172.16.3.2: bytes=32 time=93ms TTL=126
Reply from 172.16.3.2: bytes=32 time=78ms TTL=126
Reply from 172.16.3.2: bytes=32 time=94ms TTL=126
Pinging 172.16.3.2:
Packet statistics for 172.16.3.2:
Minimum = 78ms, Maximum = 156ms, Average = 105ms
PC>ping 172.16.1.1
Pinging 172.16.1.1 with 32 bytes of data:
Reply from 172.16.1.1: bytes=32 time=94ms TTL=254
Reply from 172.16.1.1: bytes=32 time=62ms TTL=254
Reply from 172.16.1.1: bytes=32 time=63ms TTL=254
Reply from 172.16.1.1: bytes=32 time=62ms TTL=254
Ping statistics for 172.16.1.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milliseconds:
Minimum = 62ms, Maximum = 94ms, Average = 70ms
PC>
V. COMPARISON
Basic differences between RIPv1 and EIGRP is mentioned below[3].

<table>
<thead>
<tr>
<th>RIP</th>
<th>EIGRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses UDP port 520</td>
<td>Uses IP protocol 88</td>
</tr>
<tr>
<td>Distance-vector protocol</td>
<td>Hybrid routing protocol</td>
</tr>
<tr>
<td>Uses RIP protocol</td>
<td>Uses EIGRP external routes and protocols</td>
</tr>
<tr>
<td>Classful protocol</td>
<td>Default metric</td>
</tr>
<tr>
<td>Classless protocol</td>
<td>Default metric of bandwidth and delay</td>
</tr>
<tr>
<td>Metric is router hop count</td>
<td>You can factor load and reliability into the metric</td>
</tr>
<tr>
<td>Maximum hop count is 15</td>
<td>Sends route updates to multicast every 30 seconds</td>
</tr>
<tr>
<td>Unreachable routes have a metric of 16</td>
<td>Router updates only when there are changes</td>
</tr>
<tr>
<td>Periodic route updates broadcast (255.255.255.255)</td>
<td>Sends route updates to multicast every 30 seconds</td>
</tr>
<tr>
<td>Supports authentication</td>
<td>Can be used for authentication</td>
</tr>
<tr>
<td>Administrative distance for RIP is 120</td>
<td>Uses DUAL for loop prevention</td>
</tr>
<tr>
<td>Used in small, flat networks or at the edge of larger networks</td>
<td>By default, equal-cost link balancing is used</td>
</tr>
<tr>
<td>Uses VLSM for large networks</td>
<td>Supports path to the same destination</td>
</tr>
<tr>
<td></td>
<td>Potential routing protocol for the core of a network used in large networks</td>
</tr>
</tbody>
</table>

PC>
VI. CONCLUSION

Routing protocols have evolved and have been adapted to the needs of increasingly complex networks. Therefore, when a protocol is chosen, many factors must take into account[4]. Some of them are the type of network it is wanted to be implemented, which future applications will be running in the network, its potential growth, etc.

In order to avoid some limitations of RIPv1, for example classful addressing, a network administrator can use RIPv2, which allows VLSM and CIDR. Moreover, RIPv2 supports authentication. This characteristic ensures that routers only accept routing information from routers that have been authenticated[5].

EIGRP keeps a topology table of the network and uses the DUAL algorithm to select a loop-free path. EIGRP uses the notions of successor and feasible successor and the query process to achieve fast convergence. EIGRP also carries the subnet mask information when sending out routing update. This enables EIGRP to support discontiguous networks and VLSM, which makes EIGRP a scalable routing protocol capable of fitting today's network requirements[6].

REFERENCES