Permeability Behavior of Self Compacting Concrete

Sandeep Dhiman, Arvind Dewangan, Er. Lakhan Nagpal, Sumit Kumar

Abstract -- Self compacting concrete (SCC) is the new category of high performance concrete characterized by its ability to spread and self consolidate in the formwork exhibiting any significant separation of constituents. Elimination of vibration for compacting concrete during placing through the use of Self Compacting Concrete leads to substantial advantages related to better homogeneity, enhancement of working environment and improvement in the productivity by increasing the speed of construction. Understanding of this concrete flow property is of interest to many researchers. Flow properties of concrete at green stage are significantly governed by paste content, aggregate volume and admixture dosage. The flow properties of concrete is characterized in the fresh state by methods used for Self compacting concrete, such as slump-flow, V-funnel and L-box tests respectively. The number of trail mixtures are used and tests such as Slump Flow, V-Funnel, L-box etc. are conducted for their permissible limits, then the final proportions of ingredients and admixtures have been finalized for M30, M40, M50 and M60 grade Concretes. In the present experimental investigation the main concentration is focused on permeability properties of self compacting concrete mixes.

Key words: Permeability, Self Compacting Concrete

I. INTRODUCTION
Concrete is an important versatile construction material, used in wide variety of situations. So it is very important to consider its durability as it has indirect effect on economy, serviceability and maintenance. So it is important to discuss the permeability characteristics of self compacting concrete, as it has much bearing on durability. Aggressive chemicals attack concrete only in solution form. The penetration of this aggressive liquid will depend upon the degree of permeability of concrete. The extent of frost action and the resting of steel reinforcement also depend upon the permeability of concrete. So tests are also performed for determining the permeability of self compacting concrete.

II. LITERATURE REVIEW
Ganesan et al. [1] studied the effect of steel fibres on the durability parameters of self-compacting concrete (SCC) such as permeability, water absorption, abrasion resistance, resistance to marine as well as sulphate attack. It was observed that the coefficient of permeability and wear of SFRSCC were lower than the corresponding moderate strength concrete.

Under the marine and sulphate attack, the losses in mass of concrete and compressive strength of cubes were found to be negligible. It was observed that SFRSCC resists these attacks within tolerable limits and the optimum dosage of fibres for better performance was found to be 0.5 percent. Based on the experimental investigation, it was concluded that addition of steel fibres improved the durability aspects of self compacting concrete. The loss in mass and compressive strength of cubes was found to be negligible under marine and sulphate attacks. It was observed that SFRSCC resists all these attacks within tolerable limits and the optimum dosage of fibres for better performance was found to be 0.5 percent.

Jagadish Vengala et al. [2] discussed the results of an experimental study of the fresh concrete properties and the development of strength of high performance self-compacting concrete at ages of 180 and 270 days. Based on fresh and hardened properties of SCC mixes they concluded that inclusion of fly ash as part replacement of coarse aggregate, as done in this study, has increased the paste content and hence enhances the self-compacting properties.

Naveen Kumar C et.al [3] have presented the results of experimental studies where in fly ash, metakaolin and their blends were used as fillers in SCC. The results showed that SCC can be produced with cement content, as low as 200 Kg/m³ of concrete together with rest of the powder coming from fly ash. High strength SCC can be obtained through incorporation of metakaolin. Mixes with different fillers like silica fume and metakaolin help in attaining a high early strength of around 50-70 MPa which is very useful in pre-cast applications. They also can provide high durability when used along with fly ash.

Srinivasa Rao et al. [4] presented the design mixes of M30 and M35 grade of Glass fibre self compacting concretes using alkaline glass fibres and studied the various properties of the mixes. Srinivasa Rao et al. [5] presented the design mixes of M30 to M65 grade of self compacting concretes using EFNARC guidelines the studied the behaviours of compressive strength , split tensile strength and flexural strength behaviour of the mixes M30 to M65 Grades of self compacting concrete mixes.

III. RESEARCH SIGNIFICANCE
For a newly developing material like SCC, studies on durability is of paramount importance for instilling confidence among the engineers and builders. The literature indicates that while some studies are available on the durability of plain SCC and fibre reinforced SCC, a comprehensive study which involves durability parameters...
like permeability are not available for SCC. Hence, considering the gap in the existing literature, an attempt has been made to study on the durability parameters of SCC like permeability.

Experimental programme:
To study the permeability behaviour of Self Compacting Concrete specimens of M 30, M40, M 50 and M 60 mixes.

Materials

Cement: Ordinary Portland cement of 53 grades available in local market is used in the investigation. The Cement used has been tested for various proportions as per IS 4031-1988 and found to be confirming to various specifications of are 12269-1987. The specific gravity was 2.96 and fineness was 3200cm2/gm.

Coarse Aggregate: Crushed angular granite metal of 10 mm size from a local source was used as coarse aggregate. The specific gravity of 2.65 and fineness modulus 6.05 was used.

Fine Aggregate: River sand was used as fine aggregate. The specific gravity of 2.55 and fineness modulus 2.77 was used in the investigation.

Viscosity Modifying Agent: A Viscosity modified admixture for Rheodynamic Concrete which is colourless free flowing liquid and having Specific of gravity 1.01±0.01 @ 25°C and pH value as 8±1 and Chloride Content nil was used as Viscosity Modifying Agent.

Admixture: The Modified Polycarboxylated Ether based Super Plasticizer which is Brown Color and free flowing liquid and having Relative density 1.08±0.01 and pH value as 7±1 and Chloride Content nil was used as Super Plasticizer.

Fly Ash: Type-II fly ash from Vijayawada Thermal Power Station, Andhra Pradesh was used as cement replacement material. The properties fly ash are confirming to I.S. 3812 – 1981 of Indian Standard Specification for Fly Ash for use as Pozzolana and Admixture.

Test Specimens: Test specimens consist of cylinder dia. 150mm and Height 150mm were casted. These were casted using different Concrete mixes as given in Table 1. These specimens were tested as per IS 516 and 1199.

IV. TEST PROCEEDURE
The SCC specimens (cylinder dia. 150mm and height 150mm) are cured for 180 days and loaded in the cells, these specimens are sealed with jute, rosin and wax on all the round of the cells such that water allowed above the specimens should percolate though the top surface of the specimens and collected in the bottles kept below the cell with funnel arrangements. A constant air pressure of 15 kg/cm2 is maintained along with water pressure of 2 kg/cm2 by using air compressor throughout the experiment for a specified period of time. Then the coefficient of permeability is calculated using the following formula

$$K = Q / (\sum (H/L)*A*T)$$

Where K = Coefficient of permeability

$Q =$ Quantity of water collected in cc

$T =$ Time in seconds = (4)(60)(60) sec = 14400 sec

$A =$ Cross sectional area of the specimen in cm2 = 176.71 cm2

$H/L =$ ratio of pressure head to thickness of the specimen = (2 X 100)/15 = 13.333

V. DISCUSSION

Workability: Table 2 provides a summary of the properties of the Self Compacted Concrete mixes in the fresh state. As it is evident, the basic requirements of high flowability and segregation resistance as specified by guidelines on Self Compacted Concrete by EFNARC are satisfied. The workability values are maintained by adding suitable quantities of superplasticizers.

Water to Cementious Ratio: The Water to cementitious material by weight was kept at about 0.40 for M30 grade, 0.34 for M40 grade and 0.30 for M50 grade of concrete and for M60 Grade of Concrete the Water Content was reduced till the water to cementious ratio by weight was 0.26 in the Mix.

Table 3 gives the co-efficient permeability of various grades of self compacting mixes of M 30, M 40, M 50, and M 60 . These values are observed to be varied from 10.02×10^8 to 7.23×10^8 m/sec.

VI. CONCLUSION
The higher grade of the self compacting concrete mixes the resistance to the permeability is more in comparison with lower grade of the self compacting concrete mixes . This is because of the transformation of large pores to fine pores as a consequence of the pozzolanic reaction between cement paste and fly ash substantially reduce the permeability in the cementitious matrix.

REFERENCES

| Table 1-- Quantities Per 1 Cum Of Self Compacting Concretes |
|---|---|---|---|---|---|---|---|
| Grade of Concrete | Cement (kg/m³) | Fly ash (kg/m³) | Coarse Aggregate (kg/m³) | Fine aggregate (kg/m³) | Water (kg/m³) | SP (kg/m³) | V. M. A (kg/m³) |
| M 30 | 225 | 225 | 865 | 898 | 179 | 4.30 | 0.315 |
| M 40 | 258 | 258 | 835 | 856 | 175 | 3.16 | 0.413 |
| M 50 | 360 | 240 | 797 | 796 | 180 | 6.00 | 0.480 |
| M 60 | 400 | 250 | 785 | 785 | 172 | 9.75 | 0.460 |
Table 2 -- Rheological Properties Of Self Compacting Concrete Mixes

<table>
<thead>
<tr>
<th></th>
<th>M 30</th>
<th>M 40</th>
<th>M 50</th>
<th>M 60</th>
<th>Permeability limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td></td>
</tr>
<tr>
<td>V Funnel</td>
<td>10 sec</td>
<td>5 sec</td>
<td>10 sec</td>
<td>8 sec</td>
<td>6 sec</td>
</tr>
<tr>
<td>Abrams slump Flow</td>
<td>660 mm</td>
<td>700 mm</td>
<td>660 mm</td>
<td>720 mm</td>
<td>650 mm</td>
</tr>
<tr>
<td>T_95 slump Flow</td>
<td>5 sec</td>
<td>2 sec</td>
<td>5 sec</td>
<td>3 sec</td>
<td>2 sec</td>
</tr>
<tr>
<td>L Box</td>
<td>H/H₀</td>
<td>0.85</td>
<td>0.90</td>
<td>0.8</td>
<td>0.88</td>
</tr>
<tr>
<td>T₁₀₀</td>
<td>1 sec</td>
<td>2 sec</td>
<td>2 sec</td>
<td>2 sec</td>
<td>1 sec</td>
</tr>
<tr>
<td>T₄₀₀</td>
<td>2 sec</td>
<td>3 sec</td>
<td>3 sec</td>
<td>3 sec</td>
<td>2 sec</td>
</tr>
<tr>
<td>V-Funnel</td>
<td>12 sec</td>
<td>11 sec</td>
<td>12 sec</td>
<td>14 sec</td>
<td>11 sec</td>
</tr>
</tbody>
</table>

Table 3 -- Co-Efficient Of Permeability Of Self Compacting Mixes

<table>
<thead>
<tr>
<th>Grade of Concrete</th>
<th>Time of Collection of Water (Hrs)</th>
<th>Pressure head (H) (m)</th>
<th>Quantity of water collected cc</th>
<th>Coefficient of permeability x 10⁻⁸ m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 30</td>
<td>4</td>
<td>2</td>
<td>340</td>
<td>10.02</td>
</tr>
<tr>
<td>M 40</td>
<td>4</td>
<td>2</td>
<td>300</td>
<td>8.84</td>
</tr>
<tr>
<td>M 50</td>
<td>4</td>
<td>2</td>
<td>270</td>
<td>7.93</td>
</tr>
<tr>
<td>M 60</td>
<td>4</td>
<td>2</td>
<td>245</td>
<td>7.23</td>
</tr>
</tbody>
</table>

Er. Sandeep Dhiman: At present working as a faculty member in Civil Engineering Department at E-MAX School of Engineering and Applied Research, Ambala, Haryana, A.P.

Dr. Arvind Dewangan: Dr. Arvind Dewangan, Associate Professor in Department of Civil Engineering, Haryana College of Technology & Management, Technical Campus KAITHAL. His highest academic qualification is PhD in Mining & Geological Engineering. He has 12 years of experience in teaching and research. He has published 41 papers in International and National journals and won more than 15 times NATIONAL LEVEL ESSAY COMPETITION.

Er. Lakhan Nagpal[Corresponding Author]: At present working as an faculty member in Civil Engineering Department at S.B. Institute of Engineering and Technology, Kaithal, Haryana.

Er. Sumit Kumar: At present working as a faculty member in Civil Engineering Department at Gateway Institute of Engineering and Technology, Sonipat, Haryana.