Experimental Analysis of Density of Sintered SiCp Reinforced AMMCS using the Response Surface Method

Sujit Das, R. Behera, P. K. Bardhan, S. Patra, B. Oraon, G. Sutradhar

Abstract- The continuous development of technology in automotive manufacturing process demands new solutions which is largely dependent on the development of lightweight, non-pollution for the environment materials of improved mechanical properties and also with a low cost production. According with these required characteristics of materials, the aims of this paper were to manufacturing Al-SiCp composites by powder metallurgy (P/M) processing route. Since density is a predominant factor in the performance of powder metallurgy components, it has been primarily considered for the present investigation. An experimental investigation have been undertaken in order to understand the variation of density with respect to the variation of process parameters viz., variation of silicon carbide proportion, compacting pressure and sintering time. The relation among the various process parameters with density has been studied. A mathematical model has been developed using second order response surface model (RSM) with central composite design (CCD) considering the above mentioned process parameters. The mathematical model which developed in this investigation would help in predicting the variation in density with the change in the level of different parameters influencing the density variation. This mathematical model also can be useful for setting of optimum value of the parameters for achieving the target density.

Keywords: Powder Metallurgy, Density, Sintering, Response Surface Model, Central Composite Design.

I. INTRODUCTION

The continuous development of technology in automotive manufacturing process has required new solutions adapted to the growing requirements of lightweight, non-pollution for the environment materials with a low cost production. According with these required characteristics of materials, the aims of this paper were to manufacturing Al-SiCp composites by powder metallurgy (P/M) processing route and characterization of the powders and compacted/sintered mixture powders [1, 2]. Development of powder metallurgy (P/M) technology is providing itself as an alternate lower process cost to machining, casting, stamping, forging and other similar metal working technologies [3,4]. Apart from these it also provides some outstanding advantages such as high material utilization, more refined microstructure that provides superior material properties as well as greater microstructure homogeneity. Among others, however, the powder metallurgy (P/M) method has known as a very promising route, which is most attractive due to several reasons. Firstly, in P/M technique micro structural control of the phases is possible. Secondly, the lower temperatures employed during the process accounts for the strict control of interphase kinetics. Poor distribution of reinforcement degrades the composites in terms of its physical and mechanical properties and negates the attractiveness of reinforcement additions [5-9]. Composites combine the characteristics of aluminium and aluminium alloys matrix (low density in comparison with ferrous materials, good corrosion resistance and machinability) with the characteristics of ceramic particles (e.g. SiCp, TiCp, B4Cp, Al2O3, SiO2, etc.) which improve in special mechanical, tribological and thermal expansion characteristics [10-12]. As sintering is a predominant factor for controlling the density of the P/M products, variation of wt% of reinforcing materials, compacting pressure, sintering time, temperature largely affects the density of the P/M components [13-17]. The sintered parts of high density can be steam treated to close the surface pores. It is also observed that the green density and sintered density is a function of powder type and compacting pressure [15]. Present study examines the variation of density (R1) as a function of process parameters (weight percentage of SiCp x1, compacting pressure x2 and sintering time x3) of sintered iron P/M components. The samples were produced by changing the process parameters as per the design of experiment (DOE) and the response surface methodology (RSM) has been used to plan and analyze the density. The experimental plan adopts the face-centered central composite design (CCD). A second order response surface model (RSM) has been used to develop a predicting equation of density based on the data collected by a statistical design of experiments [18-20]. The analysis of variation (ANOVA) shows that the observed data fits well into the assumed second order RSM model. It is worth mentioning that this model is one of the most widely used methods to solve the optimization problem in manufacturing technology [16]. In the experiment, porosity of the samples, compacted and sintered under different conditions were investigated by the optical microscope [13]. It is found that porosity of the samples decreases with the increase of compacting pressure, sintering time and sintering temperature.

Manuscript Received November, 2013.

Sujit Das, Research Scholar, Jadavpur University, Kolkata, West Bengal, India
R. Behera, Asst. Professor, Department of Mechanical Engineering, Sreenarayana Engineering College, Orissa, India
P. K. Bardhan, Professor Department of Mechanical Engineering, JIS College of Engineering, Kalyani, India
S. Patra, Cwiss, IIT Kharagpur, West Bengal, India, 4Professor, Jadavpur University, Kolkata, West Bengal, India.
B. Oraon, Professor Department of Mechanical Engineering, JIS College of Engineering, Kalyani, India
G. Sutradhar, Professor Department of Mechanical Engineering, JIS College of Engineering, Kalyani, India
II. EXPERIMENTAL PROCEDURES

A. Production of metal matrix composite

Despite the advantages of processing by P/M of powders, in aluminium matrix composites, the powder mixtures are more difficult to compact and sinter than other composites the presence of hard ceramic particles in aluminium ductile matrix increases this processing difficulty. Air atomized aluminium powder (average particle size of 400 mesh) reinforced with SiC particulates (Fig. 1) (average size of 400 mesh) are used as the test material along with commercially pure aluminium. In this paper, we have developed new materials in terms of composition (Al-SiCp) and manufacturing process and were determined the optimal technological parameters of densification of composites. The above composites and aluminium has fabricated by powder metallurgy technique (steps of this technique shown in Figure 2). Al-SiCp were blended on a pot mill (diameter 40 mm height 35 mm), at a constant speed of 1500 rpm for 1 hour to obtain a homogeneous powder blend. Blending is one of the crucial processes in P/M where the metallic powders have mixed with the ceramic reinforced particles and the binder (Zinc Stearate). Several parameters such as particle size, blending speed and duration should be taken into consideration to ensure the SiCp particles distributing homogeneously in the matrix powders.

One of the major objectives of present investigations is to shade light on the density of the compacted sintered samples. In this context 60 different P/M components (diameter 25 mm) were produced according to design of experiment (DOE). Related density (R_x) of these samples were measured by hydrostatic weighing method against the variation of controllable process variables like weight percentage of SiCp (x_1), compaction pressure (x_2), and sintering time (x_3). After pouring the Al-SiCp powder mixture the Green compacts of the powder blend were prepared in a closed cylindrical die Capacity in a closed 120-Ton hydraulic press (Make-Lawrence & Mayo). The compacting pressure applied and maintained for 5 min to obtain green compacts for all composition of SiCp composites. During compacting, the die was lubricated with Zinc stearate. The sintering process was carried out in a tubular vacuum furnace (diameter of hot zone 75 mm lengths of hot zone 150 mm and maximum temp1450°C) using argon as an inert atmosphere (Fig. 2).

B. Density Measurement

The density of the composites was obtained by the Archimedian principle of weighing the sample first in air and then in water. Then, theoretical density of composite and its alloy has calculated from the chemical analysis data. The measured relative density of the compacts was about 81.2%. The gain refinement of metal matrix-based composites reinforced by tough particles can interpret by the increased effective extrusion ratio with increasing volume fraction of incompressible reinforcements.

The P/M samples sintered at fixed temperature (530°C) for fixed sintering time (40 mins.) under different compacting pressure, have been prepared and the microstructures Fig. 3 (a-e) examined by using microscope Olympus, CK40M. The white portion of the figure indicates Al Matrix and the black portions indicate SiCp in the specimen. From the figure it is quite evident that with gradual increase of compacting pressure the porosity of the samples gradually decreases. Similar behavior is also observed with the variation of sintering time and sinter temperature, the porosity changes (not shown in figure). Decrease in porosity would increase the density. The plastic deformation is beneficial to improve the homogeneity of the reinforcement. Particle matrix debonding and particle agglomerate decohesion are the two mechanisms are of secondary importance when the particles are well distributed and strongly bonded. Particles enhance the relative density of the materials and refine the metal matrix grains, which consequentially result in the improvement of mechanical properties of the composites.

C. Mathematical Modeling

From the results of ANOVA a mathematical model has been proposed for the evaluation of density, RCCD (Density) of the powder metallurgy components. The proposed model is expressed as

$$RCCD (Density) = -0.820967 + 0.218738 x_1 + 0.008407x_2 – 0.571286 x_3 + 0.007148x_{12} – 0.000002x_{22} + 0.064705x_{32} – 0.000333x_{1x2} – 0.020574x_{1x3} + 0.000767x_{2x3}$$

Figure 1 (a) & (b): Various steps involved in synthesis of Al-SiCp composites in P/M technique.

Figure 2: Tubular Vacuum Furnace.
Where, RCCD: response, i.e., density in central composite design

III. RESULTS AND DISCUSSION

The results obtained through the experiments are given in Tables 1 and 2 and the available data have been analyzed by response surface method using Minitab software (version 14).

Table 1. Symbols, levels and values of process parameters

<table>
<thead>
<tr>
<th>Process parameters (Independent variables)</th>
<th>Symbols</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight percentage of SiCp</td>
<td>Z1 X1</td>
<td>2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1 0 +1</td>
</tr>
<tr>
<td>Compacting pressure (Ton)</td>
<td>Z2 X2</td>
<td>40 60 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1 0 +1</td>
</tr>
<tr>
<td>Sintering time (Mins)</td>
<td>Z3 X3</td>
<td>30 40 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1 0 +1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2. Observed Density values for different settings of process parameters based on 23 full factorial design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Order</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
</tbody>
</table>
Experimental Analysis of Density of Sintered SiCp Reinforced AMMCS using the Response Surface Method

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>25</td>
<td>41</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>26</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>28</td>
<td>45</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>29</td>
<td>37</td>
<td>-1</td>
<td>1</td>
<td>-0.04538</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>30</td>
<td>23</td>
<td>-1</td>
<td>1</td>
<td>10.04538</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>31</td>
<td>49</td>
<td>-1</td>
<td>1</td>
<td>5</td>
<td>26.36414</td>
<td>40</td>
</tr>
<tr>
<td>32</td>
<td>42</td>
<td>-1</td>
<td>1</td>
<td>5</td>
<td>93.63586</td>
<td>40</td>
</tr>
<tr>
<td>33</td>
<td>48</td>
<td>-1</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>23.18207</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>-1</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>56.81793</td>
</tr>
<tr>
<td>35</td>
<td>50</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>37</td>
<td>20</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>38</td>
<td>39</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>39</td>
<td>22</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>46</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>42</td>
<td>31</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>43</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>44</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>46</td>
<td>26</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>47</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>48</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>49</td>
<td>8</td>
<td>-1</td>
<td>1</td>
<td>-0.04538</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>43</td>
<td>-1</td>
<td>1</td>
<td>10.04538</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>51</td>
<td>11</td>
<td>-1</td>
<td>1</td>
<td>5</td>
<td>26.36414</td>
<td>40</td>
</tr>
<tr>
<td>52</td>
<td>28</td>
<td>-1</td>
<td>1</td>
<td>5</td>
<td>93.63586</td>
<td>40</td>
</tr>
<tr>
<td>53</td>
<td>56</td>
<td>-1</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>23.18207</td>
</tr>
<tr>
<td>54</td>
<td>53</td>
<td>-1</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>56.81793</td>
</tr>
<tr>
<td>55</td>
<td>34</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>56</td>
<td>30</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>57</td>
<td>57</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>58</td>
<td>24</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>59</td>
<td>51</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>
In the present study Al-SiCp powder mixtures of different composition are compacted, sintered at a inert atmosphere, at a fixed temperature for different time duration. The samples are compacted under different pressure range (40-93.63586 Ton). The total experiment is performed according to the design of experiment (DOE). The variation of density against wt% of SiCp (x1) and compaction load for a fixed value of sintering time (40 minutes) is presented in Fig. 4. This figure exhibits an increasing tendency in density due to change in wt% of SiCp (x1) and compaction load from 40-93.63586 Ton at a fixed sintering time of 40 minutes. Identical nature of variation is noted in simultaneous increase of sintering time (x3) and wt% of SiCp (x1) for a fixed value of compacting pressure (x2). This observation is illustrated in Figure 5.

Figure 4: Surface Plot of density (R1) vs. compacting pressure (x2) and wt% of SiCp (x1) for a fixed value of sintering time (x3).

Figure 5: Surface Plot of density (R1) vs. sintering time (x3) and wt% of SiCp (x1) for a fixed value of compacting pressure (x2).
The response variable, density (R₁), shows linear increase when it is plotted against sintering time (x₃) and compacting pressure (x₂) for a fixed value of wt% of SiCp (x₁). In this case, the range of variation of the parameters is similar to that of previous two cases. It is worth mentioning that in all the cases the hold values are mean value of the range of variation corresponding to each variable. Average values are preferred because of the inherent nature of the RSM model.

IV. CONCLUSIONS

In the present study Al-SiCp powder mixtures of different composition are compacted, sintered at a inert atmosphere, at a fixed temperature for different time duration. The samples are compacted under different pressure range (40-93.63586 Ton). The total experiment is performed according to the design of experiment (DOE). Using the experimental data a mathematical model has been developed to predict the density variations of the using response surface method (RSM).

The model shows increase in density due to change in wt% of SiCp (x₁) and sintering time for compaction load from 40-93.63586 Ton at a fixed sintering time of 40 minutes and for a fixed value of compacting pressure (x₂). The response variable, density (R₁) shows linear increase when it is plotted against sintering time (x₃) and compacting pressure (x₂) for a fixed value of wt% of SiCp (x₁) and the prediction of density variation from the mathematical model developed in this study matches closely with the observed data (R² = 89.8%).

ACKNOWLEDGEMENTS

Authors thankfully acknowledge the financial support provided by U.G.C, New Delhi under Major Research Project Grant [F.No.–32-88/2006 (SR) dated 09.03.2007] without which this work could not be attempted.

REFERENCES