Performance Optimized DCT Domain Watermarking Technique with JPEG

Jyoti Rani, Tazeem Ahmad Khan

Abstract—Image compression is a widely addressed researched area. Many compression standards are in place. But still here there is a scope for high compression with quality reconstruction. The JPEG standard makes use of Discrete Cosine Transform (DCT) for compression. The introduction of the wavelets gave different dimensions to the compression. This paper aims at the analysis of compression using DCT and Wavelet transform by selecting proper threshold method, better result for PSNR have been obtained. Extensive experimentation has been carried out to arrive at the conclusion. Here we used simulation through using MATLAB simulator.

Index Terms—Discrete Cosine Transform (DCT), Wavelet transform, PSNR, Image compression.

I. INTRODUCTION

Compressing an image is significantly different than compressing raw binary data. Of course, general purpose compression programs can be used to compress images, but the result is less than optimal. This is because images have certain statistical properties which can be exploited by encoders specifically designed for them. Also, some of the finer details in the image can be sacrificed for the sake of saving a little more bandwidth or storage space. This also means that lossy compression techniques can be used in this area. Uncompressed multimedia (graphics, audio and video) data requires considerable storage capacity and transmission bandwidth. Despite rapid progress in mass-storage density, processor speeds, and digital communication system performance, demand for data storage capacity and data-transmission bandwidth continues to outstrip the capabilities of available technologies. The recent growth of data intensive multimedia-based web applications have not only sustained the need for more efficient ways to encode signals and images but have made compression of such signals central to storage and communication technology. For still image compression, the Joint Photographic Experts Group’ or JPEG standard has been established by ISO (International Standards Organization) and IEC (International Electro-Technical Commission). The performance of these coders generally degrades at low bit-rates mainly because of the underlying block-based Discrete Cosine Transform (DCT) Cosine Transform (DCT) scheme.

Manuscript Received on July 2014.
Jyoti Rani, M. Tech. Scholar, Deptt.ECE, Al-Falah University, Faridabad, Haryana, India.
Mr. Tazeem Ahmad Khan, Asst. Prof., Deptt. ECE, Al-Falah University, Faridabad, Haryana, India.

Retrieval Number: B1716074214/2014©BEIESL
On the contrary, the channel encoder adds redundancy to the output of the source encoder in order to enhance the reliability of the transmission. In the source encoder exploits some redundancy in the image data in order to achieve better compression. The transformation sub-block de correlates the image data thereby reducing inter pixel redundancy. The transformation is a lossless operation, therefore, the inverse transformation renders a perfect reconstruction of the original image. The quantize sub-block utilizes the fact that the human eye is unable to perceive some visual information in an image. Such information is deemed redundant and can be discarded without introducing noticeable visual artifacts.

Fig.2 Components of Typical Image/Video Transmission System

Such redundancy is referred to as psycho visual redundancy. This idea can be extended to low bit-rate receivers which, due to their stringent bandwidth requirements, might sacrifice visual quality in order to achieve bandwidth efficiency. This concept is the basis for rate distortion theory, that is, receivers might tolerate some visual distortion in exchange for bandwidth conservation. The entropy encoder employs its knowledge of the transformation and quantization processes to reduce the output number of bits required to represent each symbol at the quantize. Discrete Cosine Transform (DCT) has emerged as the de-facto image transformation in most visual systems. DCT has been widely deployed by modern video coding standards, for example, MPEG, JVT etc.

II. ERROR METRICS

Two of the error metrics used to compare the various image compression techniques are the Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR) to achieve desirable compression ratios. The MSE is the cumulative squared error between the compressed and the original image, whereas PSNR is a measure of the peak error. The mathematical formulae for the two are:

\[
\text{MSE} = \frac{1}{MN} \sum_{y=1}^{N} \sum_{x=1}^{M} (I(x,y) - I'(x,y))^2
\]

\[
\text{PSNR} = 20 \log_{10} \left(\frac{255}{\sqrt{\text{MSE}}} \right)
\]

where \(I(x,y)\) is the original image, \(I'(x,y)\) is the approximated version (which is actually the decompressed image) and \(M,N\) are the dimensions of the images. A lower value for MSE means lesser error, and as seen from the inverse relation between the MSE and PSNR, this translates to a high value of PSNR. Logically, a higher value of PSNR is good because it means that the ratio of Signal to Noise is higher. Here, the 'signal' is the original image, and the 'noise' is the error in reconstruction. So, if you find a compression scheme having a lower MSE (and a high PSNR), you can recognise that it is a better one.

A. Data Compression Transformation

Data compression ratio, also known as compression power, is used to quantify the reduction in data-representation size produced by data compression. The data compression ratio is analogous to the physical compression ratio it is used to measure physical compression of substances, and is defined in the same way, as the ratio between the uncompressed size and the compressed size. Thus a representation that compresses a 10MB file to 2MB has a compression ratio of \(10/2 = 5\), often notated as an explicit ratio, 5:1 (read "five to one"), or as an implicit ratio, 5X. Note that this formulation applies equally for compression, where the uncompressed size is that of the original. Sometimes the space savings is given instead, which is defined as the reduction in size relative to the uncompressed size. Thus a representation that compresses 10MB file to 2MB would yield a space savings of \(1 - 2/10 = 0.8\), often notated as a percentage, 80%. For signals of indefinite size, such as streaming audio and video, the compression ratio is defined in terms of uncompressed and compressed data rates instead of data sizes. When the uncompressed data rate is known, the compression ratio can be inferred from the compressed data rate.

B. Mean Square Error (MSE)

Mean square error is a criterion for an estimator: the choice is the one that minimizes the sum of squared errors due to bias and due to variance. The average of the square of the difference between the desired response and the actual system output. As a loss function, MSE is called squared error loss. MSE measures the average of the square of the "error. The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the estimator and its bias. For an unbiased estimator, the MSE is the variance. In an analogy to standard deviation, taking the square root of MSE yields the root mean squared error or RMSE. Which has the same units as the quantity being estimated for an unbiased estimator, the RMSE is the square root of the variance, known as the standard error.
Where \(m \times n \) is the image size and \(I(i,j) \) is the input image and \(K(i,j) \) is the retrieved image.

C. Peak Signal-to-Noise Ratio (PSNR)

It is the ratio between the maximum possible power of a signal and the power of corrupting noise. Because many signals have a very wide dynamic range, PSNR is usually expressed in terms of the logarithmic decibel scale. The PSNR is most commonly used as a measure of quality of reconstruction in image compression etc. It is most easily defined via the mean squared error (MSE) which for two \(m \times n \) monochrome images \(I \) and \(K \) where one of the images is considered noisy.

\[
PSNR = 10 \cdot \log_{10} \left(\frac{MAX^2}{MSE} \right) = 20 \cdot \log_{10} \left(\frac{MAX}{\sqrt{MSE}} \right)
\]

Here, \(MAX_i \) is the maximum possible pixel value of the image. When the pixels are represented using 8 bits per sample, this is 255. More generally, when samples are represented using linear PCM with \(B \) bits per sample, \(MAX_i = 2B - 1 \). Typical values for the PSNR in lossy image and video compression are between 30 and 50 dB, where higher is better. PSNR is computed by measuring the pixel difference between the original image and compressed image. Values for PSNR range between infinity for identical images, to 0 for images that have no commonality. PSNR decreases as the compression ratio increases for an image.

III. DISCRETE COSINE TRANSFORM (DCT)

The discrete cosine transform (DCT) is a technique for converting a signal into elementary frequency components. Like other transforms, the Discrete Cosine Transform (DCT) attempts to de-correlate the image data. After de-correlation each transform coefficient can be encoded independently without losing compression efficiency.

A. Proposed DCT Algorithm:

- The following is a general overview of the JPEG process.
- The image is broken into 8x8 blocks of pixels.
- Working from left to right, top to bottom, the DCT is applied to each block.
- Each block is compressed through quantization.
- The array of compressed blocks that constitute the image is stored in a drastically reduced amount of space.
- When desired, the image is reconstructed through decompression, a process that uses the inverse Discrete Cosine Transform (IDCT).

B. Watermarking using DCT

![Flowchart of Water Marking using DCT](Fig:4)

C. DCT Domain Watermarking

For DCT domain code is different after running that code it opens the tab of watermarking using DCT shows in below figure 3.2.2.

![Middle Frequency Band](Fig:5)

IV. SIMULATION RESULTS AND DISCUSSION

Few lines of code which generate the PSNR code and give different PSNR code via we able to compare them

```
res1=questdlg('Method Selection','Select Option','Base Work','Improved Work','Improved Work');
c11=double (sum('Base Work'));
c12=double (sum('Improved Work'));
```

here showing few lines of code which is for Base work and Improved Work, 2D & 3D signal & image considered under Base Work it may be Gray scale or color image,
Performance Optimized DCT Domain Watermarking Technique with JPEG

improved work mainly use for 4D signal but if we want to do DCT with CRT including complexity then improved work considered 2D & 3D signal. Steps of Watermarking did using Base work and Improved Work.

- Run the code in MATLAB software version greater than 2010 it may be 2012b or 2013b.
- When run the code is ask to select the signal (which is 2D, 3D, 4D) Shows in the Figure 1
- Now Select Input Image that is Shows in Figure as Original Image

I. Select Message Image Shows

II. Then Embed Message

III. Finally Extract the Message

Only with DCT found PSNR Code is 41.416.

V. CONCLUSION

In this paper, study about Watermarking, implemented using MATB software and Performance analysis. We found watermarking based on DCT & for watermarking of images in the DCT domain for authentication and copyright protection. DCT domain watermarking, we understood the difference of this technique with the help steps of work. As per the our simulation results PSNR is 41.416.

REFERENCES

2. Digital Image Processing by AthurR. Weak
3. Digital Image Processing using MATLAB (Pearson Education) By Rafael C. Gonzalez, Richard E. Woods and Steven L. Eddins,
www.digitalwatermarking.com

