Characterization of Sullage Collected from Residential Building

B. Saritha, Chockalingam M.P, I Maria Subashini

Abstract: The present study is about the analysis of sullage collected from Tiruvanchery region, Chennai, Tamil Nadu, India. Sullage is the waste water from households, sinks, bathrooms, kitchen households but except the waste water from toilets. In this project, 6 samples of waste water were collected in 3 different apartments. The apartments are Ruby Grand, Ruby Regency and Green Paradise. The 2 samples of the waste water are the kitchen waste water and washing clothes waste water. Physical, chemical and biological parameters are tested in environmental laboratory. The chemical parameters were tested using titrimetric method. It is found that all samples were safe against pH, Alkalinity, Flouride, Chloride, Iron, Phosphate, and Turbidity which are within the permissible limits of IS3306 (1974).

Keywords – Sullage-water, physio-chemical analysis, BOD-COD analysis, treatment methods.

I. INTRODUCTION

Sullage is the impure water which contains bacteria and soil contents. Water is one of the most important substances on earth[1]-[5]. Water pollution is an addition of foreign substances either organic/inorganic or biological or radio-active substances into water in excess, which alters the quality of water and which may be pose health hazard.

Water pollution effects the entire biosphere plants and organisms living in these bodies of water. The study of sullage was carried out to determine the physio-chemical and biological parameters of the sullage collected from residential building and to appreciate the opportunity of building a wastewater treatment plant.

Sullage is the waste water from household sinks, showers, and baths, but not waste liquid or excreta from toilets. The application of grey-water reuse in urban water systems provides substantial benefits for both the water supply subsystem by reducing the demand for fresh clean water as well as the wastewater subsystems by reducing the amount of wastewater required to be conveyed and treated[6]-[9].

Sullage does not contain high level microorganisms that make it unsuitable for spray irrigation. Sullage can also be used for irrigation purposes. Sullage is generally safer to handle and easier to treat and reuse onsite for toilet flushing, landscape or crop irrigation and other non-potable uses. Salts and phosphorus from laundry detergents are pollutants.

II. OBJECTIVES

The main objective of the study is to:

➢ Find the physical, chemical and biological characteristics of sullage collected from Tiruvanchery region.
➢ Compare the analysed sample against IS 3025 (Part –I) 1987.
➢ Suggest reuse and recycle of sullage[10]-[13].

Table 1: Sullage Sample Collected From Tiruvanchery Region, Chennai

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Ruby Grand</th>
<th>Ruby Regency</th>
<th>Green Paradise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pH</td>
<td>7.0</td>
<td>7.5</td>
<td>7.0</td>
</tr>
<tr>
<td>2</td>
<td>Alkalinity</td>
<td>40</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Hardness</td>
<td>50</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Chloride</td>
<td>24</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Total Dissolved solids</td>
<td>165.3</td>
<td>164</td>
<td>97.2</td>
</tr>
<tr>
<td>6</td>
<td>Nitrogen</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>Nitrate</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>Ammonium</td>
<td>0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>9</td>
<td>Nitrite</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>TDS</td>
<td>20</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Total alkalinity</td>
<td>4.0</td>
<td>0.5</td>
<td>2.7</td>
</tr>
<tr>
<td>12</td>
<td>Phosphate</td>
<td>5.6</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>13</td>
<td>Conductivity</td>
<td>1.79</td>
<td>3.12</td>
<td>1.98</td>
</tr>
<tr>
<td>14</td>
<td>BOD mg/L</td>
<td>245</td>
<td>280</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>COD mg/L</td>
<td>340</td>
<td>620</td>
<td>550</td>
</tr>
</tbody>
</table>

A=Kitchen wastewater B= Clothes wastewater

Table 4.2: Quality Standards Of Treated Waste Water

| Standards | pH | BOD 100 | Dissolved | SS 100 | TSS 50 | FC 100 | BOD 50 | Reviexact

Revised Manuscript Received on October 22, 2019.

B. Saritha, Department of Civil Engineering, Bharath Institute of Higher Education and Research, Chennai, India. Email: sarichaks@gmail.com

Chockalingam M.P, Department of Civil Engineering, Bharath Institute of Higher Education and Research, Chennai, India. Email: chocklingam@gamil.com

I. Maria Subashini, Department of Civil Engineering, Bharath Institute of Higher Education and Research, Chennai, India. Email: mariasubashini80@gmail.com
III. RESULTS AND DISCUSSIONS

In the graph, the pH of all sullage samples are shown.

In the graph, the alkalinity of all sullage samples are shown.

In the graph, the hardness of all sullage samples are shown. Little amount of the sullage samples were not safe.

In the graph, the chloride of all sullage samples are shown. Little amount of the sullage samples were not safe.

In the graph, the TDS of all sullage samples are shown. Little amount of the sullage samples were not safe. This may be due to livestock waste, septic system, dissolved minerals, iron and manganese.

In the graph, the flouride of all sullage samples are shown.

In the graph, the Iron level of all sullage samples are shown. Little amount of the sullage samples were not safe. This may be due to leaching of cast iron pipes sin water distribution system[19]-[22].
In the graph, the Nitrite of all sullage samples are shown.

![Nitrite Graph](image)

In the graph, the Nitrate of all sullage samples are shown. Little amount of the sullage samples were not safe. This may be due to livestock facilities, septic systems, manure lagoons, household waste water, fertilizers and natural deposits [23]-[29].

![Nitrate Graph](image)

In the graph, the Residual Chlorine of all sullage samples are shown.

![Residual Chlorine Graph](image)

In the graph, the Phosphate of all sullage samples are shown.

![Phosphate Graph](image)

In the graph, the Conductivity of all sullage samples are shown.

![Conductivity Graph](image)

In the graph, the BOD of all sullage samples are shown.

![BOD Graph](image)

In the graph, the COD of all sullage samples are shown.

![COD Graph](image)

IV. CONCLUSION

The project has been carried out by collecting the sample (sullage) from the selected areas of Tiruvanchery region (Ruby Grand, Ruby Regency and Green Paradise). Two samples each has been collected from each area which includes kitchen wastewater and clothes wastewater [30]-[36]. The results showed that all the samples were safe against pH, Alkalinity, Flouride, Chlorine, Iron and Phosphate which were found to be within the permissible limits of IS3360 (1974). Thus, there may not be any treatment required for the above parameters. However, the water should be treated against Hardness, Total Dissolved Solids (TDS), Ammonia, Nitrate, Nitrite and conductivity as they are not found within the permissible limits of IS3360 (1974). From the results the waste water can be used for irrigation purposes. The project was successfully completed by suggesting the possible treatment method for the sullage water.
REFERENCES

AUTHORS PROFILE

B. Saritha Assistant Professor, Department of Civil Engineering, Bharath Institute of Higher Education and Research, Chennai, India.

Chokchalingam M.P Adjunct faculty, Department of Civil Engineering, Bharath Institute of Higher Education and Research, Chennai, India.

L. Maria Subhashini Assistant Professor, Department of Civil Engineering, Bharath Institute of Higher Education and Research, Chennai, India.