A Multilayer High-Speed Magnetic-Tunnel-Junction Magneto-resistive RAM Structure with Read-Disturb-Detection Circuit by Using Nano-Electronics Quantum Dot Cellular Method

Rupsa Roy, Swarup Sarkar, Sudipta Das

Abstract: In this nano technical world the “Complementary MOS Technology” can be replaced by using “Quantum Dot Cellular Automata” with reversible logical phenomenon to achieve a fault tolerant, low-cost nano electronics formation by feature size, latency and power consumption minimization. The memory is one of the most interesting part of research in this digital world. This paper represents an optimizing high-frequency (in THz) reversible design of a “Random Access Memory” which is simulated by using nano electronics ‘QCA’ simulator to get a better performance than “Complementary MOS technology” with high frequency (in THz), less occupied area and dissipated power. This paper also shows a highly-flexible magnetic quantum cell logic-design and MTJ logical representation which is used for non-volatile MRAM which is widely used in digital electronics world and as a part of aerospace and military device. A reversible nano electronics formation of the control logic to select the word-line and input-line of the MRAM also presented here. The reversible-logic can avoid the information-loss in memory device by zero-heating technique. Non-reversible formations dissipate ‘KTln2’ energy per bit which can be ignored in reversible formation. But, read disturb at low write current is a major issue of MTJ MRAM due to the same path of read/write current path. In this paper a three dimension reversible “Read Disturb Detection Circuit” is formed by nano electronics ‘QCA’ technology which bit-wise follows the control logic of read-disturb-detection technique and the same figure also simulated by ‘VHDL’ coding in Xilinx software to prove the advantages of ‘QCA’ technology contrast to Xilinx This paper also focuses on the correspondence between change of temperature and supply power. The MRAM stores data (using electric charge) in magnetic region with uniform magnetization. In the Spintronic technique a torque is applied to the chargeable-layer by the spin of electron flow and this phenomena takes place in a magnetic tunnel junction (‘MTJ’) which mainly works for electron-tunneling and this is a quantum-phenomena. In this magnetic process the memory uses a pair of ‘ferromagnetic metal plates’ and a thin layer of insulating-material separates them and the orientation of the plates (parallel or not) is determined by ‘1’ and ‘0’ binary bits. MTJ MRAM faces some challenges. Mainly it faces problems due to read disturb at low current [3]. This paper presents a multiple layer or 3-D reversible MTJ or magnetic tunnel junction structure by ‘QCA’ technology which bit-wise follows the control logic of Spintronic process with the application of the “read disturb detection technique”.

II. BACKGROUND

This paper presents the applied cell-design of QCA (fig.1), the different cell designs (fig.2) and the different wiring process of QCA (fig.3 and fig.4). This paper also presents the simulator-parameters in table.1.

Fig.1. A cell-design of QCA

Revised Manuscript Received on December 05, 2019.

Rupsa Roy*, ETCE, Jakir Hossain Institute of Polytechnic, Murshidabad, W.B, India.
Swarup Sarkar, EC department, Sikkim Manipal University, Sikkim, India.
Sudipta Das, Department of ECE, IMPS College of Engineering & Technology, Malda, W.B, India.

by applying QCA technology compare to CMOS technology [1]. A portable high speed reversible memory formation with less heat dissipation and occupied area is introduced in this paper. Reversible Devices should be logically and physically reversible by making the input and outputs uniquely recoverable from each other and can be properly run in backward direction respectively [2]. We can realize arbitrary functions (non-symmetric) using repeated variables.Due to the high leakage problem and also the scalability problem the SRAM, DRAM are replaced by nonvolatile Magneto resistive RAM with spin transfer torque technique to get more flexibility, low power dissipation, more endurance, more speed and less occupied area. MRAM stores data (using electric charge) in magnetic region with uniform magnetization. In the Spintronic technique a torque is applied to the chargeable-layer by the spin of electron flow and this phenomena takes place in a magnetic tunnel junction (‘MTJ’) which mainly works for electron-tunneling and this is a quantum-phenomena. In this magnetic process the memory uses a pair of ‘ferromagnetic metal plates’ and a thin layer of an insulating-material separates them and the orientation of the plates (parallel or not) is determined by ‘1’ and ‘0’ binary bits. MTJ MRAM faces some challenges. Mainly it faces problems due to read disturb at low current [3]. This paper presents a multiple layer or 3-D reversible MTJ or magnetic tunnel junction structure by ‘QCA’ technology which bit-wise follows the control logic of Spintronic process with the application of the “read disturb detection technique”.

1. INTRODUCTION

QCA or Quantum Dot cellular Automata are used to replace the CMOS technology in a proper alternative method because of its faster switching possibility, less area, higher clock-frequency (in THz) and low power-consumption and we can access more bits in a single time
A Multilayer High-Speed Magnetic-Tunnel-Junction Magneto-resistive RAM Structure with Read-Disturb-Detection Circuit by Using Nano-Electronics Quantum Dot Cellular Method

III. RELATED WORKS

Some related works in 2018-19 are summarized in this part. In paper [5] an SOC feature was presented using 180 nm CMOS/200 nm MTJ MRAM and required area, time and energy of this design was 23 mm², 4.15 ns and 98.7 no respectively. In the paper [6] “1 Mb pe STT-MRAM” was designed using “28 nm FD-SOI-CMOS” technology and here the write latency was 10 ns and required energy 3pJ. Paper [7] has given a brief discussion about the “MgO-based MTJ” materials and in paper [8] a “ITIR STT MRAM” was designed using “28 nm” technology with 0.214 mm² area, 20 ns writing speed and 3.6 mW power consumption. The operation of MTJ was represented through Boolean function in the paper [9] using “Hieml” with 21.8 μm² area and 3.2 no energy. Here 1620 cycles (delay) required to access the data. Three different designs of MRAM such as “STT MRAM”, “SOT MRAM” and “VC MRAM” have been compared in paper [10] and presented that the “STT MRAM” gives best solution to reduce the area (70-100 F² cell-size), delay and power consumption. Paper [11] presented a “512 KB STT MRAM” cache memory using 20 nm technology node. The ‘SNR’ value of “STT MRAM” (6 dB - 16 dB) was given in paper [12] and paper [13] presented the stiffness constant of “MRAM” (26.6 pl/m for 425°C temperature) using “MgO / Fetal based MTJ”. Paper [14] calculated the size of heat-effect of Spintronic-device which was 300 n J/Vm and the stability-factor was above 60 of the same technology [15]. The paper [16] accorded the same stability of “STT MRAM” for 4 nm diameter and 300 K temperature using “10 nm” node. The “pMTJ MRAM” design was formed in [17] where 66% TMR was changed. “MRAM” using “22 FFL FinFET Technology” was designed in paper [18] for high quality performance and it can work -40°C to 125°C temperature range with 0.048 μm² area and the required time (8ns for 0.6 V) was given in paper [19]. A “Quad Interface MTJ” was designed in [20] using “1-X” technology by applying an extra MgO layer (90 nm diameter) for getting low power-consumption. In the paper [21] the MTJs were integrated with CMOS for high-density (over 100 Mb) Spintronic (“STT”) memory-design. A “6T-STT MRAM” with 400 mW powers and 45 ns delay was formed in the paper [22] using “500 x” performance for 1 GB density and [23] presented an “MRAM” with 50 nm diameter. [24] applied a fast “gem 5” simulation on “MRAM” and “DRAM” and manifested that we can replace the other memories using magnetic-RAM to reduce power consumption up to ‘8%’ and ‘27%’ at the cost of ‘2x’ the area with 10.4 ns time-delay.

IV. THE PROPOSED METHOD

In the paper [25] the Schematic circuit of memory cell and the irreversible QCA design of ‘RAM’ cell are presented which are manifested here in fig.4 and 5 respectively. This paper presents the same circuit using reversible logic (“reversible NAND” gate)[26] to reduce the cell number from 88 to 41, occupied-area from 0.08 μm² to 0.036 μm² , required clock-zones from 4 to 2 and delay from 1.5 clocks to 1 clock-cycle, which is presented in fig.6.
The same logic-design is simulated through ‘VHDL’ code in ‘Xilinx’ and the compared outcomes are enlisted in table-II. Today’s world is widely using ‘MTJ MRAM’ technology which is a modern replacement of other RAM-cells. The logical representation of magnetic cells can be formed by using a three-input majority gate and an inverter gate one after another [27] and if the three input majority gate is replaced by a five input majority, the previous structure works as a “XOR / XNOR” MTJ logic circuit. This paper suggests a reversible control circuit of word-line and input-line selection of magneto resistive RAM structure, which is formed by QCA technology (fig. 7). In fig. 7 the three inputs A, B and C presents the word-line, select-line and input-line respectively. If the A is one and Bit zero then output Q read the same bit pattern of C and if A is one and Bit also one then the Q presents inverting output of C. In this figure the Q’ gives the ‘XOR’ output of B and C and Q” is the representation of input A.

The write-current of “STT MRAM” is 5 to 10 times higher than the read-current. So, at the time of read to write (when a flip of ‘bit’ cell is required) the magnetic disturbances in ‘MTJ’ take place. This is the main reason of read-disturb in ‘MRAM’. This paper presents a three dimension reversible read disturb detection control circuit by using quantum-cells and the same figure also designed through ‘VHDL’ coding in ‘Xilinx’ and the advancement of ‘QCA’ technology contrast to ‘Xilinx’.

Table- II: Compared outcomes between ‘Xilinx’ and ‘QCA Designer’

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>In ‘Xilinx’</th>
<th>In ‘QCA Designer’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>25 IOB</td>
<td>0.036 µm²</td>
</tr>
<tr>
<td>Latency</td>
<td>8.752 ns</td>
<td>1 clock-cycle</td>
</tr>
<tr>
<td>Power</td>
<td>0.204 W</td>
<td>0.03 W for 0.7 E₄</td>
</tr>
</tbody>
</table>

This paper shows the block-representation of F-Gate which is applied as a reversible gate in this design in fig. 8, where

\[
P = \frac{W}{l} \\
Q = \overline{in} \\
Out = \frac{W}{l}. (\overline{\text{in}}). rl
\]

Fig.8. Reversible F-Gate.

The circuit-design of control-logic of MTJ with read-disturb-detection process and the truth-table [3] are presented.
here in fig. 9 and table- III respectively.

The normal reversible formation (required 2 clock-zones) and multilayer or 3-D formation (required 1 clock-zone) of the above circuit and also the inverting-outcomes are proposed in this paper which are presented in fig. 10, 11, 12 and 13 respectively and the ‘RTL’ and ‘Technology’ schematic of the above figure (synthesized in ‘Xilinx’) are presented in fig.14 and 15 respectively. The schematic figures properly show the logical representation of the proposed ‘MTJ’ design and the logic-diagrams, truth-tables and k-map of different circuits which are used in this proposed ‘MTJ’ circuit can be obtained by the technology schematic.

Table- III: Truth-table of control logic of MTJ with read-disturb-detection [3].

<table>
<thead>
<tr>
<th>read enable</th>
<th>qI</th>
<th>WL/test rd</th>
<th>rd_enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig.9. Circuit-Diagram of control logic of read-disturb-detection [3].

Fig.10. Reversible formation of MTJ control logic with read-disturb-detection using ‘QCA’.

Fig.11. 3-D Reversible formation of MTJ control logic with read-disturb-detection using ‘QCA’.

Fig.12. Reversible formation of control logic of MTJ with read-disturb-detection and inverting output using ‘QCA’.

Fig.13. 3-D Reversible formation of control logic of MTJ with read-disturb-detection and inverting output using ‘QCA’.

Fig.14. ‘RTL’ schematic of the above figure (synthesized in ‘Xilinx’).

Fig.15. ‘Technology’ schematic of the above figure (synthesized in ‘Xilinx’).
Fig.14. ‘RTL’ Schematic of MTJ control logic with read-disturb-detection using ‘Xilinx’.

Fig.15. ‘Technology’ Schematic of MTJ control logic with read-disturb-detection using ‘Xilinx’.

V. SIMULATION RESULTS AND COMPARISON

The simulated result of reversible ‘RAM’ and the reversible control circuit of word line and input line selection of magneto resistive random access memory are presented in fig. 16 and fig. 17 respectively. The outcomes of fig. 17 follows table IV. This research work also shows the outcome of simulated 3-D reversible read-disturb-detection circuit of ‘STT MRAM’ formed by ‘QCA’ technology with and without changing the clock-zone in fig. 18 and 19 respectively.

Table- V represents the compared outcomes of different proposed structures formed in different technology such as, “45 nm CMOS Technology”(2018), “28 nm FDSOI”(2019), “QCA Designer Technology with 3-D reversible logic” and “Xilinx Software”. The correspondence between ambient temperature and power consumption and also the junction temperature and supply power are presented in this paper through the fig. 20 and 21.
VI. CONCLUSION

The new designs of reversible ‘RAM’ and multilayer reversible control logic of ‘MTJ’ (in ‘STT MRAM’) with ‘read-disturb-detection’ process is presented in our paper by using ‘QCA-designer’. These proposed formations give better response to reduce the number of required cells, area (0.01 µm²), delay (0.5 clock cycles) and power (0.008 µW) than other previously suggested designs and also this paper presents a comparison of area, delay, power with reversibility process between the circuits formed by ‘QCA-designer’ and the same circuits implemented through ‘Xilinx’ software (using ‘VHDL’ code). This paper also shows the relation between ambient temperature and power consumption and between junction temperature and supply power through graph and pie-chart. The exponential increment of the total power of the suggested device with the room-temperature increment are clearly represented here through a graphical representation and it is also shows that after “80 degree C” the increment of power with the increment of room-temperature is stopped. In future we can try to reduce the area, energy and number of the garbage-outputs by reducing the cell-size, dot-diameter and by applying new reversible-gates of the proposed figures and also we can try to improve the fault tolerance and reversibility of the formations. This proposed design is required to fabricate for hardware implementation which is required for proper real-world application.

REFERENCES

AUTHORS PROFILE

Rupsa Roy is working as a lecturer in Jakir Hossain Institute of Polytechnic (JHP) in West Bengal. She has applied her M.TECH degree in VLSI and Embedded System from Kalinga Institute of Industrial Technology (KIIT, Bhubaneswar) in the year 2018 and B.Tech degree in Applied Electronics and Instrumentation from Future Institute of Engineering and Management under MaulanaAbulKalam Azad University of Technology, West Bengal (M.A.K.A.U.T, W.B) in the year 2015. She has one published paper in an International journal and one IEEE Conference Paper on Double-gate MOSFET.

Prof (Dr) Swarup Sarkar is a well-known Professor in the field of VLSI design and micro chip design. He is working as a professor in Sikkim Manipal University, Sikkim, India. Dr. Swarup Sarkar has received his PhD in VLSI chip design from NIT, Durgapur, India. Dr. Sarkar is the author of 48 reputed international journal and 3 books. He also invited chair speaker of international Gene convention.

Dr. Sudipta Das is presently working as an Associate Professor in the Department of Electronics and Communication Engineering. He has earned his Ph.D in Engineering from University of Kalyani, INDIA. His area of research interests are Microstrip Antenna, Filter design, FSS, Wearable components and RFID. He has contributed more than 50 international research articles in various journals and conferences. The Biography of Dr. Das is included in the Thirty-Eighth (38th) Edition of the Dictionary of International Biography published by the “International Biographical Centre” of Cambridge, England. The Biography of Dr. Sudipta Das is included in Marquis Who’s who in the World 2016 (3rd Edition). He is associated with different international journals and technical societies. He is Fellow of International society for research and development. He is conferred with “Outstanding teacher in Electronics & Communication Engineering” award by Global Outreach Research and Education Summit Awards, in the year 2019.

