Mukilan K., Ramesh babu C., Muthukannan M.

Abstract: Most construction projects are suffering from claims due to many reasons. Claim emergencies have risen for ten years due to the critical political situation. These claims have a bad impact on all groups who were work in the construction field. The impact of claim could be followed to cost overrun, loss of efforts and suspension of work, contract termination. This investigation means to recognize the real reason for causes of claim in construction and demonstrate their difference between respondent concerning individual, company and organization traits. It also aims found the important factors in developing for the management of construction project claim to predict claim occurrence and to mitigate the negative impact of a claim. The objective of the study achieved through a valid questionnaire obtained from several construction companies. The questionnaire survey was conducted involving the contractor, consultant, client point of view. The result of the questionnaire encountered in the SPSS software for finding the major factor that affects the construction. The finding demonstrates the absence of site attention to detect claims, detachment or inaccessible of related documents proactively, and conflicts which develop during owner/contractor negotiation are all critical issue related with the system of claim management. My work aims to distinguish the various claims through review paper and to recognize the most impacted causes of claim in our region.

Keywords: Claim, Construction, Management, Regression Analysis, Relative index method (RII).

I. INTRODUCTION

The construction field is unique not as same as other industries. It has stressed that the construction industry includes a wide scope of job, workplace, making it interestingly not the same as various industry. One of the real difficulties influencing the construction industry is claims. A claim case is a demand for payment for the destruction caused by any participant in the construction process. Also, the claim is the looking for of thought or change or both by one of the participants to an agreement based an express contract provision.

Revised Manuscript Received on December 15, 2019.

* Correspondence Author

Mukilan K., Department of Civil Engineering ,Kalasalingam Academy of Research and Education, Srivilliputhur, Inida . Email: mukicivil@gmail.com

Rameshbabu C., Department of Civil Engineering Kalasalingam Academy of Research and Education, Srivilliputhur, Inida. Email: babussr@gmail.com

Construction claim has a historical impact on the undertaking cost and time. As referenced already, it becomes a heavy load to the industry. Consequently, researchers have put a great deal of time and importance in deciding the reason for that claim. construction contributors evaluated the claim construction is one of the most unmanageable matters in the project. Claims are turning in to a lifestyle. The claim mainly arises during the execution of the project and that cause the delay in delivery of the construction .The significantly expanding volume of claim is the consequence of the rising complexity of the project in construction. Development in the construction industry, in reality, is a measure of the economic conditions of a country. The reason behind the claim management is because the industry consumes a wide variety of cash flow; on the other hand, it is opposite to the construction industry: most project exhibit cost overruns, time extensions, and conflicts among parties widely due to claims.

Construction management is the procedure of recruit and co-operating assets to advance a claim from distinguishing proof and examination through readiness, and introduction, before it continues to negotiation and settlement [12]. The primary objective of the research is to list out the claim factors that the construction industry overlay yet to discover the key factor that can fundamentally impact the construction industry. This study distinguishes the key component and possible computation to deal with a claim. All claim cases are seen in the questionnaires survey. The key goal of the claim management is to determine certain issues in a compelling what's the more, proficient way to resolve the claim and to avoid expensive disruption and delays to the project

II. RESEARCH METHODOLOGY

The claim is inescapable in the construction industry, and they can exclude or shorten by considering & understanding their vital causes. Several reasons of claim in construction found in many kinds of literature and research papers, but no one can introduce an important number of claims to prove the normal practice [23]. Reason of claims is unique, and information about them can enhance understanding depends on the factor involved. The perspective of a consultant owner and contractor may change based on how the sensation of claim arises.

The Claim originates from a variety of factors; both direct and indirect [4].

Mostly the claim referred to cause a poor investigation of the site, incomplete drawing bid, disruption of construction [16]. In the claim, cost overrun is one of the factors that originate from various sources as order change and unforeseen ground condition [20], [18], demonstrated the claim in construction, such as the delivery of material, weather condition, poor site supervision, insufficient plan & specification, acceleration, and schedule problem. [10], [23] also examined the various reason for the claim examined already the(i.e.) scope of work & change orders during construction. These are the significant reason for the claim. [5] show claim arises from several cases namely defective specifications. [5] Also, demonstrate various reasons for different claim site condition. Change of scope of work, owner causes of disruption or delay [8]. [23] Highlighted the most of these claim caused due to Defect omission in the contract document,[21].Highlighted that causes of claim in the construction industry, including the lack of knowledge, error in construction, unforeseen changes, lack of resources, financial /contractual issues[9] Note that the word claim does not appear in the text of clauses time, for an assertion of entitlement of additional payment. More of the claim can be identified to two origins such an error in the contract document; stakeholder engaged with a project, change condition [10] has found that the most common causes for a claim are design change and error, extra work. A survey study was [20] concluded that the most common causes of claims are increasing in scope, weather condition, and acceleration [20] [21] List some other well-known reason that claim may arise, such as inadequate bid information, fault in drawing and specifications. [15] based on ninety-one projects, the most crucial source of claims include clear or inadequate documentation, inclement weather, time extension assessment. [11] Listed the causes of claims due to ambiguities in the contract document, delay in payment, and change of scope.

This research explored the reason for the claim in the residential project and to recognize factors influencing the claim. To ensure the objective of this research achieved by using a questionnaire survey used to collect the data. The requirement of managing the claim construction is related to all professionals (consultant, contractor, and client) in the construction industry

III. QUESTIONNAIRE STRUCTURE

The questionnaire divided into two categories. CategoryI involves the detail about the project and organization to get theinformation about the construction project. The question related to Name of the project, Project value, Start date, Type of project control and End date of the project, etc. Category II involves forty-seven claim factors were identified from literature studies and consulting with some practitioners. These forty-seven factors (i.e.) Category II divided into four subdivisions such as factors related to the contractor, client, consultant, and general categories. The first section (contractor related problem) involves fourteen claim factors such as planning and management, contractual claim, execution error by the contractor. The second section (consultant related problem) involves ten claim factors such as delay in design delivery, site management, and supervision, the dispute in bill settlement. The third section (

client-related problem) contains ten factors such as payment to contractors, incomplete design, delay in approval, excessive change ordered, etc. The fourth section (general factor) contains ten factors such as weather condition, unforeseen ground condition proper cash flow, sudden change in economic, etc., Using the five-point Likert scale [21], where the range from one to five (1very low, 2-low, 3-medium, 4-high, 5-very high).

IV. DATA COLLECTION

Questionnaire data distributed around 140 residential projects, but we have received a response from 100 companies out of 140. We received the data from 44 engineers, 18 owners, 22 contractors, 16 consultants on residential as well as commercial projects. They gave the data depending on their experiences, present claim issues in the constructions. These responses were separated based on experience and their position in construction.

V. DEMOGRAPHIC PROFILE

Table I: Demographic profile

S. NO	DEMOGRAPHIC		NO. OF	PERCEN
	PROFILE	CATEGORY	RESPNT	TAGE
	Experience in	1-5yrs	27	26.7
1.	construction	5-10years	25	24.7
	field	10-20 years	23	22.7
		>20 years	26	25.7
		Engineer	45	44.5
2.	Job category	Owner	18	17.8
	2. Jos category	Proprietor	16	15.8
		Contractor	22	21.7
	Type of project undertaken	Residential	54	100
	undertaken	Commercial	46	

VI. DATA ANALYSIS

The data analysed using statistical tools like SPSS (Statistical Package for Social Science) and MS Excel. SPSS is a software package utilised for leading statistical analysis, controlling the data and creating the tables and charts that condense data. SPSS performs statistical analysis run from fundamental descriptive statistics such as factor analysis. Frequency analysis is a descriptive statistical package that shows that the number of events of each response picked by the respondents. We can likewise compute the sum mean median mode etc.

The gathered data was entered, worked and examined by utilizing the essential standard of statistics. The data was taken care of into required information by simplifying and understanding the appropriate response from the filled-out questionnaire. In the below table the sum is the total number of weighting given by each respondent and RII value calculated by using the formula

$$RII = \square^W$$

$$N \times A$$

Where RII = Relative Importance Index: $\sum w =$ weighting given by each respondent: N = Number of responses received: A = Highest weight (1 to 5). The rank was assigned based on the RII value.

Table II: Scale of Importance

Scale of Importance	Scale Value
1	Very Low
2	Low
3	Medium
4	High
5	Very High

Table III: Ranking for Contractor Related Factors

S.NO	DESCRIPTION	SUM	RII	RANK
1	Quality of contractor's work	363	0.712	1
2	Planning and Management	340	0.672	2
3	Delay in progress if any Variation order	327	0.654	3
4	Complex execution of project	322	0.635	4
5	Unexpected changes in exchange, interest and inflation rates	317	0.623	5
6	Contractual claims (extension of time with	313	0.617	6

	cost)			
7	Financial control and wastage on site	308	0.605	7
8	Execution error by contractor.	308	0.605	7
9	Shortening of contract period	307	0.602	8
10	Lack of staff experience and execution by contractors	302	0.594	9
11	Cash flow and financial difficulties by contractors	299	0.591	10
12	Incomplete contract document and their discrepancies	295	0.585	11
13	Provision of BOQ & dispute during bill settlement	294	0.582	12
14	Lack of control over sub- contractor	291	0.571	13

The major five factors that should affect the construction from the contractor's sides are

- 1. Quality of contractor's work
- 2. Planning and Management
- 3. Delay in progress if any Variation order
- 4. Complex execution of the project
- Unexpected changes in exchange, interest and inflation rates

A. FREQUENCY TABLE:

(Where F- Frequency, P-Percentage, VP- Valid Percentage, CP- Cumulative percentage)

Table IV: Frequency Table Quality of Contractors Work

QUALITY OF CONTRACTOR'S WORK					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	20	19.0	19.0	19	
Low	21	21.0	21.0	40	
Medium	20	20.0	20.0	60	
High	26	26.0	26.0	86	
Very high	14	14.0	14.0	100	
TOTAL	101	100	100		

Table V: Frequency for Planning and Management

PLANNING AND MANAGEMENT					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	13	13	13	13	
Low	10	9	9	22	
Medium	25	25	25	47	
High	31	31	31	78	
Very high	22	22	22	100	
TOTAL	101	100	100		

Table VI: Frequency For Delay In Progress If Any **Variation Orders**

DELAY IN PROGRESS IF ANY VARIATION ORDER					
VALID	F	P (%)	VP	CP (%)	
			(%)		
Very low	12	12	12	12	
Low	18	17	17	29	
Medium	24	24	24	53	
High	26	26	26	79	
Very high	21	21	21	100	
TOTAL	10	100	100		

Table VII: Frequency for complex execution of project

COMPLEX EXECUTION OF PROJECT					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	10	9	9	9	
Low	21	21	21	30	
Medium	26	26	26	56	
High	27	27	27	83	
Very high	17	17	17	100	
TOTAL	101	100	100		

Table VIII: Frequency for Unexpected Changes in **Exchange, Interest and Inflation Rates**

UNEXPECTED CHANGES IN EXCHANGE, INTEREST AND INFLATION RATES					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	13	13	13	13	
Low	16	16	16	29	
Medium	29	29	29	58	
High	25	25	25	83	
Very high	18	17	17	100	
TOTAL	101	100	100		

B. DESIGN CONSULTANT RELATED

Table IX: Ranking for Design Consultant Related

S.NO	DESCRIPTION	SUM	RII	RANK
1	Difference between design and actual quantities	332	0.652	1
2	Contacts and ambiguities	325	0.641	2

Blue Eyes Intelligence Engineering 1055 & Sciences Publication

	Las		0 1	
3	Site management	322	0.634	3
	and supervision			
4	Relationship	317	0.622	4
	between site			
	management and			
	execution team			
	Lack of coordination between			
5	construction parties	304	0.608	5
6	Delay of shop	304	0.605	5
	drawing approval			
7	Complete design	301	0.597	6
	and specs			
8	Delay in design	301	0597	6
	delivery			
9	Dispute on bill	298	0.591	7
	settlement			
10	Termination of	295	0.586	8
	contract and			
	suspension of work			
	by one party			

The major five factors that should affect the construction from design consultant sides are

- 1. Difference between design and actual quantities
- 2. Contacts and ambiguities
- 3. Site management and supervision
- 4. Relationship between site management and execution team
- 5. Lack of coordination between construction parties
- C. FREQUENCY TABLE

Table X: Frequency for Difference Between Design And Actual Quantities

DIFFERI	DIFFERENCE BETWEEN DESIGN AND ACTUAL QUANTITIES				
VALID	F	P(%)	VP(%)	CP(%)	
Very low	11	11	11	11	

Low	13	12	12	23
Medium	29	29	29	52
High	30	30	30	82
Very high	18	18	18	100
TOTAL	101	100	100	

Table XI: Frequency For Contact And Ambiguities

CONTACT AND AMBIGUITIES					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	14	14	14	14	
Low	8	7	7	21	
Medium	36	36	36	57	
High	26	26	26	83	
Very high	17	17	17	100	
TOTAL	101	100	100		

Table XII: Frequency For Site Management And Supervision

SITE MANAGEMENT AND SUPERVISION					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	11	10	10	10	
Low	18	18	18	28	
Medium	27	27	27	55	
High	30	30	30	85	
Very high	15	15	15	100	
TOTAL	101	100	100		

Table XIII: Frequency For Relationship Between Design And **Actual Quantities**

RELATIONSHIP BETWEEN DESIGN AND ACTUAL QUANTITIES					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	10	10	10	10	
Low	17	17	17	27	
Medium	30	30	30	57	
High	33	32	32	89	
Very high	11	11	11	100	
TOTAL	101	100	100		

Table XIV: Frequency Table For Lack of Coordination **Between Construction Parties**

LACK OF COORDINATION BETWEEN CONSTRUCTION PARTIES					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	14	14	14	14	
Low	23	23	23	37	
Medium	21	21	21	58	
High	29	29	29	87	
Very high	14	13	13	100	
TOTAL	101	100	100		

D. CLIENT RELATED AND ITS FREQUENCIES

Table XV: Ranking of Client Related Factors

S.NO	DESCRIPTION	SUM	RII	RANK
1	Funds arrangement and cash flow	340	0.673	1
2	Change the order during construction and market inflations	329	0.654	2

3	payment to contractor	321	0.642	3
4	A long line of authority on	319	0.633	4
	owner organization			
5	Ignoring items with abnormal rates (tender evaluation)	319	0.633	4
6	Excessive changes in order and frequent design change	314	0.626	5
7	Change of scope of work and additional work	305	0.605	6
8	Delay in approval of completed work	305	0.605	6
9	Incomplete design at the time of tender	289	0.582	7
10	Omission and error of BOQ & Incomplete tender	287	0.575	8
	document			

The major five factors that should affect the construction from client sides are

- 1. Funds arrangement and cash flow
- Change the order during construction and market inflations
- 3. Payment to contractor
- The long line of authority on owner organization
- Ignoring items with abnormal rates (tender evaluation)
- E. FREQUENCY TABLE

Table XVI: Frequency For Payment To Contractor

LONG LIN	LONG LINE OF AUTHORITY BY OWNER ORGANISATION					
VALID	F	P(%)	VP(%)	CP(%)		
Very low	14	14	14	14		
Low	15	15	15	29		
Medium	21	21	21	50		
High	38	38	38	88		
Very High	13	12	12	100		
TOTAL	101	100	100			

Table XVII: Frequency for Long Line of Authority

	PAYMENT CONTRACTOR					
VALID	F	P(%)	VP(%)	CP(%)		
Very low	9	9	9	9		
Low	22	22	22 d Exploring Ene	31		

Blue Eyes Intelligence Engineering 1057 & Sciences Publication

Medium	26	26	26	57
High	25	25	25	82
Very High	19	18	18	100
TOTAL	100	100	100	

Table XVIII: Frequency For Fund Arrangement And Cash Flow

FUND ARRANGEMENT AND CASH FLOW					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	12	12	12	12	
Low	11	11	11	23	
Medium	23	23	23	47	
High	31	31	31	78	
Very high	23	22	22	100	
TOTAL	101	100	100		

Table XIX: Frequency For Ignoring Items With Abnormal Rate (Tender Evaluation)

IGNORING ITEMS WITH ABNORMAL RATE (TENDER EVALUATION)					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	13	13	13	13	
Low	18	18	18	31	
Medium	23	23	23	54	
High	29	29	29	83	

18	17	17	100
101	100	100	

VII. GENERAL FACTORS AND ITS FREQUENCIES

Table XX: Ranking for General Factors and its Frequencies

	nexpected changes in aterial price	327	0.645	
		327	0.645	
	aterial price		0.645	1
ma				
2 Th	ne high cost of labor and	325	0.643	2
tra	nsportation			
3 Su	idden changes in	316	0.625	3
ec	onomic and market			
со	ndition			
4 Pro	oper cash flow during	314	0.621	4
со	nstruction			
5 Pro	oblem with neighbors	313	0.619	5
arc	ound the site			
6 Uı	nforeseen ground	313	0.619	5
со	ndition			
7 Ur	nexpected changes in	306	0.605	6
ex	change, interest and			
int	flation rate.			
8 Ch	nange in government	291	0.576	7
	gulations and laws			
	eather conditions	290	0.574	8
10 Ins	sufficient utilities	279	0.552	9
av	ailable on site			
(el	lectricity, water etc,)			

The major factors that should affect the construction are

- 1. Unexpected changes in material price
- 2. The high cost of labour and transportation
- 3. Sudden changes in economic and market condition
- 4. Problem with neighbours around the site

Retrieval Number: B10121292S219/2019©BEIESP DOI: 10.35940/ijitee.B1012.1292S219

A. FREQUENCY TABLE

Table XXI: Frequency For Unexpected Changes In Material

UNEXPECTED CHANGES IN MATERIAL PRICE				
VALID	F	P (%)	VP (%)	CP (%)
Very low	9	9	9	9
Low	21	21	21	30
Medium	26	26	26	56
High	22	22	22	78
Very high	22	22	22	100
TOTAL	101	100	100	

Table XXII: Frequency For Sudden Changes In **Economic And Market Conditions**

SUDDEN CHANGES IN ECONOMIC AND MARKET					
CONDITIONS					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	11	11	11	11	
Low	20	20	20	31	
Medium	26	26	26	57	
High	28	28	28	85	
Very high	16	15	15	100	
TOTAL	10	100	100		

Table XXIII: Frequency For Problem With Neighbour **Around The Site**

PROBLEM WITH NEIGHBOUR AROUND THE SITE				
VALID	F	P (%)	VP (%)	CP (%)
Very low	9	9	9	9
Low	17	17	17	26
Medium	40	40	40	66
High	20	20	20	86
Very high	14	14	14	100
TOTAL	100	100	100	

Table XXIV: Frequency For High Cost of Labour And

Transportation

HIGH COST OF LABOUR AND TRANSPORTATION					
VALID	F	P (%)	VP (%)	CP (%)	
Very low	8	8	8	8	
Low	13	13	13	21	
Medium	41	41	41	62	
High	22	22	22	84	
Very high	16	16	16	100	
TOTAL	100	100	100		

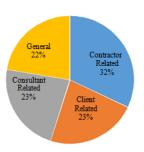


Fig 1: Response rate

VIII. RESULT AND DISCUSSION

The study identified and ranked the five most critical claim factors out of 44 selected claim factors. The factors classified into four different phases of construction. The highest frequency and impact of events justifying the right to claim on contractors, consultant and client-side and general are

- Quality of contractor's work Planning and management
- Fund arrangement and cash flow\
- Change the order during construction and market inflation
- Site management and supervisions

This study explored and ranked the causes of the claim. The above five factors are the major reason for the occurrence of the claim. The RII value for every five factors is the quality of the contractor's work is 0.712. This is the highest value when compared to the other four. The next one is planning and management; the RII value is 0.673. This is the second leading factors. The third one is fund arrangement and cash flow the RII Value is 0.673. The fourth one is changing the order during construction and market inflation; its RII value is 0.651. The final one is site management and supervision; its RII value is 0.631.

The above five factor's relative importance value is more when compared to the other thirty-nine factors.

In this study, all the forty-four factors are depending on each other. We had to rectify these factors out of 39 factors. Surely some factors index or impact of that factor will be reduced in construction.

IX. CONCLUSION

Claims are the biggest challenges in meeting the construction industry nowadays. Finding the root cause is the first step to avoid the claim. This study aimed at identifying and ranking the causes of claims according to their relative importance in the construction industry. The study findings of the first thing are reasons for claims caused by owners, the second thing is reasons for a claim caused by the contractor, and the third thing is reasons for a claim caused by the client). This study is finding the main causes of the claim and understanding the claim and how to avoid the claim during construction. From the investigation, it is fitting that contractual workers select a decent venture supervisor who has a suitable involvement in development venture usage and learning of development guarantee. The undertaking arranging and configuration organize proprietors need to expand mindfulness inside the nearby network about the advantages of the construction project to keep away from obstruction from neighborhood occupants amid the task execution organize. It should be possible through leading formal reviews and workshops. Proprietors need to help contractual workers all the more viable in evacuating obstructions so a project can be actualized without deferrals. At long last, there must be a near-by collaboration between the contracting gatherings to control, limit and keep away from explanations behind cases happening on development ventures. This is the important to diminish reasons for cases and as needs is limiting postponements and cost overwhelms on development ventures. The discoveries introduced in this examination give some direction and data that directors and industry specialists can use to deal with their tasks.

REFERENCES

- Abdul-Mala.: "The five commandments of construction project delay analysis", *Journal of Construction Engineering and Management*, ASCE Vol.40, No.4, 1998.
- Abebe Dinku and Girmay Kahssay.: "Claims in International Construction Projects In Ethiopia And Case Studies On Selected Projects" Journal of EEA, Vol 20, September 2003.
- Abhishek Shah, Rajiv Bhatt, J. J. Bhavsar.: "Types and Causes of Construction Claims", *International Journal of Engineering Research & Technology (IJERT)* Vol. 3 Issue 12, December-2014.
- Blaikie.P.M: "Claims by contractors against owners", Journal of Construction Engineering and Management ASCE Vol. 120, No.3 1986.
- Bu-Bshait and I.Manzanera.: "Claim Management", Journal of Construction Engineering and Management, ASCE Vol.8, No.4, 1990.
- Chaitanya Khekale, Nityan and Futane. "Management of Claims and Disputes in the Construction Industry". *International Journal of Science* and Research (IJSR) Volume 4 Issue 5, May 2015.
- Cook duke Cox tod and Kenny.: "Foundations of construction contracts", *Journal of Construction Engineering and Management*, ASCE January/ February 1998
- D. A. Vlatas, "Owner And Contractor Review To Reduce Claims"., *Journal of Construction Engineering and Management*, ASCE Vol. 112, No. 1, March 1986.

- Dickman.J.E, Nelson.M.C, "Construction claims, frequency and severity", *Journal of Engineering Research & Technology* (IJERT) Vol. 3 Issue 12. December-2012.
- Edward J. Jaselskis, Jeffrey S. Russell.: "Predicting contract survey bond claims using contractor financial data", *Journal of Construction* Engineering and Management, Vol.120, No. 2, June 1994.
- George F. Jergeas, Francis T. Hartman.: "Contractors Construction Claims Avoidance", Journal of construction engineering and management, ASCE Vol. 120, No.3,
- G.K.Kululanga, W. Kuotcha.: "Construction Contractors Claim Process Framework". Journal of construction engineering and management ASCE July/August 2011.
- 13. Jeffrey S. Russell, Edward J. Jaselskis.: "Predicting construction contractor failure before contract award", *Journal of Construction Engineering and Management*, Vol.118, No. 4, December 1992.
- Jeffrey S. Russell, Edward J. Jaselskis.: "Trends in construction contractor financial data", *Journal of Construction Engineering and Management*, Vol.119, No. 4, December 1993.
- 15. J. K. Yates and Alan Epstein.: "Avoiding and Minimizing Construction Delay Claim Disputes in Relational Contracting", *Journal of professional issues in engineering education and practice*, ASCE / April 2006.
- J. K. Yates and Alan Epstein: "Analytical Model for Analyzing Construction Claims and Opportunistic Bidding", *Journal of construction* engineering and management ASCE January/February 2004
- Kandi.: Journal of Construction Engineering and Management, ASCE Vol. 135, No.9, September 1, 2009
- Kraiem, Z. M and Diekmann, J.E.: "Concurrent delays in construction projects", *Journal of construction engineering and management ASCE* Vol. 120, No.3, September 1995.
- M. A. U Mustafa, A. M., El-Saadi, M. H. & Abou-Zeid, M. G.: "Process Model for Administrating Construction Claims", *Journal of Management* in Engineering, April 2002.
- M. M. Kumaraswamy.: "Conflicts, Claims and Disputes in Construction, Engineering", Construction and Architectural Management, Vol.4, No.2, 1997
- Mukilan.K: "A Qualitative Study and analysis of causes of disputes in a claim in the construction industry", *International Journal of Civil Engineering And Technology*, IJCIET volume 10, issue 01, Jan 2019
- Nor Azmi Bakhary, Hamimah Adnan, Azmi Ibrahim.: "Critical Review on Improving the Claim Management Process in Malaysia", *Journal of Education and Vocational Research* Vol. 4, No. 7, July 2013.
- 23. P. Levin.: "Construction Contract Claims", Changes & Dispute Resolution", *Journal of Construction Engineering and Management*, Vol.34, No.2, 1992
- R. K. Cox.: "Managing Change Orders and Claims", Journal of Management in Engineering, ASCE January/February 1997.
- S.Alkass, and F. Harris.: "Construction Contractor's Claims Analysis", Journal of Engineering and management, ASCE Vol.19, No.1, 1991
- Stephen Scott.: "Delay Claim in U.K. Contracts". Journal of construction engineering and management, September 1997.
- Steve Scott, Richard Anthony Harris.: "United Kingdom Construction Claims", Journal of construction engineering and management, ASCE September/October 2004.
- Wonkyoung Seo and Youngcheol Kang: "Performance Indicators for the Claim Management Process of Construction Projects", Journal of construction engineering and management ASCE January 2019
- Dhaval Parikh; G. J. Joshi and D. A. Patel: "Development of Prediction Models for Claim Cause Analyses in Highway Projects" *Journal of Legal* affairs and Dispute Resolution in Engineering and Construction Volume 11 Issue 4- November 2018
- Tak Wing Yiu, Tingting Liu and Lai Chun Kwok: "Explicating the Role of Relationship in Construction Claim Negotiations", Journal of Construction Engineering and Management Volume 144 Issue 2 February 2018

AUTHORS PROFILE

Mukilan K. Completed his Master of Engineering in the field of Construction Engineering and Management in RVS Technical Campus, Coimbatore in the year of 2015 .He completed his Bachelor of Technology under Kalasalingam University in the year of 2012. He has more than five years of experience in teaching. He has published various papers in the reputed journals. His main thrust research areas are Construction management

Ramesh Babu C. completed his Ph.D. from IIT Chennai. He has more than ten years of experience in teaching and research. His areas of research includes pervious concrete, geo polymer concrete, and high volume flyash concrete

Muthukannan M. completed his Ph.D in Civil Engineering in Anna University, Chennai in the year 2010. He completed Master of Engineering in the field of Transportation Engineering and Management in College of Engineering, Guindy, Chennai in the year 2004. He completed his Bachelor of Engineering under Madurai Kamarajar University in the year 2000. He is presently working as a Professor in Civil Engineering department at Kalasalingam University, Tamilnadu, India. He is guiding for many Ph.D scholars in the field of transportation engineering and computer applications in transportation network using graph theory. He has published various quality papers in the reputed journals. His main thrust research areas are transportation network design, transport management and travel demand management

