Optimization of frequency settling time of PLL using 3rd MASH Sigma Delta Modulator

Govind Singh Patel, Nripendra Narayan Das, Sanjeet Kumar Sinha

Abstract: To reduce settling time of PLL, an attempt to optimize the parameters has been proposed in this paper. The transient responses of various Phase Locked Loop (PLL) frequency synthesizer have been compared with their active and passive poles effect. These results are presented on a type-II 3rd order PLL frequency synthesizer employing a 3rd order MASH sigma delta modulator. The simulation results show the improved performance of the fractional frequency synthesizer for the communication system. These results have been simulated using Advanced Design System (ADS) tool.

Keywords: VCO, FPGA, DCO, Loop Filter, ADPLL, Phase Detector.

I. INTRODUCTION

PLL consists of phase detector, filter, VCO and divider. It is used to provide different frequency ranges for various applications. It also used to receive signal and synchronize them with input signals. Betterment of component for the digital signals processing application more function related to processed signal are experience a shift from the analog to digital domains provided numerous advantages like efficient calibration, advanced accuracy improved predictability & chance to increase complication with no requirement a boring adjustment or calibration. Thus digital domain surely provides upgraded edge in excess of analog domains which allure or fascinate extra research & experimentation of the study herein field. As a result of high integration based on very large scale integrations (VLSI) system, phase Locked loops (PLLs) frequently operated in a really soundly and noisy environment’s. These digital switching noises connected during power supply and substrate induces sizeable noise into noise sensitive analog circuits. A lot of analog approach is proposed to better extreme nervous performed PLLs for example choose thin bandwidth on using low gain voltage control oscillators (VCO).

The synthesizer for mobile application are based on fractional PLLs. Alternatively those analog approach frequently effect in longer lock in moment & increase designing complication of PLLs. The associated fractional stimulus must be suppressed after traditional analog technique are applied that required RC filter & precise loops gained control CMOS rapid scaling technology enabled. All digital PLLs implementation area consume RC filters are replaced by digital loop filter & loops gain calibration digitally. Alternatively, super performance is degraded by non-linear switching digital transient noise.

The key block used for up and down conversion of radio signals is frequency synthesizer traditionally has been based on a charge-pump PLLs, which is not efficiently cooperative to integration. Recently a digitally control oscillator (DCO), which is done consciously and intentionally keep away any analog tuning voltage control for RF wireless applications.

This permits for its loops controlled circuitry to execute in a fully digital mode as first proposed and then do practical exhibition and explanation as a digital synchronization phase domain all digital PLLs 0.13 mm CMOS chip Bluetooth wireless in a commercial. One of the most important things in phase PLL is that its building block is needed for modern day digital communication. In RF circuit, recover time and caliper are used. Carrier in base band digital signaling process a thoughtful recognition is the concept or basics of PLLs require brief studies of the area such as communication theory RF circuit digital signal processing discrete time control system.

Frequency controls are also used for PLL circuit. PLL can be designed as a frequencies multiples demodulator tracking generators of lock recovery circuit. All of these applications are used the same basic circuit concept. But uses different characteristics the main objectives of the paper are to plan and execute all digital PLL phase lock loops (ADPLL) on a FPGA a accomplice by minimize delay with mixed frequency 62.5MHz. The output of the VCO continuously tested by an analog PLL circuit through an error in voltage and feedback loop haul the VCO again into synchronization with referred signal.

As we know that there are drawbacks of PLL which includes power supply noise & noise coupling signal shedding. Proposed architecture of ADPLL conventional PLL have three part phase frequency detector, voltage controlled oscillator and loop filter to overcome these limitations. Literature reviews of the relevant title have been done by various authors as follows:

A new technique is developed which provides stable and noble system of phase locked loop. Disturbance occurred in phase loop by the digital frequency. Clock recovery data and high speed clock at non return zero data stream at 155.52MHz presented and implemented [1]. New architecture of PLL with their feature is embedded in the design and implemented on FPGA platform. This design is based on parameters like: high performance circuit with low power, low output jitter, that can be tolerated when change has been occurred in fabrication process. It generated clock signal ranges from 61MHZ to 325MHZ [2].
Molecular communication becomes popular technology for scientific & emerging interest. It is communication system having emitting molecules & reception of molecules. It has slow propagation speed and short transmission range. Molecular loop filter, Molecular voltage control oscillator, molecular phase detector are used to extent PLL to molecular PLL [3].

Manoj Kumar and Kusum Lata are talked about basic ADPLL & principle digital & controlled system. ADPLL is designed with integrated circuit. It plays major role in digital communication [4].

Prince Nuna G.K. and Urkar presented circuit in which PLL played main role. Designing of this circuit in digital environment need behaviors modeling in VHD. It was designed on the Xilin ISE 8.2i and implemented on FPGA [5].

This work presented on multiplexer based length ring oscillator & its effect using as VCO in PLL. The applications of VCO are used in PLL as FM demodulator or frequency synthesizer. For improving signals quality, bandwidth of the VCO can be optimized [6].

This paper presented about the behavior of nonlinear amplifier based PLL. The occurrence of chaotic dynamics is identified by Lyapunov exponent and dimension of said system numerically with the help of initial condition with the range of phase modulation gain and loop time delay for fixed value of non-linear parameter. NLA is used to avoid unwanted chaos in conventional delay of PLL system [7].

PLL plays crucial role in phase locked receiver, coherent transponders etc. In most of the cases bandwidth of the loop need to keep small to control influence of noise. Our aim is to get the applied to sweep voltage. That decreases the closed-loop frequency error where phase lock occurs quickly? For second loop which have perfect loop filter with maximum sweep rate by Rm rad/s. If applied voltage of VCO is less than sweep rate then system is stable for these points. The other numerical technique that overages maximum sweep rate (Rm) which is used to generate data plots of Rm/wn2 & Rm/Bn2 versus £ [8].

Now it becomes very difficult to use resistance thermal noise for pseudo-random number in the form of encrypted algorithm and we need true random number as much as possible. This work described about altera noise of PLL and comparative study of various existing works [9].

PLL have many modern applications in advance communication and instrument system. It is a mixed signal circuit having designed challenged at high frequency. This work is used to analyses the design of mixed signal phase locked loop for faster frequency locking. PLL is used to operate frequency of 1GHz with lock time 280.6ns. It consumes power 11.9mW at 1.1-v DC supply [10].

This work presented fast locking PLL with all digital locked-aid circuit. This topology is based on frequency and phase detection and tuning loop; frequency detection loop is used for accelerate frequency locking time and phase detection loop is used to adjust phase error between reference & feedback clock. PLL circuit is designed with 0.35µm CMOS technology with 3.3v supply voltage. This architecture achieved locking time of reduction around 87.5% [11].

Charge pump is the main building block in phase locked loop. In CMOS charge pump there are some non-ideal effect like current mismatch, clock feed through and charge sharing. It is designed 0.18µm CMOS technology. It produces mismatch current between two branches. This mismatched between UP/DN current can be achieved less than 0.065% from past-layout simulation by using this architecture. It measures CP output voltage in range of 0.40-1.25v. It also has high output resistance wide output voltage swings which responsible for good performance under low power supply [12].

This work presented algorithm to measures data and clock recovery. Other parameters like; acquisition time, generation, jitter transfer and capture range have been analyzed. Out of them jitter characteristics are the major and most important data recovery technique of PLL[13].

This paper presented a low noise sub-sampling PLL having multiphase output. To improve robustness, automatic switching is used between sub-sampling phase loop and frequency loop against perturbation. A LC oscillator having capacitive phase interpolation network that can be used to generate multi phase output for SSPLL chip 130nm CMOS technology. It is able to achieve a phase noise of 102dBc/Hz and measured integrated jitter of 209 fs at 2.4 GHz. It consumes around 27.2mW. The measured reference spur is -72dBc and fractional spur level is -49dBc [14].

From the above literature review it has been concluded that there is gap in the previous architectures to determine settling time. The stability is the main parameter of the PLL that can be optimized by researchers.

II ARCHITECTURE OF PHASE LOCKED LOOP

Basically PLL is a feedback control system that controls reference input and feedback signal of VCO. Output of phase detector is proportional to the applied inputs to Phase detector. And this input is fed to loop filter. It defines dynamic behavior of PLL. VCO generates output frequency for the PLL as shown in fig. 1.

![Fig. 1 Block diagram of PLL](image)
The stability of the system is the essential parameter to determine optimization of any architecture. For this reason, study of the poles and zeroes of the proposed filters has been analysed with their charge pump configurations. Considering the above requirements, the transient responses of the various configurations have been analyzed in the next sub section.

III SIMULATION RESULTS

3.1: Transient response of PLL with charge pump phase detector with passive 3 poles:
A PLL consists of charge pump phase detector, filter, VCO and Divider. Out of these, phase frequency detector plays important role to determine stability of the proposed system with effect of passive 3 poles as shown in figure 2. Output frequency of the VCO depends upon input voltage of the oscillator and their tuning voltage of VCO with respect to time is shown in figure 3 that shows stability of the system which is approximate 126 mV/µSec.

Figure 2: Schematic diagram of charge pump PLL with 3 passive poles
Figure 3: VCO tune voltage with respect to time for passive 3 poles

Figure 4: Charge pump current with respect to time for passive 3 poles
Figure 5: VCO frequency with respect to time for passive 3 poles
Figure 6: Divide ratio N with respect to time for passive 3 poles
Optimization of frequency settling time of PLL using 3rd MASH Sigma Delta Modulator

Locking and unlocking of the PLL is depends upon VCO output frequency which determine required output in terms of frequency. Output of charge pump plays major role to smooth variation of VCO output is shown in figure 4. This feedback output compares with reference input frequency and gives corresponding output to the system, is shown in figure 5 and its parameters are as given below:

For m1:
Time= 5.110 µSec
VCO frequency = 252.00 MHz

For m2:
Ind delta=1.548 x10^-4
Dep delta = 10.001

Finally the graph of divide ratio N versus time is shown in figure 6 that calculate average high frequency range of the frequency synthesizer using SDM.

3.2: Synthesizer Transient Response with a Charge Pump Detector and Passive 4 Pole

This sub section describes the transient response of the charge pump phase detector with their passive 4 poles effect is shown in figure 7. Poles and zeros are component by which stability of the can be measured which is shown in figure 8. Other component is oscillator, its output is depends upon output of filter. This output tuning voltage with respect to time as shown in figure 9.

Figure 7: Schematic diagram of PLL with charge pump passive 4 poles

Figure 8: VCO tune voltage with respect to time for passive 4 poles

Figure 9: Charge pump current with respect to time for passive 4 poles

Figure 10: VCO frequency with respect to time for passive 4 poles

Figure 11: Divide ratio N with respect to time for passive 4 poles
It shows stability of the system which is approximate 123 mV/ μSec. Next component is charge pump type phase detector which is used to smooth VCO output voltage. It plays major role to smooth variation of VCO output is shown in figure 10. It also determines locking and unlocking time of PLL to find stability of the system. These comparative parameters are shown in figure 11.

Let us simulate few results using given below values:
For m1:
Time= 10.50 µSec
VCO frequency = 110.00 MHz
For m2:
Ind delta=1.900 E-4
Dep delta = 3.999

Last component is divider which rationalizes the high frequency and gives corresponding output to the phase detector.

3.3: Synthesizer Transient Response with a Charge Pump Detector and Active 3 Poles

The schematic diagram figure 12 consists of charge pump detector with active 3 poles, VCO and divider. These active components play major role to find the stability of the system in term of tuning voltage of VCO and time as shown in figure 13. The result shows stability of the system which is approximate 121 mV/ μSec.
Optimization of frequency settling time of PLL using 3rd MASH Sigma Delta Modulator

Figure 16: Divide ratio N with respect to time for active 3 poles

Figure 14 presents smooth variation of VCO that also determines the locking and unlocking time of the system. This feedback output compares with reference input frequency and gives corresponding output to the system, as shown in figure 15. Let us assume few parameters which are as given below:
For m1:
Time = 2.82 µSec
VCO frequency = 81.500 MHz
For m2:
Ind delta = 1.972 E-4
Dep delta = 5.066
At the last divide ratio is used to rationalize the high frequency and produce corresponding output as shown in figure 16. This section described the various configuration of integer –N PLL at different poles and zeros parameters.

3.4 Fractional-N PLL transient responses with charge pump passive 3 poles

In this section, fractional –N PLL transient responses of passive 3 poles have been analysed as shown in figure 17. DSM is an important component that is used to average the high frequency of the synthesizer. It changes step response of closed loop system has been shown in figure 18, which determines stability of the same. As per the response, the system is stable at @ 117 mV/µSec. The gain of the system is shown in figure 19, which is determined by the location of the poles and zeros of the filters is shown in figure 20.
The above comparison table 1 shows that the settling time of the fractional – N PLL less as compare to integer –N PLL. In this work, we have shown the simulated results of the different PLLs. In the first simulation result, settling time of the active 3 poles is less than others integer –N PLL. But if we will compare with fractional- N PLL than fractional –N PLL has less settling time than integer-N PLL. So finally we can say that each PLL has its own advantages and limitation according to their use.

Table 2: Comparison with previous work

<table>
<thead>
<tr>
<th>parameters</th>
<th>[16]</th>
<th>[17]</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settling time (µsec)</td>
<td>250</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Start-up time (µsec)</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

The transient responses of various Phase Locked Loop (PLL) frequency synthesizer have been compared with their corresponding parameters. The results have been simulated using a 3rd order MASH sigma delta modulator. The simulation results show the improved performance of the PLL. These results have been simulated using Advanced Design System(ADS) tool. In future, settling time for the hybrid PLL can be determined for communication system.

REFERENCES