The Role of Bidara Leaf Extract (Ziziphus Mauritiana) on the Prevention of Renal Hypertension in Wistar Strain Rats

Dian Yuliartha Lestari, Cintantya Pramastri Yuwono, Dani Pratama Febrianto

Abstract: Hypertension is ranked the fourth highest disease in the word. Glomerulosclerosis is the initial lesion from kidney failure in patient with hypertension. Bidara leaves have active flavonoid such as saponins and tannins are thought to prevent an increase in blood pressure and repair glomerulosclerosis. This study to prove the effect of bidara leaf extract to decrease hypertension and to prevent glomerulosclerosis. This study was true experimental with Pre and Post Test Control Group Design. This study used male white rats wistar strain. Sample divided into 5 groups (positive group, treatment group with 3 leveled dose, and medicine-control group) and were being observed in 28 days. Hypertension was measured using tail cuff blood pressure. Glomerulus observed randomly with light microscope in 5 different field of view with 400x magnification and scoring by Sclerosis Index (SI). In the linear regression test had \( R^2 = 0.332 \) for systolic blood pressure and \( R^2 = 0.609 \) for diastolic blood pressure. For glomerulosclerosis we found that the highest SI (369,69) was positive control group, while the lowest SI (84,09) was the group with a dose 400mg/kg/day. Bidara leaves extract have a significant effect on reduce hypertension and glomerulosclerosis.

Keywords: Hypertension, Glomerulosclerosis, Bidara leaves.

I. INTRODUCTION

Hypertension in one of the most common chronic disease [1]. The prevalence of hypertension is 4th in the world [2]. Hypertension complications can reach 9.4 million deaths annually. According to the World Health Organization (WHO) and the International Society of Hypertension (IDH), there are 600 million people with hypertension worldwide, with 3 million dying each year. Seven out of every 10 sufferers do not get adequate treatment [3]. The incidence of hypertension in Indonesia obtained through measurements at the age of ≥ 18 years is 25.8 percent, the highest in Bangka Belitung island (30.9%), and then South Kalimantan province (30.8%), East Kalimantan province (29.6%) and the last is West Java province (29.4%) [4].

Hypertension is the second highest cause of kidney failure. Hypertension is the primary diagnosis in the United States. As many as 30,000 individuals in the United States are diagnosed with end-stage renal failure caused by hypertension each year and the number continues to increase [5]. Glomerulosclerosis is the initial lesion which most often causes kidneys tissue damaged which causes kidneys failure caused by hypertension [6]-[7]. Clinically, glomerulosclerosis causes nephrotic syndrome, which consists of proteinuria, hypoalbuminemia, hypercholesterolemia and peripheral edema [7].

The bidara tree (Ziziphus mauritiana) is a plant of the family Rhamnaceae. Bidara tree originated from India and is now widely obtained in the tropics [8]. Bidara leaf is used in the treatment of indigestion, fever, liver damage and lung disease, but research on bidara leaf is still small [8]-[9]. Leaf bidara contains several biochemical active ingredients such as alkaloids, saponins, tannins, flavonoids, and terpenoids have their respective mechanisms in repairing and preventing the occurrence of glomerulosclerosis [10, 11, 12].

II. MATERIALS AND METHODS

This research is true experimental pre and post test group design. The sample of this study was 25 male rats (Rattus norvegicus strain wistar) aged 2-3 months with a body weight of 15—200 grams and healthy. The sample was divided into 5 group: Negative control group, treatment control group (200mg/kgBW/day, 400mg/kgBW/day, 800mg/kgBW/day) and positive control group (captopril 1.125mg/kgBW/day po). All samples were adapted for 7 days then induced hypertension for 14 days. Hypertension induction using prednisone 1.5 mg/kgBW + NaCl 2%. After 14 days, the negative control group continued induction until 28th day, the positive control group continued with captopril 1.125mg/kgBW/day po until 28th day, and the treatment groups continued with bidara leaf extract a dose of 200mg/kgBW/day, 400 mg/kgBW/day po for 14 days.

A. Measurement of Rat Blood Pressure

Blood pressure measurements are measured initially before being treated and after being treated. Blood pressure measurement using the Blood Pressure Monitor bran Codia on tail of a white rats. This method allows researchers to find out systolic and diastolic blood pressure.

B. Measurement of Glomerulosclerosis

Glomerulosclerosis assessment was carried out after 28 days. The rats was killed and its kidney organs were taken and paraffin block preparations were made.
To observe glomerulosclerosis scores using Masson Trichrome (MT) staining. The preparations were observed using a light microscope with a 400x magnification at 5 different random fields and the Sclerosis Index (IS) was determined semi-quantitatively.

The percentage of glomerulosclerosis occupied by the extracellular matrix is scored, starting with 0: 0%, 1+: 1-25%, 2+: 26-50%, 3+: 51-75%, 4+: 76-100%. Determine the Sclerosis Index (IS) with the formula: \[ \text{IS} = \frac{(0 \times n_0 + 1 \times n_1 + 2 \times n_2 + 3 \times n_3 + 4 \times n_4)}{\text{number of glomerulus}} \times 100 \]. n0, n1, n2, n3 and n4 were the number of glomerulus with a score of 0, 1, 2, 3 and 4 [13].

The data above shows that the highest difference in systolic and diastolic blood pressure decrease was found in the P1 group (table 1), the highest Scoring Index was in the negative control group with a sclerosis index of 369.69 and the lowest sclerosis index of 84.09 for the P2 (table 2).

<table>
<thead>
<tr>
<th>Effect</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roy's Largest Root</td>
<td>0.003</td>
</tr>
<tr>
<td>Hotelling’s Trace</td>
<td>0.15</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>0.28</td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table III: Data analysis with General Linear Model

C. Data Analysis

To analyzed pre and post experimental blood pressure using a General Linear Model test and linear regression analysis. To analyzed glomerulosclerosis using an ANOVA one-way test and linear regression analysis.

III. RESULTS AND DISCUSSION

The results of systole, diastolic blood pressure measurements and index sclerosis of rats in each group can be seen in the table 1.

Table I: Systole and Diastolic Blood Pressure Results in Each Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Systolic Blood Pressure</th>
<th>Diastolic Blood Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre test</td>
<td>Post test</td>
</tr>
<tr>
<td>K+</td>
<td>130 ± 48.86</td>
<td>130 ± 54.11</td>
</tr>
<tr>
<td>K-</td>
<td>132.33 ± 44.79</td>
<td>136.33 ± 73.81</td>
</tr>
<tr>
<td>P1</td>
<td>158 ± 24.87</td>
<td>114.67 ± 24.82</td>
</tr>
<tr>
<td>P2</td>
<td>148.33 ± 27.66</td>
<td>114.33 ± 41.28</td>
</tr>
<tr>
<td>P3</td>
<td>152.67 ± 52.78</td>
<td>183 ± 53.25</td>
</tr>
</tbody>
</table>

Note:
K+ : positive control group
K- : negative control group
P1 : treatment group with bidara leaf extract 200mg/kgBW/day
P2 : treatment group with bidara leaf extract 400mg/kgBW/day
P3 : treatment group with bidara leaf extract 800mg/kgBW/day

Table II: Results of Sclerosis Index (IS) in Each Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Field</th>
<th>Average</th>
<th>IS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>K-</td>
<td>3.75</td>
<td>3.70</td>
<td>3.83</td>
</tr>
<tr>
<td>K+</td>
<td>2.17</td>
<td>1.67</td>
<td>0.5</td>
</tr>
<tr>
<td>P1</td>
<td>1.75</td>
<td>1</td>
<td>1.63</td>
</tr>
<tr>
<td>P2</td>
<td>1.2</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>P3</td>
<td>0.88</td>
<td>1.25</td>
<td>2</td>
</tr>
</tbody>
</table>

Note:
K+ : positive control group
K- : negative control group
P1 : treatment group with bidara leaf extract 200mg/kgBW/day
P2 : treatment group with bidara leaf extract 400mg/kgBW/day
P3 : treatment group with bidara leaf extract 800mg/kgBW/day

The process of hypertension can occur when rats with a high NaCl diet cause increased expression of the RAS system in the kidneys and brain which will stimulate renin secretion in renal juxtaglomerular cells. Activated renin converts angiotensinogen glycoprotein into angiotensin I. Angiotensin converting Enzyme (ACE) converts Angiotensin I to produce Angiotensin II, whereas prednisone is an oral corticosteroid that has a glucocorticoid effect.
Glucocorticoids which interact with glucocorticoid receptors in smooth and endothelial blood vessels which will increase the activation of AT-1 receptors. Angiotensin II which binds to AT-1 and AT-2 will induce aldosterone synthesis which will increase in plasma volume and blood pressure [9]-[11].

DPPM, University of Muhammadiyah Malang who funded this research and the BICMST committee for giving authors the opportunity to write this article.

REFERENCES


AUTHORS PROFILE

Dian Yuliarta Lestari is lecturer in Medical Faculty of Muhammadiyah Malang University. She completed his bachelor’s degree at Brawijaya University in 2006, and postgraduate at Airlangga University in 2014. She is being pathologist since 2014. She often attended conferences on Medical Education and Anatomic Pathology at both national and international levels. She is interested in national level. She was born in 1997, she underwent medical education at the medical faculty of the University of Muhammadiyah Malang. She is interested in the activities of the Scientifico Medico student organization. She often follows lecturer research.

Cintantya Pramastri Yuwono was born at 1997, she underwent medical education at the medical faculty of the University of Muhammadiyah Malang. She participated in the activities of the Scientifico Medico student organization. She often follows lecturer research.

Dani Pratama Febrianoto was born at 1997, he underwent medical education at the medical faculty of the University of Muhammadiyah Malang. He participated in the activities of the Scientifico Medico student organization. He often follows lecturer research.

IV. CONCLUSION

The conclusion of this study was the bidara leaf extract (Ziziphus mauritiana) effective in reducing blood pressure in rats (Rattus novergicus strain wistar) hypertension model and remodelling glomerulosclerosis. The most effective dose of bidara leaf extract to reduce blood pressure and the amount of glomerulosclerosis in this study was 400 mg/kgBW/day.

ACKNOWLEDGMENT

The authors would like to thank the medical students as well as research assistant. The researcher also wishes to thank...