Nano M Locally Closed Sets and Maps in Nano Topological Spaces

A. Padma, M. Saraswathi, A. Vadivel, M. Seenivasan

Abstract: The concepts of \mathcal{MLC} sets, \mathcal{MLC} continuous and \mathcal{MLC} irresolute functions are introduced and some of its characteristics are discussed. Also nano M submaximal spaces are defined and its properties are discussed.

Keywords and phrases: \mathcal{MLC} sets, \mathcal{M} submaximal, \mathcal{MLC} continuous and \mathcal{MLC} irresolute functions. AMS (2000) subject classification: 54B05.

I. INTRODUCTION AND PRELIMINARIES

Nano topology (briefly, \mathcal{N}) was introduced by Thivagar [7] in the year 2013. Also he introduced nano closed ($\mathcal{N}C$) sets & nano-interior (resp. closure ($\mathcal{N}C$)) in a nano topological spaces (briefly, $\mathcal{N}T$). Various forms of $\mathcal{N}T$ were discussed in [11-15]. Nano regular open (briefly, $\mathcal{N}O$) sets, nano θ (resp. nano δ) interior (resp. closure) (briefly, $\mathcal{N}IN\theta$ (resp. $\mathcal{N}INT\theta$)) and also nano θ (resp. δ) open (resp. closed) (briefly, $\mathcal{N}O\theta$ (resp. $\mathcal{N}C\theta$)) sets were introduced in [4, 7, 11, 12].

Nano δ-pre (resp. δ-semi, e, M, θ-pre) & δ-semi) open (briefly, $\mathcal{N}PO\delta$ (resp. $\mathcal{N}SO\delta$, $\mathcal{N}M\delta$, $\mathcal{N}PO\delta$)), and δ-pre (resp. δ-semi, e, $M\delta$-semi) interior (briefly, $\mathcal{N}INT\delta$ (resp. $\mathcal{N}INT\delta$)) were introduced in [10, 11, 12].

II. NANO M LOCALLY CLOSED SETS

In this section the three forms of \mathcal{MLC} sets denoted by $\mathcal{MLC}(U, \mathcal{P})$, $\mathcal{MLC}^*(U, \mathcal{P})$ & $\mathcal{MLC}^{**}(U, \mathcal{P})$ are introduced and obtained its properties.

Definition 2.1 A subset K of a $\mathcal{N}T(U, \mathcal{P})$ is called Nano M locally closed (resp. closed δ closed θ closed δ closed) (briefly, \mathcal{MLC} (resp. \mathcal{MLC} & \mathcal{MLC}^* & \mathcal{MLC}^{**})) set if $K = G \cap F$. G is $\mathcal{N}M\theta$ (resp. $\mathcal{N}M\delta\theta$ & $\mathcal{N}M\theta$) and F is $\mathcal{N}M\delta$ (resp. $\mathcal{N}M\delta\theta$ & $\mathcal{N}M\theta$) in (U, \mathcal{P}).

The class of all \mathcal{MLC} (resp. \mathcal{MLC}^* & \mathcal{MLC}^{**}) sets is denoted by $\mathcal{MLC}(U, \mathcal{P})$, $\mathcal{MLC}^*(U, \mathcal{P})$ & $\mathcal{MLC}^{**}(U, \mathcal{P})$.

Theorem 2.1 Let (U, \mathcal{P}) and (V, \mathcal{P}') be $\mathcal{N}T$ sets. Then every \mathcal{MLC} (resp. \mathcal{MLC}^* & \mathcal{MLC}^{**}) set is $\mathcal{N}T$ set, but converse is not.

Proof. Let $K = G \cap F$ be \mathcal{MLC} set where G is $\mathcal{N}M\theta$ & $\mathcal{N}M\delta\theta$ & $\mathcal{N}M\theta$ in U. Because each $\mathcal{N}T$ set is $\mathcal{N}M\theta$ set & $\mathcal{N}M\delta\theta$ & $\mathcal{N}M\theta$ set. Hence K is \mathcal{MLC} in U. The other results can be proved in the similar manner.

Example 2.1 Let $U = \{e, d, c, b, a\}$ with $U/R = \{[b, a], [c], [e, d]\}$ & $P = \{c, a\}$. The $\mathcal{N}t_{\mathcal{P}}(P) = \{U, \phi, [c], [b, a], [c, a]\}$.

The $\mathcal{N}S(e, d, b, a)$ (resp. $\mathcal{N}S(e, d, c, a)$) is \mathcal{MLC} set but not \mathcal{MLC} and \mathcal{MLC}^* (resp. \mathcal{MLC}^{**}) set.

Theorem 2.2 For $K \subset U$, the conditions
1. $K \in \mathcal{MLC}^*(U, \mathcal{P})$.
2. $K = G \cap \mathcal{N}C(K)$ for some $\mathcal{N}M\theta$ set G.
3. $\mathcal{N}C(K) - K$ is \mathcal{MLC}.
4. \(K \cup (U - NcI(K)) \) is \(M \) or is equivalent.

Proof. (i) \(\implies \) (ii): Let \(K \in NMLC^*(U,P) \). Then \(\exists M \) set \(G \) and \(R \) set \(F \) such that \(K \subseteq G \cap F \). Since \(K \subseteq G \cap F \subseteq NcI(K) \), we have \(K \subseteq G \cap NcI(K) \). Conversely, since \(K \subseteq F \), \(NcI(K) \subseteq NcI(F) \), \(F \supseteq NcI(K) \), \(NcI(K) \cap G \subseteq F \cap G = K \), \(G \cap NcI(K) \subseteq K \). Thus \(K = G \cap NcI(K) \).

(ii) \(\implies \) (i): Let \(K = G \cap NcI(K) \) for some \(M \) set \(G \) and \(R \). Clearly \(NcI(K) \) is \(Rc \) and \(NcI(K) \subseteq NMLC^*(U,P) \). \(K \subseteq G \cap NcI(K) \).

(iii) \(\implies \) (iv): Let \(P = NcI(K) - K \). Then \(P \) is \(Rc \) by assumption. But \(U = P \subseteq U \cup (U - NcI(K)) \), \(K \cup (U - NcI(K)) = NcI(K) - K \). Therefore \(K \cup (U - NcI(K)) \).

(iv) \(\implies \) (iii): Let \(Q = K \cup (U - NcI(K)) \). Then \(Q \) is \(Rc \) and \(Q \subseteq U - Q \). Therefore \(K \cup (U - NcI(K)) \).

Theorem 2.3 Let \(K \subseteq U \) and \(K \subseteq UMLC^*(U,P) \), then \(K = G \cap NcI(K) \) for some \(M \) set \(G \).

Proof. Let \(K \in UMLC^*(U,P) \). Then \(\exists M \) set \(G \) and \(R \) set \(F \) such that \(K \subseteq G \cap F \). Since \(K \subseteq G \cap F \subseteq NcI(K) \), \(K \subseteq G \cap NcI(K) \). Conversely, if \(x \in G \cap NcI(K) \), then \(x \in G \cap NcI(K) \). Thus \(K = G \cap NcI(K) \).

Theorem 2.4 Let \(K \subseteq U \) if \(K \) is \(Rc \) set then \(K \) is \(UMLC^* \) set or \(UMLC^{**} \) set.

Theorem 2.5 Let \(K \subseteq U \) and \(K \subseteq UMLC^*(U,P) \), is closed under finite intersection (briefly, f.i.). If \(K \subseteq UMLC^*(U,P) \) then \(K \subseteq UMLC^*(U,P) \).

Proof. Let \(K \subseteq UMLC^*(U,P) \). Then \(\exists M \) set \(P \) such that \(K \subseteq P \). Since \(K \subseteq P \), \(K \subseteq NcI(K) \). Therefore \(K \subseteq NcI(K) \).

Theorem 2.6 Let \(K \subseteq U \) and \(K \subseteq UMLC^*(U,P) \) and \(NMLC^*(U,P) \) is closed under f.i. If \(K \subseteq UMLC^*(U,P) \) then \(K \subseteq UMLC^*(U,P) \).

Proof. Let \(K \subseteq UMLC^*(U,P) \). Then \(\exists M \) sets \(P \) and \(Q \) such that \(K \subseteq P \) and \(Q \subseteq NcI(K) \). Therefore \(K \subseteq NcI(K) \).

Theorem 2.7 Let \(K \subseteq U \) and \(K \subseteq NMLC(U,P) \) is closed under finite intersection. If \(K \subseteq NMLC^{**}(U,P) \) then \(K \subseteq NMLC^{**}(U,P) \).

Proof. Let \(K \subseteq NMLC^{**}(U,P) \). Then \(\exists M \) set \(F \) such that \(K \subseteq F \). Therefore \(K \subseteq NMLC^{**}(U,P) \). Clearly \(K \subseteq NMLC^{**}(U,P) \).

Theorem 2.8 Let \(K \subseteq U \) and \(K \subseteq NMLC^{**}(U,P) \) is closed under arbitrary intersection. If \(K \subseteq NMLC^{**}(U,P) \) then \(K \subseteq NMLC^{**}(U,P) \).

Proof. Let \(K \subseteq NMLC^{**}(U,P) \). Then \(\exists M \) sets \(F \) such that \(K \subseteq F \). Therefore \(K \subseteq NMLC^{**}(U,P) \).

Theorem 2.9 Let \(K \subseteq U \) and \(K \subseteq NMLC^{**}(U,P) \) is closed under arbitrary intersection. If \(K \subseteq NMLC^{**}(U,P) \) then \(K \subseteq NMLC^{**}(U,P) \).

Definition 2.2 A \(Rc \) of a \(TsU \) is called nano \(M \) dense if \(NcI(K) = U \).

Definition 2.3 A \(TsU \) is said to be nano \(M \) submaximal (briefly, \(NMLC^{submax} \)) if every Nano \(M \) dense subset of \((U, \tau_R(P)) \) is \(M \) in \((U, \tau_R(P)) \).

Theorem 2.10 Every \(NMLC^{submax} \) space is \(NMLC^{submax} \), but not conversely.

Proof. Let \(U \) be a \(NMLC^{submax} \) space. Then \(\exists M \) set \(F \) such that \(K \subseteq F \). Therefore \(K \subseteq NMLC^{submax} \).

Example 2.2 In Example 2.1, the \(NMLC^{submax} \) is not \(NMLC^{submax} \).
Theorem 2.11 A \(\mathcal{R} \)-sets \((U, \tau_{R}(P)) \) is \(R \)\(\mathcal{M} \)-submax iff \(R\mathcal{MLC}^{*}(U, P) = P(U) \).

Proof. Suppose \(K \subset P(U) \) and let \(G = K \cup (U - R\mathcal{K}(K)) \). Then \(R\mathcal{K}(G) = R\mathcal{K}(K \cup (U - R\mathcal{K}(K))) = U \). Hence \(R\mathcal{M} \). By Theorem 2.2, \(K \in R\mathcal{MLC}^{*}(U, P) \) and hence \(R\mathcal{MLC}^{*}(U, P) = P(U) \).

Conversely, consider \(K \) to be \(R \)\(\mathcal{M} \)-submax of \(U \). Let \(R\mathcal{MLC}^{*}(U, P) = P(U) \). Then by hypothesis, \(K \cup (U - R\mathcal{K}(K)) = K \cup \emptyset = K \). By Theorem 2.2, \(K \in R\mathcal{M} \) in \(U \) in \(\mathcal{MLC}^{*}(U, P) \). Hence \(U \) is \(R\mathcal{M} \)-submax.

III. \(R \)\(\mathcal{M} \) CONTINUOUS MAPS

Definition 3.1 A map \(f: (U, \tau_{R}(P)) \rightarrow (V, \sigma_{R}(Q)) \) is called \(R\mathcal{M} \) (resp. \(R\mathcal{MLC}^{*} \& R\mathcal{ML}^{*} \)-continuous (briefly, \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-continuous) function if the inverse image of every \(R\mathcal{M} \) set in \(V \) is \(R\mathcal{MLC}^{*} \) (resp. \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)).

Definition 3.2 A map \(f: (U, \tau_{R}(P)) \rightarrow (V, \sigma_{R}(Q)) \) is called \(R\mathcal{M} \)-irresolute (resp. \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute (briefly, \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute)) function if the inverse image of every \(R\mathcal{M} \) (resp. \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)) set in \(V \) is \(R\mathcal{MLC}^{*} \) (resp. \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)).

Theorem 3.3 Let \(f \) be a function \& if \(f \) is \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute (briefly, \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute) then \(f \) is \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute.

Proof. Let \(G \subset R\mathcal{M} \) set in \(V \). Because every \(R\mathcal{M} \) set is \(R\mathcal{MLC}^{*} \) set \([2] \) \& by Theorem 2.1(i), every \(R\mathcal{M} \) set is \(R\mathcal{MLC}^{*} \) set. Since \(f \) is \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute, \(f^{-1}(G) \) is \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \). Hence \(f \) is \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute.

Definition 3.3 A \(\mathcal{R} \)-sets \((U, \tau_{R}(P)) \) is called \(R \)\(\mathcal{M} \) door space if each subset of \(U \) is either \(R\mathcal{M} \) or \(R\mathcal{M} \) in \(U \).

Theorem 3.4 Any function defined from a \(R \)\(\mathcal{M} \) door space into a \(R \)\(\mathcal{M} \)-set is \(R \)\(\mathcal{M} \)-irresolute.

Proof. Let \(U \) be \(R \)\(\mathcal{M} \) door space \& \(V \) be \(R \)\(\mathcal{M} \)-sets. Let \(f: (U, \tau_{R}(P)) \rightarrow (V, \sigma_{R}(Q)) \) be a function. Let \(K \) be \(R\mathcal{M} \) in \(V \). Then \(f^{-1}(K) \) is \(R\mathcal{M} \) in \(U \). Since every \(R\mathcal{M} \) set is \(R\mathcal{MLC}^{*} \) set \([2] \) \& by Theorem 2.1(i), every \(R\mathcal{M} \) set is \(R\mathcal{MLC}^{*} \) set. In both cases, \(f^{-1}(K) \) is \(R\mathcal{MLC}^{*} \). Hence \(f \) is \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute.

Theorem 3.5 If \(f: (U, \tau_{R}(P)) \rightarrow (V, \sigma_{R}(Q)) \) is \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute (resp. \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute) then \(g \circ f: (U, \tau_{R}(P)) \rightarrow (W, \mu_{R}(R)) \) is \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute.

IV. CONCLUSION

In our paper, the concepts of \(R\mathcal{M} \) sets, \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-continuous \& \(R\mathcal{MLC}^{*}\&R\mathcal{ML}^{*} \)-irresolute functions are introduced and some of its characteristics are discussed.

REFERENCES

11. V. Pankajam and K. Kavitha, δ open sets and δ nano continuity in δ nano topological space, Int. J. Ino. Sci. and Res. Tec., 2 (12) (2017), 110-118.

AUTHORS PROFILE

A. Padma, I have 12 years of experience in teaching. At present I am pursuing my Ph.D from 2016 onwards in Kandasamy Kandar’s College, P.Velur, Namakkal. I have completed M.Phil Mathematics, Avinashilingam University, Coimbatore; M.Sc Mathematics in P.S.G College of Arts and Science, Coimbatore; B.Sc Mathematics in Nirmala College for Women, Coimbatore. My area of specialization is topology. I am interested in doing further research in applications of topology in different fields.

M. Saraswathi, has published 25 research publications both in national and international journals to his credit. Under her guidance she has guiding 4 Ph.D scholars. At present she is Assistant Professor, Department of Mathematics, Kandaswami Kandar’s College, P-Velur, Namakkal, Tamil Nadu, India.

A Vadivel, obtained his early and collegiate education respectively from Kandaswami Kandar’s Boys School and Kandaswami Kandar’s College, P-Velur, Namakkal. He obtained doctoral degree from Annamalai University, Annamalai Nagar. Under his able guidance 8 scholars obtained their doctoral degrees. Dr. A. Vadivel has published 180 research publications both in national and international journals to his credit. He serves as referee for 5 peer reviewed international journals. He is Assistant Professor in the Department of Mathematics, Annamalai University, Annamalai Nagar, at present he is deputed to Assistant Professor in the Department of Mathematics, Government Arts College (A), Karur-5, Tamil Nadu, India.

Dr. M. Seenivasan is working as Associate Professor in Department of Mathematics, Annamalai University. He was awarded Ph.D degree by Annamalai University in the year 2012. He was 17 years of teaching and 15 years of research experience. His area of research is Stochastic Processes, Graph theory and Computer Networks. He has published more than 20 research articles in reputed indexed international journals. He has guided 20 M.Phil scholars. At present, he is guiding three Ph.D scholars. He acted as editorial members of more than 13 international journals. He organized four international conferences in abroad. He visited Thailand, Malaysia, Singapore and USA.