New Family of Parity Combination Cordial Labeling of Graph

A. Muthaiyan, M. Kathiravan

Abstract: Let G be a (p, q) graph. Let f be an injective map from V(G) to {1, 2, ..., p}. For each edge xy, assign the label \(\begin{cases} \frac{x}{y} & \text{if } x > y \text{ or } y > x \end{cases} \) or \(\begin{cases} y & \text{if } x = y \end{cases} \) according as \(x > y \) or \(y > x \). f is called a parity combination cordial labeling (PCC-labeling) if f is a one to one map and \(|e_f(0) - e_f(1)| \leq 1 \) where \(e_f(0) \) and \(e_f(1) \) denote the number of edges labeled with an even number and odd number respectively. A graph with a parity combination cordial labeling is called a parity combination cordial graph (PCC-graph).

I. INTRODUCTION

In this paper we consider only finite, undirected and simple graphs. For standard notations and terminology related to Graph theory, we refer Harary [2]. Graph labeling, we refer Gallian[1]. The concept of Parity combination cordial labeling is introduced by Ponraj et al [3]. We present the Parity combination cordial of the graph \(G' \), which is obtained by identifying a vertex \(v_k \) in \(G \) and a vertex of degree \(n \) in \(H_n \) where \(G \) is a PCC graph with \(p \) vertices and \(q \) edges under f with \(f(v_k) = 1 \).

II. BASIC RESULTS AND DEFINITIONS

A. Definition 2.1

Let G be a (p, q) graph. Let f be an injective map from V(G) to {1, 2, ..., p}. For each edge xy, assign the label \(\begin{cases} \frac{x}{y} & \text{if } x > y \text{ or } y > x \end{cases} \) or \(\begin{cases} y & \text{if } x = y \end{cases} \) according as \(x > y \) or \(y > x \). f is called a parity combination cordial labeling (PCC-labeling) if f is a one to one map and

\[|e_f(0) - e_f(1)| \leq 1 \]

where \(e_f(0) \) and \(e_f(1) \) denote the number of edges labeled with an even number and odd number respectively. A graph with a parity combination cordial labeling is called a parity combination cordial graph (PCC-graph).

B. Result 2.1

\[\binom{n}{n-1} = \binom{n}{1} \]

is even if \(n \) is even and odd if \(n \) is odd.

C. Result 2.2

\[\binom{n}{2} \]

is even if \(n = 0, 1 \pmod{4} \) and odd if \(n = 2, 3 \pmod{4} \).

D. Result 2.3

\[\binom{n}{k} \]

is even when \(n \) is even and \(k \) is odd.

III. MAIN RESULT

A. Theorem 3.1

G is a PCC graph with \(p \) vertices and \(q \) edges under f with \(f(v_k) = 1 \), then the graph is obtained by identifying a vertex \(v_k \) in \(G \) and a vertex of degree \(n \) in \(H_n \) admits PCC labeling for \(n \geq 3 \).

Proof:

G is a PCC graph with \(v_1, v_2, ..., v_p \) vertices and \(e_1, e_2, ..., e_q \) edges and f is PCC labeling of G. Then f : V(G) \rightarrow \{1, 2, ..., p\} with \(f(v_k) = 1 \) and \(|e_f(0) - e_f(1)| \leq 1 \).

Let \(H_n \) be a helm graph. Let \(w, w_1, w_2, ..., w_{2n} \) be the vertices and \(e_{11}, e_{12}, ..., e_{1n}, e_{21}, e_{22}, ..., e_{2n}, e_{31}, e_{32}, ..., e_{3n} \) be the edges of \(H_n \). The graph obtained by identifying a vertex \(v_k \) in \(G \) and a vertex \(w \) of degree \(n \) in \(H_n \). The resultant graph is denoted by \(G' \). Here \(|V(G')| = p+2n \) and \(|E(G')| = q+3n \).

Now define g : V(G') \rightarrow \{1, 2, ..., p+2n\} as follows:

\[g(v_k) = f(v_k), \]

for all \(v_k \in V(G) \).

Consider g(v_k) = g(w) = 1. Since \(v_k \) is identified with \(w \) in \(G' \).

Case (1) : p and q are even and \(n = 3 \).

\[g(w_i) = p+2i+1, \quad \text{for } i = 1, 2, \]

\[g(w_i) = p+6, \]

\[g(w_{i1}) = p+2i, \quad \text{for } i = 1, 2, \]

\[g(w_e) = p+1. \]
Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

For q is even, then $e_q(1) = e_q(0) = \frac{q}{2}$. Thus $e_q(1) = e_q(0) = \frac{q}{2}$ for G in G'.

When $p = 0(\text{mod } 4)$, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

Case (2) : p and q are even and $n > 3$.

For G in G'+4 for H_a in G' and $|e_q(0)-e_q(1)| = 1$.

For q is even, then $e_q(1) = e_q(0) = \frac{q}{2}$. Thus $e_q(1) = e_q(0) = \frac{q}{2}$ for G in G'.

When $p = 0(\text{mod } 4)$, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

When $p = 0(\text{mod } 4)$, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

When $p = 2(\text{mod } 4)$, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

For q is even, then $e_q(1) = e_q(0) = \frac{q}{2}$. Thus $e_q(1) = e_q(0) = \frac{q}{2}$ for G in G'.

When $p = 0(\text{mod } 4)$, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

When $p = 2(\text{mod } 4)$, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

When $p = 0(\text{mod } 4)$, q is even and n is odd, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

For G in G'+4 for H_a in G', $e_q(0) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

When $p = 0(\text{mod } 4)$, q is even and n is odd, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

When $p = 2(\text{mod } 4)$, q is even and n is odd, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

When $p = 0(\text{mod } 4)$, q is even and n is odd, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

When $p = 2(\text{mod } 4)$, q is even and n is odd, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

When $p = 0(\text{mod } 4)$, q is even and n is odd, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

When $p = 2(\text{mod } 4)$, q is even and n is odd, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

When $p = 0(\text{mod } 4)$, q is even and n is odd, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.

When $p = 2(\text{mod } 4)$, q is even and n is odd, then $e_q(1) = \frac{q}{2}$ for G in G'+4 for H_a in G'.
+ \frac{3n}{2} \text{ for } H_n \text{ in } G' \text{ and } |e_0(0) - e_0(1)| = 1.

When n is even, p is odd, q is odd with \(e_0(1) = \frac{q-1}{2}\) and \(e_0(0) = \frac{q+1}{2}\).

\(e_0(1) = \frac{q+1}{2}\), then \(e_0(1) = \frac{q-1}{2}\) for G in \(G' + \frac{3n}{2}\) for \(H_n\) in \(G'\),
\(e_0(0) = \frac{q+1}{2}\) for G in \(G' + \frac{3n}{2}\) for \(H_n\) in \(G'\) and \(|e_0(0) - e_0(1)| = 1\).

Case (4) : \(p = 1 + (mod\ 4)\), q is odd with \(e_0(1) = \frac{q+1}{2}\) and \(e_0(0) = \frac{q+1}{2}\). Thus \(e_0(1) = -\frac{q-1}{2}\) and \(e_0(0) = \frac{q+1}{2}\) for G in \(G'\).

\(g'(w_{w_1}) = g'(e_1) = 1;\)
\(g'(w_{w_i}) = g'(e_i) = 0, \quad \text{for } i = 2, 3, ..., n.
\(g'(w_{w_{w_1}}) = g'(e_{11}) = 0,
\(g'(w_{w_{w_i}}) = g'(e_{i+1}) = 0,
\(g'(w_{w_{w_{w_{w_1}}}}) = g'(e_{i+2}) = 0,
\(g'(w_{w_{w_{w_{w_{w_{w_{w_{w_1}}}}}}}}) = g'(e_{i+3}) = 1, \quad \text{for } i = 3, 4, ..., n.

For q is odd with \(e_0(1) = \frac{q+1}{2}\) and \(e_0(0) = \frac{q-1}{2}\). Thus \(e_0(1) = -\frac{q-1}{2}\) and \(e_0(0) = \frac{q+1}{2}\) for G in \(G'\).

\(g'(w_{w_1}) = g'(e_{11}) = 1;\)
\(g'(w_{w_i}) = g'(e_{i}) = 0, \quad \text{for } i = 2, 3, ..., n.
\(g'(w_{w_{w_1}}) = g'(e_{21}) = 0,
\(g'(w_{w_{w_i}}) = g'(e_{2i}) = 0,
\(g'(w_{w_{w_{w_{w_1}}}}) = g'(e_{31}) = 1, \quad \text{for } i = 3, 4, ..., n.

For q is odd with \(e_0(1) = \frac{q+1}{2}\) and \(e_0(0) = \frac{q-1}{2}\). Thus \(e_0(1) = -\frac{q-1}{2}\) and \(e_0(0) = \frac{q+1}{2}\) for G in \(G'\).

When n is odd, p = 1 (mod 4), q is odd with \(e_0(1) = \frac{q+1}{2}\) and \(e_0(0) = \frac{q-1}{2}\). Then \(e_0(1) = \frac{q+1}{2}\) for G in \(G' + \frac{3n+1}{2}\) for \(H_n\) in \(G'\),
\(e_0(0) = \frac{q-1}{2}\) for G in \(G' + \frac{3n+1}{2}\) for \(H_n\) in \(G'\) and
\(|e_0(0) - e_0(1)| = 0\).

Case (5) : \(p = 1 (mod\ 4)\), q is odd with \(e_0(1) = \frac{q-1}{2}\) and \(e_0(0) = \frac{q+1}{2}\), n is odd and \(n \geq 3\).

\(g'(w_{w_1}) = g'(e_{11}) = 1;\)
\(g'(w_{w_i}) = g'(e_{i}) = 0, \quad \text{for } i = 2, 3, ..., n.
\(g'(w_{w_{w_1}}) = g'(e_{21}) = 0,
\(g'(w_{w_{w_i}}) = g'(e_{2i}) = 0,
\(g'(w_{w_{w_{w_{w_1}}}}) = g'(e_{31}) = 1, \quad \text{for } i = 3, 4, ..., n.

When p = 0 (mod 4), then \(e_0(1) = \frac{q-1}{2}\) for G in \(G' + \frac{3n+1}{2}\) for \(H_n\) in \(G'\),
\(e_0(0) = \frac{q+1}{2}\) for G in \(G' + \frac{3n+1}{2}\) for \(H_n\) in \(G'\) and
\(|e_0(0) - e_0(1)| = 0\).

Case (7) : \(p = 0 (mod\ 4)\), q is odd with \(e_0(1) = \frac{q+1}{2}\) and
New Family of Parity Combination Cordial Labeling of Graph

\[e_i(0) = \frac{q - 1}{2}, \text{ n is odd and } n = 3. \]

\[g(w_i) = p + 2i - 1, \text{ for } i = 1, 2. \]
\[g(w_{n+1}) = p + 6, \]
\[g(w_{n+2}) = p + 2. \]
\[g(w_{n+3}) = p + 4. \]
\[g(w_{n+4}) = p + 1. \]

Thus for the induced edge labeling we get \(g'(e_i) = f'(e_i) \), for all \(e_i \in E(G) \).

For \(q \) is odd with \(e_1(1) = \frac{q + 1}{2} \) and \(e_0(0) = \frac{q - 1}{2} \). Thus \(e_8(1) = \frac{q + 1}{2} \) and \(e_8(0) = \frac{q - 1}{2} \) for \(G \) in \(G' \).

\[g'(ww_i) = g'(e_i) = 1, \text{ for } i = 1, 2. \]
\[g'(ww_{n+1}) = g'(e_{n+1}) = 0. \]
\[g'(w_{n+2}) = g'(e_{n+2}) = 1. \]
\[g'(w_{n+3}) = g'(e_{n+3}) = 0. \]

When \(p = 0 \text{ (mod 4)} \), then \(e_8(1) = \frac{q + 1}{2} \) for \(G \) in \(G' + 4 \) for \(H_a \) in \(G' \), \(e_8(0) = \frac{q - 1}{2} \) and for \(G \) in \(G' + 5 \) for \(H_a \) in \(G' \) and \(|e_8(0) - e_8(1)| = 0 \).

Case (8) : \(p = 0 \text{ (mod 4)} \), \(q \) is odd with \(e_1(1) = \frac{q + 1}{2} \) and \(e_0(0) = \frac{q - 1}{2} \).

When \(n \) is odd, \(p = 0 \text{ (mod 4)} \), \(q \) is odd with \(e_1(1) = \frac{q + 1}{2} \) and \(e_0(0) = \frac{q - 1}{2} \). Thus \(e_8(1) = \frac{q + 1}{2} \) and \(e_8(0) = \frac{q - 1}{2} \) for \(G \) in \(G' \).

\[g'(ww_i) = g'(e_i) = 1, \text{ for } i = 1, 2, \ldots, n. \]
\[g'(ww_{n+1}) = g'(e_{n+1}) = 0, \]
\[g'(w_{n+2}) = g'(e_{n+2}) = 1, \]
\[g'(w_{n+3}) = g'(e_{n+3}) = 0. \]

Thus for the induced edge labeling we get \(g'(e_i) = f'(e_i) \), for all \(e_i \in E(G) \).

For \(q \) is odd with \(e_1(1) = \frac{q + 1}{2} \) and \(e_0(0) = \frac{q - 1}{2} \). Thus \(e_8(1) = \frac{q + 1}{2} \) and \(e_8(0) = \frac{q - 1}{2} \) for \(G \) in \(G' \).

\[g'(ww_{n+1}) = g'(e_{n+1}) = 1, \text{ for } i = 1, 2, \ldots, n - 1. \]
\[g'(ww_{n+2}) = g'(e_{n+2}) = 0, \]
\[g'(w_{n+3}) = g'(e_{n+3}) = 1, \]
\[g'(w_{n+4}) = g'(e_{n+4}) = 0. \]

When \(n \) is odd, \(p = 0 \text{ (mod 4)} \), \(q \) is odd with \(e_1(1) = \frac{q - 1}{2} \) and \(e_0(0) = \frac{q + 1}{2} \). Thus \(e_8(1) = \frac{q - 1}{2} \) and \(e_8(0) = \frac{q + 1}{2} \).

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: D2055029420/2020©BEIESP
DOI: 10.35940/ijitee.D2055.029420
For \(q \) is odd with \(e(1) = \frac{q+1}{2} \) and \(e(0) = \frac{q-1}{2} \). Thus \(e_2(1) = \frac{q+1}{2} \) and \(e_2(0) = \frac{q-1}{2} \) for \(G \) in \(G' \).
\[
g'(w_0) = g'((e_1)_0) = 1,
\]
for \(i = 1, 2.
\]
\[
g'(w_2) = g'((e_2)_0) = 1,
\]
\[
g'(w_3) = g'((e_3)_0) = 0,
\]
\[
g'(w_5) = g'((e_2)_0) = 0,
\]
\[
g'(w_6) = g'((e_3)_0) = 0,
\]
\[
g'(w_{n+1}) = g'((e_1)_0) = 1,
\]
\[
g'(w_{n+2}) = g'((e_2)_0) = 1,
\]
\[
g'(w_{n+3}) = g'((e_3)_0) = 0.
\]
When \(p = 2(mod \, 4) \), then \(e_2(1) = \frac{q+1}{2} \) for \(G \) in \(G' \) + 4 for \(H_n \) in \(G' \), \(e_2(0) = \frac{q-1}{2} \) for \(G \) in \(G' + 5 \) for \(H_n \) in \(G' \) and | \(e_2(0) - e_2(1) | = 0.

Case (11) : \(p = 2(mod \, 4) \), \(q \) is odd with \(e(1) = \frac{q-1}{2} \) and \(e(0) = \frac{q+1}{2} \).

Thus for the induced edge labeling we get \(g'(e_i) = f'(e_i) \) for all \(e_i \in E(G) \).

For \(q \) is odd with \(e(1) = \frac{q+1}{2} \) and \(e(0) = \frac{q-1}{2} \). Thus \(e_2(1) = \frac{q-1}{2} \) and \(e_2(0) = \frac{q+1}{2} \) for \(G \) in \(G' \).
\[
g'(w_0) = g'((e_1)_0) = 1,
\]
for \(i = 1, 2.
\]
\[
g'(w_2) = g'((e_2)_0) = 1,
\]
\[
g'(w_3) = g'((e_3)_0) = 0,
\]
\[
g'(w_5) = g'((e_2)_0) = 0,
\]
\[
g'(w_6) = g'((e_3)_0) = 0,
\]
\[
g'(w_{n+1}) = g'((e_1)_0) = 1,
\]
\[
g'(w_{n+2}) = g'((e_2)_0) = 1,
\]
\[
g'(w_{n+3}) = g'((e_3)_0) = 0.
\]
When \(p = 2(mod \, 4) \), then \(e_2(1) = \frac{q-1}{2} \) for \(G \) in \(G' \) + 5 for \(H_n \) in \(G' \), \(e_2(0) = \frac{q+1}{2} \) for \(G \) in \(G' + 4 \) for \(H_n \) in \(G' \) and | \(e_2(0) - e_2(1) | = 0.

Case (12) : \(p = 2(mod \, 4) \), \(q \) is odd with \(e(1) = \frac{q+1}{2} \) and \(e(0) = \frac{q-1}{2} \).

Thus for the induced edge labeling we get \(g'(e_i) = f'(e_i) \) for all \(e_i \in E(G) \).

For \(q \) is odd with \(e(1) = \frac{q+1}{2} \) and \(e(0) = \frac{q-1}{2} \). Thus \(e_2(1) = \frac{q-1}{2} \) and \(e_2(0) = \frac{q+1}{2} \) for \(G \) in \(G' \).
\[
g'(w_0) = g'((e_1)_0) = 1,
\]
for \(i = 1, 2.
\]
\[
g'(w_2) = g'((e_2)_0) = 1,
\]
\[
g'(w_3) = g'((e_3)_0) = 0,
\]
\[
g'(w_5) = g'((e_2)_0) = 0,
\]
\[
g'(w_6) = g'((e_3)_0) = 0,
\]
\[
g'(w_{n+1}) = g'((e_1)_0) = 1,
\]
\[
g'(w_{n+2}) = g'((e_2)_0) = 1,
\]
\[
g'(w_{n+3}) = g'((e_3)_0) = 1.
\]
Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

For q is even, then $e_1(1) = e(0) = \frac{q}{2}$. Thus $e_1(1) = e(0) = \frac{q}{2}$ for G in G'.

When n is even, $p = 1\text{(mod 4)}$, q is even with $e_1(1) = e(0) = \frac{q}{2}$, then $e_1(1) = \frac{q}{2}$ for G in $G' + \frac{3n+1}{2}$ for H_n in G', $e(0) = \frac{q}{2}$ for G in $G' + \frac{3n+1}{2}$ for H_n in G' and $|e(0) - e(1)| = 0$.

Case (14) : $p = 1\text{(mod 4)}$, q is even, n is even and $n \geq 4$.
g(w_1) = p+2,
g(w_i) = p+2i-1, for $i = 2, 3, ..., n$.
g(w_{n+i}) = p+1,
g(w_{n+i}) = p+2i, for $i = 2, 3, ..., n$.

Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

For q is even, then $e_1(1) = e(0) = \frac{q}{2}$. Thus $e_1(1) = e(0) = \frac{q}{2}$ for G in G'.

When n is even, $p = 1\text{(mod 4)}$, q is even with $e_1(1) = e(0) = \frac{q}{2}$, then $e_1(1) = \frac{q}{2}$ for G in $G' + \frac{3n}{2}$ for H_n in G', $e(0) = \frac{q}{2}$ for G in $G' + \frac{3n}{2}$ for H_n in G' and $|e(0) - e(1)| = 0$.

Case (16) : $p = 1\text{(mod 4)}$, q is even, n is odd and $n \geq 3$.
g(w_1) = p+2,
g(w_i) = p+2i-1, for $i = 2, 3, ..., n$.
g(w_{n+i}) = p+1,
g(w_{n+i}) = p+2i, for $i = 2, 3, ..., n$.

Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

For q is even, then $e_1(1) = e(0) = \frac{q}{2}$. Thus $e_1(1) = e(0) = \frac{q}{2}$ for G in G'.

$g'(w_{1,1}) = g'(e_{11}) = 1$.

$g'(w_{1,1}) = g'(e_{11}) = 0$, for $i = 2, 3, ..., n$.

$g'(w_{n+i}) = g'(e_{n+i}) = 1$, for $i = 2, 3, ..., n$.

$g'(w_{n+i}) = g'(e_{n+i}) = 0$, for $i = 2, 3, ..., n$.

$g'(w_{n+i}) = g'(e_{n+i}) = 0$, for $i = 2, 3, ..., n$.

When n is even, $p = 3\text{(mod 4)}$, q is even with $e_1(1) = e(0) = \frac{q}{2}$, then $e_1(1) = \frac{q}{2}$ for G in $G' + \frac{3n}{2}$ for H_n in G', $e(0) = \frac{q}{2}$ for G in $G' + \frac{3n}{2}$ for H_n in G' and $|e(0) - e(1)| = 0$.

Case (17) : $p = 3\text{(mod 4)}$, q is even, n is odd and $n \geq 3$.
g(w_1) = p+2,
g(w_i) = p+2i-1, for $i = 2, 3, ..., n$.
g(w_{n+i}) = p+1,
g(w_{n+i}) = p+2i, for $i = 2, 3, ..., n$.

Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.

For q is even, then $e_1(1) = e(0) = \frac{q}{2}$. Thus $e_1(1) = e(0) = \frac{q}{2}$ for G in G'.

$g'(w_{1,1}) = g'(e_{11}) = 1$.

$g'(w_{1,1}) = g'(e_{11}) = 0$, for $i = 2, 3, ..., n$.

$g'(w_{n+i}) = g'(e_{n+i}) = 1$, for $i = 1, 2, ..., n$.

$g'(w_{n+i}) = g'(e_{n+i}) = 0$, for $i = 1, 2, ..., n$.

When n is even, $p = 3\text{(mod 4)}$, q is even with $e_1(1) = e(0) = \frac{q}{2}$, then $e_1(1) = \frac{q}{2}$ for G in $G' + \frac{3n}{2}$ for H_n in G', $e(0) = \frac{q}{2}$ for G in $G' + \frac{3n}{2}$ for H_n in G' and $|e(0) - e(1)| = 0$.

Thus for the induced edge labeling we get $g'(e_i) = f'(e_i)$, for all $e_i \in E(G)$.
From the above all cases, we have $|e_2(0) - e_2(1)| \leq 1$. Hence G is a PCC graph with p vertices and q edges under f with $f(v_k) = 1$, then the graph is obtained by identifying a vertex v_k in G and a vertex of degree n in H_n admits PCC labeling for $n \geq 3$.

IV. CONCLUSION

In this paper we study the PCC- labeling of the graph G'. The graph G' is obtained by identifying a vertex v_k in G and a vertex of degree n in H_n, where G is a PCC graph with p vertices and q edges under f with $f(v_k) = 1$.

REFERENCES

2. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.

AUTHORS PROFILE

A. Muthaiyan, has received his M.Sc Mathematics for National College, Tiruchirappalli and M.Phil Mathematics from Bishop Heber College, Tiruchirappalli, India in 1992 and 1998 respectively. He received B.Ed and M.Ed degrees from the Bharathidasan University. He did his research work in Jamal Mohamed college, Tiruchirappalli and received his Ph.D in 2008 from Bharathidasan University. His area of interest is Graph Theory. He published more than 50 internal and national journals.

M. Kathiravan, has received his M.Sc Applied Mathematics for Bishop Heber College, Tiruchirappalli and M.Phil Mathematics from Periyar University, India in 1987 and 2008 respectively. He received M.Sc.,(IT) degree from the Azhagappa University. His area of interest is Graph Labeling.