Automated Software Design Reusability using a Unique Machine Learning Technique

P. Mangayarkarasi

Abstract: The era of machine learning (ML) has brought significant advancement into the traditional approaches of software development and services. Software reusability and design automation is a key requirement that can be handled through the integration of artificial intelligence (AI) capabilities with the traditional approach of software development lifecycle (SDLC) practices. The study introduces a novel approach of ML, which can assist inappropriate selection of reusable software components, which in the long run, can optimize the operational cost in the context of development practices and also speed up the service delivery performance of software engineering activities. The proposed model is validated through a numerical analysis that shows the effectiveness of the system in terms of both classification accuracy and computational efficiency.

Keywords : Machine Learning, Software Reusability, Supervised Learning Model, Computational Complexity.

I. INTRODUCTION

‘Software reusability’ is a popular approach for many years in various software development sectors, and the standards are being followed to develop and upgrade their respective software design frameworks. It is considered an important and essential prerequisite to optimizing the design in terms of both time and cost during the entire development lifecycle. And also, in the longer run, it escalates the overall productivity, and reliability of operations of each associative component significantly improves the quality of service delivery models [1] [2]. However, the conventional trends of evolving research approaches in the domain of software engineering and research bring out the possibility to automate the design reusability approach for different components where the scope of machine learning (ML) is found to optimize the development cost with lesser incorporation of human-assisted efforts [3]. As in the context of ML, the machine itself is programmed in a way where it learns from the data corresponding to the existing repository of reusable software components. Hence it reduces the risk factor in the design of reusable software components, which enhances the scope of applicability of the software in various use-cases.

There exist various factors that lead to reducing the uncertainty factor associated with an overall cost for the software component development and deployment modules if software components are reused to build a new component for the further development practices and use-cases. It is found that learning modules can be integrated into the software design and reusable components to reduce the human-efforts and requirements of resources for coding tasks. This way involvement of many resources to reuse the same software component for different use-cases can be minimized, and it leads to efficient time and resource utilization, which is an essential factor to avoid the situation called as software crisis to a greater extent [4][5][6]. An extensive research effort utilizes different unsupervised and supervised ML approaches to determine the predictive modelings where the classifiers are capable of suggesting whether any particular software component is reusable or not in advance to save the time and cost factors from the viewpoint of operational management [7][8]. There exist a series of classifiers and learning models which can achieve better accuracy in predicting the appropriate reusable software component for specific problem so that the solution approach can be instantaneous and reliable, but most of the techniques lack efficiency in terms of both classification accuracy and complexity which restrict the applicability of software design reusability from many use-cases and also limits the design features of software components during the development lifecycle. The study introduces a machine learning approach to automate the software reusability task without the intervention of external effort to select the proper reusable components. This approach speeds up the production speed and, at the same time, reduces the cost of development and validation procedures, which in longer run found scales up the service delivery models. The formulated approach incorporates a supervised classifier to perform intelligent knowledge discovery from the data corresponds to the reusable software repository (SRR), which get updated simultaneously during the software development lifecycle (SDLC) phase. The outcome of the study shows that the system offers better classification accuracy towards the selection of the appropriate reusable component using intelligent knowledge discovery, and the system envisions for the process maturity at a lower cost of computation within finite steps of implantation which also reduces the overall operational cost.

Revised Manuscript Received on March 05, 2020.

* Correspondence Author
Dr. P. Mangayarkarasi, Associate Professor, Department of Information Science and Engineering, New Horizon College of Engineering, Email: mangaivtu@gmail.com

Retrieved Number: E301003952020206BEIESP
DOI: 10.35940/ijitee.E3010.039520

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
• Software reusability: There exists a variant range of software components from both functional and behavioral aspects of designs. In every type of software component, the functionalities are in-built or can be realized through procedural changes in the subroutines. The objects in the context of object-oriented programming (OOPs) can be utilized for design reusability. However, although there are various existing potential components that can be reused for different use-cases in many cases, it is difficult to measure the degree of reusability with external human effort and software practices, which is often found time and effort consuming task and involve more cost of implementation. Thereby, if between two software component modules connectivity and similarities can be obtained, then it becomes easier to decide the reusability tasks. The common definition of reusability can be given as- The notion of reusability is to decide the appropriate functions or subroutines of software component modules which are available for a specific set of problem and can ensure better solution if applied to a new problem. The following figure shows the common steps which are involved in engineering the procedure of software reusability practices for various use-cases[9][10].

![Diagram of software component reusability process during SDLC](image)

Figure 1 Common step in the approach of software component reusability process during SDLC

Figure 1 exhibits that during SDLC to enhance the productivity in software development practices with the lower cost of implementation and functional operations, the selection of appropriate reusable components is a key-perquisite. Thereby the system has a scope of integration with machine learning (ML) approaches where from the data itself, the system can learn and automate the software reusability task for effective development practices. The consecutive section further shows the related works carried out in the field of software engineering, where the prime focus has been laid towards software reusability practices and design automation using the ML-based approaches [11].

II. LITERATURE REVIEW

Recent works in the field of ML have envisioned constructing interactive optimized programming environments to enhance the software development practices from the perspective of product reusability. A significant work of Walter L. Hill, [10], suggested learning-based computational approaches where specifically the emphasis has been given to deal with the explanation based generalization problems. It also demonstrates the fact that explanation oriented learning paradigm can be subjected to simplifying the program abstractions, which in the long run, promote the software component reuse practices. A learning approach of software reuse is designed, which targets to accomplish two novel specific computational tasks.

i) The learning assists the machine in acquiring specific knowledge about programming and

ii) It also generalizes the programming theory from the viewpoint of abstract data types where interconnections can be made with an explanation based learning approach.

The theoretical approach defines a new shift to the conventional practices of software development based on explanation-based learning to explore the connectivity among various abstract data types modules. It is long-run to assist in enhancing the software component reusability practices [10]. Further, the trend of research evolved towards the mining of software engineering data, which means the approaches are mostly intended to perform knowledge discovery from the data itself. The study of (Wangoo 2018) explored various artificial intelligence (AI) techniques. It concluded their remarks as- AI can improve the mining operations and can pave better direction inefficient reuse of software design components [11]. Similar sort of studies also performed by (Feldt, R., Neto, F. G., & Torkar, R,2018) [12], Hassan, Ahmed E., and Tao Xie [13] where software data mining approaches and their potential to automate the software reusability practices are illustrated from both the theoretical and analytical viewpoint. (Mohammadian M, 2010) [14] introduces a theoretical discussion to outline various AI in the domain of software engineering and also provides a better insight into their respective application areas where efficient reuse of software components with cost-optimized service delivery models can be observed. The study of (Harman, Mark , 2012) [15]also emphasized towards analysing the impact of AI in business intelligence and software design reusability , in similar direction of research goal , other research approaches of (Meziane, Farid, and Sunil Vadera,2012) [16] , (Ammar et al. , 2012) [17] also worked and stated that there exist various ML approaches in the context of data mining such as classification approaches by support vector machine (SVM) , decision tree , K-nearest neighbours (KNN) , neural networks (NN) etc. which are efficient when the software component evaluation and reuse is concerned. However, most of the traditional approaches do not emphasize more in software modeling design pattern exploration perspective from the OOPs viewpoint, and studies, as shown in the following table 1, show that object-oriented design pattern analysis can reveal more insight about the software component and that significantly reduces the effort in software reuse practice during SDLC.
Table 1 shows that object-oriented design pattern analysis can reveal more insight about software component

<table>
<thead>
<tr>
<th>Authors</th>
<th>Problem context</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R. Ferenc, J. Gustafsson, 2002) [18]</td>
<td>Recognizing design patterns in software components</td>
<td>Columbus assisted OOPs approach</td>
</tr>
<tr>
<td>(E. Gamma et al., 1995) [19]</td>
<td>Design pattern analysis for software</td>
<td>Object-oriented approach</td>
</tr>
</tbody>
</table>

A. Research Gap Analysis

From the critical review of the existing trend of research draws the attention in many aspects such as: Even though data mining for knowledge discovery is applied in software engineering aspects, but that does not much ensure the scope of design pattern reusability with definite computational steps. It is also observed that mostly the learning approaches are iterative and computationally expensive, which results in higher false-positive rates while selecting the appropriate design component to be reused with predictor modeling. The study thereby addresses this design limitation of existing approaches and incorporates OOPs based design pattern analysis by means of two key ML approaches such as i) Neural network-based training and classification and ii) Decision tree-based approach.

III. FORMULATED APPROACH: CONCEPTUAL THEORY

The proposed approach performs an efficient software design pattern analysis. It integrates the modules with the ML approaches of i) Decision Tree and ii) Neural Network modules to predict the more accurate and appropriate object of software design pattern, which can assist in effective reuse of the package. The system is designed from an analytical viewpoint and taken the work of [21] as a baseline approach. It performs a reverse engineering process to identify the design pattern in source code objects (sCo) using a graph-based representation and modeling. The framework also borrowed the Columbus module to analyze the design pattern of software components using the mining approach. The theoretical modeling in this context of pattern analysis of software component design initially applies an object-oriented specific strategic schematic approach where inheritable factor (IF) for different strategic interfaces plays a crucial role. The strategy design pattern (SDP) involves three prime attributes, such as SDP-1, SDP-2, and SDP-3, which are interconnected through a common algo(1): Interface design. The design pattern analysis for algo(1) is performed through IF and overriding, but still, to reduce the false-positive rates, a detailed learning-based approach is highly recommended. The following flow design shows the overall process flow overview of the formulated approach from the viewpoint of high-level design.

Figure 2 Working flow of the system

Figure 2 clearly shows the working flow, which is constructed to make the proposed system functional from the pattern design analysis viewpoint. It shows that the process adopted graph-based modeling to select the state of strategy for the software component and also distinguish the appropriate object (Obj) and classes. Further, Obj oriented predictor module computes the predictor values which are subjected for classification using the neural network back propagation approach [22] and decision tree approach (DT) [23]. The extracted knowledge laso assist the model in selecting appropriate design pattern, which can be reused for the further development of software modules, with the optimized cost of deployment and operations. The numerical analysis further shows that the system attains higher classification accuracy with lower false positive (FP) cases during the classification of predictor values.

IV. EXPERIMENTAL RESULT

The experimental analysis shows that the formulated approach in the case of DT based analysis attains a processing speed of 3.0056 sec where in the case of neural networks (NN) based approach, the processing speed is quite higher that is 4.568 sec. The following figure shows the outcome obtained for classification accuracy using these two approaches during the predictor value classification, which is comparable with the outcome of [21].

Figure 3 Outcome of the classification accuracy

Figure 3 shows that the formulated framework of DT and NN in the context of ML attains better classification accuracy as
V. CONCLUSION AND FUTURE RESEARCH DIRECTION

The study introduces an ML-based approach to effectively reduce the effort in software component reuse from the perspective of design pattern learning and analysis viewpoint. The proposed design modeling in the form of conceptual theory is presented, and the numerical outcome of the study also simulated with supervised ML approaches. The outcome of the study shows that the approach is quite effective in terms of both classification accuracy and processing time as compared to the existing baseline. It also shows the learning precision of the formulated approach is quite higher, which is ~96% overall.

REFERENCES

19. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns : Elements of Reusable Object-Oriented Software. Addison-Wesley Pub Co, 1995.

AUTHORS PROFILE

Dr. P.Mangayarkarasi M.Tech[CSE]., PhD[CSE] is Associate Professor of the Department of Information Science and Engineering, New Horizon College of Engineering, (Autonomous Institution, NAAC A grade, NBA- Accredited Institution, ISO Certified), Bangalore. She has to her credit an excellent track record in the fields of academic, research and Quality Assurance. She is author of over 10+ scholarly research/ review papers, 06+ reputed and peer reviewed Journal Scopus/SCI/JCGC/IEEE/ACM/Springer/Thomson Reuters) papers with good Citation index and h-index. She has won several research paper awards in different National and International conferences and symposiums. She field around 03 patents. She is Member in 07+ leading professional Societies and Forums. She is reviewer and editorial board member/ Advisory board for 07 reputed/ UGC approved International/ National Journals and has published 2 Technical books in the field of Computer Science. Her current research interests include Data Mining, Machine Learning, Data Science and Analytics, Learning Systems, Algorithm Design for emerging Medical Image and Video, data analysis and Advanced Network and Cyber Security. She is guiding PG & PhD Scholars in the fields of Computer and Information Science and Engineering.