Experimental Behavior of Composite Beam using Hot Rolled Channel and Cold Formed Lipped Channel Section under Flexure

Pooja Podar, Gargi Rajpara

Abstract: Cold formed construction has widely recognized as an important contribution of saving in weight of steel as well as it can be formed according to strength requirements. Cold formed sections may have higher moment of inertia as compare to same weight hot rolled sections. Composite construction is usually associated with hot rolled sections especially I section, double C channel section considering high strength to weight ratio. The traditional hot rolled sections can be replaced by high strength cold formed sections considering its strength properties, less weight, easy fabrication and to fit demands of optimized design. This paper deals with experimental study of flexural behavior of composite beam using hot rolled as well as cold formed steel section. Two composite beams were casted using hot rolled ISMC 100 (back to back with spacing 50 mm) and Cold formed lipped channel section (back to back with spacing 50 mm). Experimental study conducted with simply supported loading conditions under two-point loading. Cold formed lipped channel section is pre-fabricated considering cold formed sectional properties given by EN 1993-1-3. Loading is given with load increment of 50 KN. Values of mid span deflection and slip at interface were recorded. The test strength of composite beam compared with design strength predicted by Eurocode standard.

Key words:flexural strength, cold formed composite beam, hot rolled composite beam, buckling.

I. INTRODUCTION

Composite construction has important benefits by making steel and concrete work together, but these advantages can be improved if light weight cold formed steel sections are used instead of hot rolled sections. Large number of different configurations can be produced for cold formed sections to fit the demands of optimized design. Cold formed sections like lipped C-channel, Z purlin and welded I sections are already used for pre-engineered buildings. The main objective is therefore to explore innovative composite construction technology where light steel sections act compositely with in-situ concrete. Cold formed sections are light in weight and cost effective. Cold formed sections consisting of high strength and stiffness, more accurate handling, but having high depth to thickness ratio. The thinner section, easier the member can buckle.

Cold formed sections, depending on the sheet thickness, can be susceptible to web crippling when subjected to concentrated loads. To increase buckling resistance, it is need to update shape of section or stiffening arrangement is required. Due to high depth to thickness ratio of cold formed section, different types of buckling modes are observed. Cold formed sections also involve some geometrical imperfections and residual stresses. Therefore, it is very important to look over some limitations of CFS sections and its solution. A sample comparison of same weight hot rolled and cold formed section is carried out as shown in Table 1.

<table>
<thead>
<tr>
<th>Section</th>
<th>W Kg</th>
<th>A cm²</th>
<th>h cm</th>
<th>Iₓₓ cm⁴</th>
<th>Iᵧᵧ cm⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISMC 100</td>
<td>9.2</td>
<td>11.7</td>
<td>10</td>
<td>186.7</td>
<td>25.9</td>
</tr>
<tr>
<td>(t₁ = 7.50 mm)</td>
<td>(t₂ = 4.70 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFS 115</td>
<td>9.2</td>
<td>11.7</td>
<td>11.5</td>
<td>230.2</td>
<td>38.6</td>
</tr>
<tr>
<td>(lipped C - channel)</td>
<td>(t = 5 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. BUCKLING MODES OF COLD FORMED LIPPED CHANNEL SECTION

There are three types of buckling modes can be observed for cold formed lipped channel as shown in Fig.1.

Fig.1. Buckling modes of cold formed Lipped Channel

Revised Manuscript Received on March 11, 2020

Pooja Podar, (M.E. CASAD) Department of Civil Engineering, PhD research scholar, LDRP-ITR, Gandhinagar-382015, Gujarat, India.
ppodar.civil@lrdp.ac.in

Dr. Gargi Rajapara, Research guide, Department of Civil Engineering, LDRP-ITR, Gandhinagar-382015, Gujarat, India.
grajapara@yahoo.co.in

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075, Volume-9 Issue-5, March 2020

©2020 Blue Eyes Intelligence Engineering & Sciences Publication

DOI: 10.35940/ijitee.E3136.039520
2174
III. LOCATION OF NEUTRAL AXIS OF COMPOSITE BEAM

NA is positioned as per resistance of concrete or steel offered against compression and tension. Location of plastic NA is as follows.

(a). Plastic neutral axis within concrete slab (Rc ≥ Rs)
(b). Plastic neutral axis in flange of steel beam (Rc<Rs and Rc>Rw)
(c). Plastic neutral axis within web. (Rc<Rs and Rc<Rw)

IV. ANALYTICAL MOMENT OF RESISTANCE

Moment of resistance in X direction and Y direction is calculated for moment of resistance in X direction and Y direction is (C)

\[M_{plx} = \frac{R_c}{2} \left(\frac{h_c}{2} + h_p \right) + R_s \times h/2 - (R_c - R_s) \frac{2}{3} \times h \]

Moment of resistance in Y direction:

\[M_{ply} = \frac{R_y}{2} b_{eff} + R_s \times X - (R_c - R_s) \frac{2}{3} \times b_t \]

Shear Resistance:

\[V_{pl,rd} = f_c \times A \times \sqrt{3} \times \gamma \]

Where,

\[A_c = h \times t \]

\[R_c = 0.85 f_c \times b_{eff} \times h / \gamma \]

Where, \(A_c = h \times t \)

\[R_s = 0.85 f_s \times b_{eff} \times h / \gamma \]

For composite beam 1 (CB1) and composite beam 2 (CB2), two steel channels are placed at spacing of 50 mm. Moment of resistance and shear resistance are calculated using equation (1), equation (2) and equation (3).

Where:

- A: Sectional area
- W: Weight of section
- h: Height of steel section
- b1: Width of flange
- t1: Thickness of flange
- t0: Thickness of web
- Ixx: Moment of inertia in X-direction
- Iyy: Moment of inertia in Y-direction
- Mxx: Moment of resistance in X-direction
- Myy: Moment of resistance in Y-direction
- V: Shear resistance
- Rc: Resistance of concrete slab
- Rs: Resistance of steel section
- Rw: Resistance of web
- Ixx: Moment of inertia in X-direction
- Iyy: Moment of inertia in Y-direction
- b_{eff}: Effective width of composite beam
- p1: Depth of neutral axis
- X: x ordinate of center of gravity
- h0: Height of profile deck
- h1: Thickness of concrete slab
- f_y: Yield strength of steel

\[Y_s \] Partial safety factor for steel
\[Y_c \] Partial safety factor for concrete
\[A_v \] Area of web
\[A_s \] Area of steel section
\[CFS \] Cold formed section

V. CHECK FOR SECTIONAL PROPERTIES OF COLD FORMED SECTION (CFS 150)

CFS 150 is fabricated cold formed steel section. The weight to thickness ratio and other sectional properties are checked using EN 1993-1-3.

A. Basic Data

Total height of section h= 150mm
Total width of flange in compression b1 = 50 mm
Total width of flange in tension b2 = 50 mm
Spacing between channels s = 50 mm
Steel core thickness t = 4 mm
Modulus of elasticity = 210000 N/mm²
\(c_1 = 15 \text{ mm total width of edge fold (compression side)} \)
\(c_2 = 15 \text{ mm total width of edge fold (tension side)} \)

Web height \(h_m = 150 - 2 \times \text{thickness of flange} \)
= 150 - 2 \times 4 = 146 mm

Net width of flange in compression \(b_{pl} = b_1 - t \)
= 50 - 4 = 46 mm

Net width of flange in tension \(b_{pl} = b_2 - t \)
= 50 - 4 = 46 mm

Net width of edge fold in compression \(c_{pl} = c_1 - t \)
= 15 - 4 = 11 mm

Net width of edge fold in compression \(c_{pl} = c_2 - t \)
= 15 - 4 = 11 mm

B. Check for geometrical proportions

According to Euro code, EN1993-1-3 following criteria should be satisfied.

(a). \(b_1 / t \leq 60 \) and \(b_2 / t \leq 60 \),
\[b_1 / t = 146 / 4 = 36.5 \]
\[b_2 / t = 146 / 4 = 36.5 \] hence ok

(b). \(c_1 / t \leq 50 \) and \(c_2 / t \leq 50 \),
\[c_1 / t = 15 / 4 = 3.75 \]
\[c_2 / t = 15 / 4 = 3.75 \] hence ok

(c). \(h_m / t \leq 500 \),
\[h_m / t = 150 / 4 = 37.5 \] hence ok

(d). \(0.2 < c / h < 0.6 \),
\[c_1 / b_1 = 15 / 50 = 0.3 \]
\[c_2 / b_2 = 15 / 50 = 0.3 \] hence ok

The influence of rounding of the corners is neglected if
(e). \(c_{pl} / t \leq 5 \),
\[c_{pl} / t = 15 / 4 = 3.75 \]
\[c_{pl} / t = 15 / 4 = 3.75 \] Hence, all checks for geometric proportion of cold
formed section are satisfied according to EN1993-1-3.

VI. EXPERIMENTAL PROGRAM

The two composite beams using hot rolled and cold formed Channel section have been constructed and tested. The parameter includes strength of steel and concrete and type of connection between steel beam and concrete slab are shown in Table II. The detailed geometry of test beams is shown in Fig.2 and Fig.3. The concrete slab and steel beam are connected by means of shear studs. Each beam has simply supported span of 1.2 m. The section size of steel beam includes slenderness ratio of flange and web falls under compact section criteria specified in Eurocode:4. Both specimens are designed with plastic method. Load frame set up for experimental program as shown in Fig.4.

<table>
<thead>
<tr>
<th>Table-II: Parameters of Test Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Notation</td>
</tr>
<tr>
<td>CB1</td>
</tr>
<tr>
<td>CB2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table-III: Sectional properties of steel section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>2 ISMC</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

VII. EXPERIMENTAL TEST RESULTS AND DISCUSSION

A. Composite beam 1 (2 ISMC 100)
The composite beam-1 specimen consisting of 2 ISMC channel with spacing of 50 mm with full interaction between concrete slab and steel beam.
A distribution spandrel beam with two-point loading placed at one third of distance from the supports as shown in Fig. 4. The load was applied at a uniform rate from a 50-ton capacity load cell. Linear Variable Differential Transducer (LVDT) was attached at the bottom mid-span as well as at both sides of the specimen for measuring the mid-span displacement and slip.

As shown in Fig. 6, Fig. 7 and Table -V, hot rolled channel shows limiting mid span deflection and slip includes very less buckling under ultimate load condition, which rebounds after releasing load.

B. Composite beam 2 (2CFS 150)
The composite beam-2 specimen consisting of two cold formed lipped channels with spacing of 50 mm with full interaction between concrete slab and steel beam. Sectional properties of cold formed section are checked as specified before. According to depth to thickness ratio of Cold formed channel falls under class 2 (Compact section). Cold formed sections undergoes heavy deformations at ultimate load conditions. Cold formed composite beam reaches to plastic moment of resistance predicted analytically but it shows buckling of web near support, which shows deformation due to shear.

As shown in Fig. 7 and Fig. 9, cold formed lipped channel shows considerable midspan deflection and slip as compare to hot rolled section as well as it also involves more buckling under concentrated loading conditions as shown in Fig. 8. Buckling mode of Lipped C Channel matches with distortional buckling mode as shown in Fig. 1.
CB1 (composite beam Steel section: 2 ISMC 100) shows very less mid span deflection and slip as shown in Fig.5 and Fig.7. Buckling strength of Hot rolled channel is higher than cold formed lipped channel section. CB2 (composite beam steel section: 2 CFS 150) shows comparatively higher deflection as compare to hot rolled section. Composite beam 2 shows yielding of the cold-formed steel at the bottom of the composite beam. The slippage between the steel and concrete was recorded using dial gauges as shown in Fig.6 and Fig.8. Experimental strength of CB1 and CB2 matches with design strength predicted by Eurocode standard.

VIII. CONCLUSIONS

The following conclusions can be drawn from the study into the behavior of cold-formed steel-concrete composite beams and hot rolled composite beam.

1) Cold formed sections consisting of high strength, stiffness as compare to hot rolled section. It is also important to look over limitations of cold formed sections, as it is susceptible of buckling under concentrated loading conditions.

2) CB1 (hot rolled ISMC 100) shows a high flexural strength to the applied two-point loading conditions as compare to CB2 (cold formed CFS 150) as shown in Fig.5 to Fig.8.

3) Observed deflection is more in CB2 (Cold formed CFS 150) as compare to CB1 (hot rolled ISMC 100) as shown in Fig.5 to Fig.8.

4) Observed slip at interface under ultimate load conditions are 3.5 mm for CB1 (hot rolled ISMC 100) and 7 mm for CB2 (Cold formed CFS 150).

5) Observed slip at interface under ultimate load conditions are 3.5 mm for CB1 (hot rolled ISMC 100) and 7 mm for CB2 (Cold formed CFS 150).

6) Cold formed composite beam can give comparable moment of resistance and design strength if some shape modifications is to be done or it also requires stiffening arrangement under concentrated loading conditions.

7) Analytical results of design strength match with Experimental testing as shown in Table III.

REFERENCES

AUTHORS PROFILE

Pooja Podar, (M.E.CASAD) (PhD Research Scholar and Lecturer at LDRP-ITR, Gujarat) She has teaching experience of 10 years. She worked with Nirma University and Marwadi University as Assistant Professor. She guided many projects for graduation well as post-graduation. She has published seven research papers.

Dr.Gargi Rajapara, (PhD Guide) (Principal,LDRP-ITR) She has wide teaching experience of 21 years. She guided many projects for graduation well as post-graduation. She has published twenty-two research papers. She has important contribution as expert for Sardar Sarovar Project, Gujarat.