Volume-6 Issue-3

Download 40
Total Views 707
File Size 4.00 KB
File Type unknown
Create Date August 27, 2017
Last Updated September 6, 2017

 Download Abstract Book 

S. No

Volume-6 Issue-3, August 2016, ISSN:  2278-3075 (Online)
Published By: Blue Eyes Intelligence Engineering & Sciences Publication Pvt. Ltd.

Page No.



Ndèye Madeleine DIOP, Boureima SEIBOU, Mamadou WADE, Marcel Sitor DIOUF, Ibrahima LY, Hawa LY DIALLO, Grégoire SISSOKO

Paper Title:

Theoretical Study of Vertical Parallel Junction Silicon Solar Cell Capacitance under Modulated Polychromatic Illumination: Influence of Irradiation

Abstract: This article is a theoretical study of vertical parallel junction silicon solar cell capacitance under modulated polychromatic illumination: influence of irradiation. Thus, from the minority carrier density and the photovoltage expressions, the capacitance is determined. Furthermore, Bode and Nyquist diagram followed by an equivalent electric circuit of the capacitance is given.

 solar cell vertical junction - frequency– Capacitance-irradiation – photovoltage - Nyquist-Bode.


1.       M. L. Samb, M. Zoungrana, F. Toure, M. T. D. Diop, G. Sissoko. ''Study in 3D modeling of a solar cell silicon static regime placed in a magnetic field and under constant multispectral illumination: Determination of electrical parameters'' Journal des sciences Vol 10, N°4, 2010, pp. 23-38. www.cadjds.org
2.       O. Sow, I. Zerbo, S. Mbodji, M.I. Ngom, M.S. Diouf and G. Sissoko, “Silicon solar cell under electromagnetic waves in steady state: electrical parameters determination using the i-v and p-v characteristics.” International Journal of Science, Environment and Technology, 1(4), (2012). pp. 230 – 246.

3.       Dieng, M.L. Sow, S. Mbodji, M.L. Samb, M. Ndiaye, M. Thiame, F.I. Barro and G. Sissoko, “3D study of polycrystalline silicon solar cell: influence of applied magnetic field on the electrical parameters.” Semiconductor Science and technology, 26(9), (2011).  pp. 473-476.

4.       Mazhari and H.Morkoç, “Theoretical study of a parallel vertical multi-junction silicon”, J. App. Phys. 73(11), (1993), pp. 7509-7514 

5.       H. EL .Ghitani and S. Martinuzzi, "Determination Electric parameters of a solar cell silicon" J. App. Phys. 66(4), (1989), pp. 1717-1726 .

6.       J. Dugas, “3D Modelling of a Reverse Cell Made with Improved Multicrystalline Silicon Wafers”, Solar Energy Materials and Solar Cells, 32, (1),(1994)  pp. 71 – 88,.

7.       K. Misiakos, C.H. Wang, A. Neugroschel, and F.A. Lindholm. “Simultaneous Extraction of minority-carrier parameters in crystalline semiconductors by lateral photocurrent”. J. Appl. Phys. 67 (1), (1990). pp 321 – 333. 

8.       Sissoko, G., C. Museruka, A. Corréa, I. Gaye and A.L. Ndiaye,. “Light spectral effect on recombination parameters of silicon solar cell”. Renew. Energ., 3, (1996), pp.

9.       Tall, B. Seibou, M. A. O. El Moujtaba, A. Diao, M. Wade, G. Sisoko, “Diffusion Coefficient Modeling of a Silicon Solar Cell under Irradiation Effect in Frequency: Electric Equivalent Circuit”, International Journal of Engineering Trends and Technology (IJETT), 19, (2), (2015), pp. 56-61   

10.    Ricaud,  Photopiles Solaires,  Presses  Polytechniques  et  Universitaires Romandes, 1997

11.    M. L. Samb, M. Dieng, S. Mbodji, N. Thaim, F. I. Barro, G. Cisssoko “Recombination parameters measurement of silicon solar cell under constant white bias light”. Proceedings of the 24th European Photovoltaic Solar Energy Conference, Germany (Hamburg), September (2009), pp.469-472 

12.    Sissoko, G., E. Nanéma, A. Corréa, P.M. Biteye, M. Adj and A.L. Ndiaye,. “Silicon Solar cell recombination parameters determination using the illuminated I-V characteristic. Renew. Energ., 3, (1998), pp. 1848-1851

13.    H. L. Diallo, A. S. Maiga, A. Wereme, G. Sissoko “New approach of both junction and back surface recombination velocity in a 3D modelling study of a polycrystalline silicon solar cell. Eur. Phys. J. Appl. Phys. 42, (2008), pp. 203–211 

14.    Dione, M.M., S. Mbodji, M.L. Samb, M. Dieng, M.Thiame, S. Ndoye, F.I. Barro and G.Sissoko,. “Vertical Junction under Constant Multispectral Light: Determination of Recombination Parameters.” Proceedings of the  24th European Photovoltaic Solar Energy Conference , Germany (Hamburg), September 2009, pp. 465- 468

15.    Mbodji, S., B. Mbow, F. I. Barro, G.Sissoko, “a 3D model for thickness and diffusion capacitance of emitter-base junction determination in a bifacial polycrystalline solar cell under real operating condition.” Turkish Journal of Physics, 35(3) , (2011), pp.  281 – 291.

16.    Mbodji, S., M. Dieng, B. Mbow, F.I. Barro and G. Sissoko, “.Three dimensional simulated modelling of diffusion capacitance of polycrystalline bifacial silicon solar cell.” Journal of Applied Science and Technology (JAST), 15(1 & 2), (2010), pp. 109 – 114

17.    Mbodji, S., I. Ly, H.L. Diallo, M.M. Dione, O. Diasse and G. Sissoko, “Modeling study of n+/p solar cell resistances from single I-V characteristic curveconsidering the junction recombination velocity (Sf)”, .Res. J. Appl. Sci. Eng. Techn., 4(1), (2012), pp.  1-7.

18.    Anil Kumar, R “Measurement of solar cell AC parameter susing Impedance Spectroscop”, A Thesis Submitted for the Degree of master of science (Engg,) in the Faculty of Engineerin Indian Institute of Science, Jan. 2000  pp. 49-50

19.    El. Ndiaye,  G. Sahin, M. Dieng, A. Thiam, H.  L. Diallo, M. Ndiaye, G. Sissoko. “Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar under Frequency Modulation and Irradiation”.J. Appl Math and Physics, 3, (2015), pp. 54-55

20.    Mora-Sero, I., Garcia-Belmonte, G., Boix P.P., Vazquez, M.A. and Bisquert, J., “Impedance Spectroscopy Characterization of Highly Efficient Silicon Solar Cells under Different Illumination Intensities Light” .Energyand Environmental Science, 2, (2009),  pp.678-686. 

21.    Suresh, S., “Measurement of Solar Cell Parameters Using Impedance Spectroscopy.” Solar Energy Materials and Solar Cells, 43, (1996) , pp 21-28.





Hamdy Mohamed Soliman, S.M.EL. Hakim

Paper Title:

Robust PI Controllers to Improve the Dynamic Performance of PMSM with Ripple Minimization

Abstract: Classical vector control for the permanent magnet synchronous motor (PMSM) is depending upon the mathematical model and hence any problem in the machine parameters or AC drives will deteriorate the performance of the drive system over all.  So this paper suggested using four PI current controllers to improve the performance characteristics of the drive system. Three of them is used in the bang-bang control of inverter by rate of one for each phase and the other PI current controller is used to improving the q- axis current component at sudden applies or removes the load. this reflects the performance over all and improve it. The MATLAB Simulink is used to simulating the drive system. The proposed model of the vector control is compared to classical vector control to show the improvement occurs in the performance characteristics of the system with proposal method. The proposed cases are simulated through the MATLAB program and are operated in the laboratory. The laboratory results agreed with the simulating results that have been obtained

  Bang-bang inverter control, PI control, PMSM, vector control.


1.     Goed, I. da Silva and P. Jose, A. Serni, “A hybrid controller for the speed control of a permanent magnet synchronous motor drive,” Control Engineering Practice, Vol. 16, Issue 3, pp. 260-270, March, 2008.
2.     C. Mademlis and N. Margaris, "Loss minimization in vector-controlled interior permanent-magnet synchronous motor drives", Industrial Electronics, IEEE Transactions on, vol. 49, pp. 1344-1347, 2002.

3.     Jian-Xin, S. K. Panda, P. Ya-Jun, L. Tong Heng, and B. H. Lam, "A modular control scheme for PMSM speed control with pulsating torque minimization", Industrial Electronics, IEEE Transactions on, vol. 51, pp. 526-536, 2004.

4.     Jinggang zhang, Zhiyuan Liu and Run Pei, “Two-Degree-of-Freedom internal model control for AC servo system (Periodical style),” Transactions of China Electrotechnical Society, vol. 17, no. 4, pp. 45-48, 2002.

5.     Shengxian Zhuang, Xuening Li and Zhaoji Li, “ The application in the speed regulating of asynchronous machine vector frequency changing based on adaptive internal model control (Periodical style),” Journal of University of Electronic Science and Technology of China, vol. 28,no.5, pp.502-504, 1999.

6.     P. L. Jansen and R. D. Lorentz, "Transducerless position and velocity estimation in induction and salient AC machines", IEEE Trans. Ind. Applicat., vol. 31, pp. 240–247, Mar./Apr. 1995.

7.     P. L. Jansen, R. D. Lorenz, and D. W. Novotny, "Observer-based direct field orientation: Analysis and comparison of alternative methods",” IEEE Trans. Ind. Applicat., vol. 30, pp. 945–953, July/Aug. 1994.

8.     M. P. Kazmierkowski, and L. Malesani, "Current control techniques for three-phase voltage-source PWM converters: a survey", IEEE Trans. Ind. Electron., vol. 45, no. 5, October, 1998, pp. 691-703.

9.     B. k. Bose, "An adaptive hysteresis-band current control technique of a voltage - fed PWM inverter for machine drive system", IEEE Trans., on Ind. Appl., Vol.IA-37, pp.402-408, 1990

10.  Hamdy Mohamed soliman and S. M. EL. Hakim," Improved Hysteresis Current Controller to Drive Permanent Magnet Synchronous Motors Through the Field Oriented Control", International Journal of Soft Computing and Engineering, Vol. 2, No. 4, September 2012, pp. 40-46.






Massamba DIENG, Boureima SEIBOU, Ibrahima LY, Marcel Sitor DIOUF, Mamadou WADE, Grégoire SISSOKO

Paper Title:

Silicon Solar Cell Emitter Extended Space Charge Region Determination under Modulated Monochromatic Illumination by using Gauss’s Law

Abstract:  In this paper, a method of determining the Emitter Extension space charge Region in a silicon Solar Cell Operating in short-circuit condition, is presented. The excess minority carrier’s density versus base Depth is established in Dynamic Regime under monochromatic Illumination. Considering the junction as a plane capacitor, the emitter extension region X0e is determined for various wavelengths,by using Gauss’s law.

Silicon Solar Cell - minority carrier’s density - monochromatic Illumination - Dynamic Regime - Gauss’s Law - Emitter Extension Region


1.       S. Valkov, « Electronique Analogique », Cours avec problèmes résolus aux éditions CASTEILLA-EDUCALIVRE, parution 01-03-1995, dimensions : 24, 40x17, 20x2,60.
2.       G. Sissoko, B. Dieng, A. Correa, M.  Adj, D. Azilinon, “ Silicon Solar Cell space charge region width determination by a study in modeling.” World renewelable energy, 3, (1998), pp: 1852-1855

3.       W. Shockley, « The theory of p-n junctions in semiconductors and p-n junction transistors », Bell Syst.Techn. J. 28, (3), (1945), pp. 435-489

4.       J. J. Liou, F. A. Lindholm,  « I-V Characteristics for Bifacial Silicon Solar Cell under a Magnetic Field. », J.Appl.Phys., 64, (3), 1 August 1988, pp.1249-1252

5.       Hübner, A. G. Aberle, R. Hezel,  « 20% efficient Bifacial Silicon Solar Cells », 14th European Photovoltaic Solar Energy Conference, (Barcelona, 1997), pp. 92-95.

6.       L. M. Daniel, J. M.  Hwang, R. B. Campbell,  « IEEE Transactions on Electron Devices », vol. ED-35, No.1, (1988), pp.70 – 78.

7.       N. Le Quang, M. Rodot, J. Nijs, M. Ghannam, J. Coppye, « Réponse spectrale de photopiles de haut rendement au silicium multicristallin. », J. Phys. III France 2, (1992), pp. 1305-1316.

8.       Schneider, C. Gerhards, F. Huster, W. Neu, M. Spiegel, P. Fath, E. Bucher,  R.J.S. Young, A.G. Prince, J.A. Raby, A.F. Caroll. « Al  BSF for thin screenprinted multicrystalline Si Solar Cells », Proc.17th European PVSEC, (Munich, 2001) pp. 1768 – 1771

9.       Ricaud,  « Photopiles Solaires », Photopiles au silicium  cristallin, Presses polytechniques et universitaires romandes, 1997,pp. 244-245  

10.    J. Furlan, S. Amon,  « Approximation of the carrier generation rate in illuminated silicon », Solid State Electr, vol 28, n°12, (1985) pp. 1241-1243

11.    J. N. Hollenhort  and  G. Hasnain, « Frequency dependent whole diffusion in InGaAs double heterostructures ». Appl. Phys. Lett., .67 (15) , (1995), pp. 2203-2205

12.    Mandelis, « Coupled ac photocurrent and photothermal reflectance response theory of semiconducting p-n junctions. », Jounal of Applied Physics, 66 (11), (1989), pp.  5572-5583

13.    M. I. Ngom, B. Zouma, M. Zoungrana, M. Thiame,  Z. N. Bako, A. G. Camara and G.sissoko, « Theoretical study of a parallel multi-junction silicon cell under multispectral illumination: influence of external magnetic field on the electrical parameters. » International Journal of Advanced Technology and Engineering Research (IJATER), 2(6), (1987), pp. 101-109

14.    Hamidou, A. Diao, S. A. Douani, A. Moissi, M. Thiame, F. I. Barro and G. Sissoko, « Capacitance determination of a vertical parallel junction solar cell under multispectral illumination in steady state. », International Journal of Innovative Technology Exploring Engineering (IJITEE), 2, (3), (2013), pp. 1-6

15.    G. Sissoko, E. Nanema, A. Correa, P. M. Biteye, M. Adj, A. L. Ndiaye, « Silicon solar cell recombination parameters determination using the illuminated I-V characteristic. », Proceedings of the World Renewable Energy Conference Florence-Italy, 3, (1998), pp.1848-1851

16.    H. L. Diallo , A.S. Maiga, A. Wereme and G.Sissoko, « New approach of both junction and back surface recombination velocities in a 3D modeling study of a polycrystalline silicon solar cell. », Eur.Phys. J. Appl. Phys., 42, (2008) pp. 193- 211,.

17.    S. Mbodji, I. Ly, H. L. Diallo, M.M. Dione, O.Diasse and G. Sissoko, « Modeling Study of N+/P Solar Cell Resistances from Single I-V Characteristic Curve Considering the Junction Recombination Velocity (Sf). »,  Res. J. Appl. Sci.Eng. Technol., 4, (1), (2012), pp. 1-7.

18.    M. Ndiaye, Z. N. Bako, I. Zerbo, A. Dieng, F. I. Barro, G. Sissoko « Détermination des paramètres électriques d’une photopile sous éclairement monochromatique en modulation de fréquence, a partir des diagrammes de Bode et de Nyquist », J. Sci.Vol. 8, N° 3 (2008), pp. 59 – 68. www.ucadjds.org

19.    Queyrel, J. (1991). Precis de Physique - Electricité 1, Cours et Exercices Résolus Bréal

20.    Madougou S., Kaka M. and Sissoko G., “Silicon Solar Cells: Recombination and Electrical Parameters”, Solar Energy, (2010), pp. 69-79.

21.    Mbodji, S., Mbow, B., Barro, F. I., and Sissoko, G., « A 3D model for thickness and diffusion capacitance of emitter-base junction determination in a bifacial polycrystalline solar cell under real operating condition. », Turk J Phys 35, (2011), pp. 281 –291.

22.    El Hadji Ndiaye, Gokhan Sahin, Moustapha Dieng, Amary Thiam, Hawa Ly Diallo, Mor Ndiaye, Grégoire Sissoko, “Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar under Frequency Modulation and Irradiation” Journal of Applied Mathematics and Physics, (2015), 3, pp: 1522-1535

23.    Ibrahima Diatta, Issa Diagne, Cheikh Sarr, Khady Faye, Mor Ndiaye, And Grégoire Sissoko “Silicon Solar Cell Capacitance: Influence Of Both Temperature And Wavelength” IPASJ International Journal of Computer Science (IIJCS), Volume 3, Issue 12, December (2015), pp:1-8






Mohamadou Samassa NDOYE, Boureima SEIBOU, Ibrahima LY, Marcel Sitor DIOUF, Mamadou WADE, Senghane MBODJI, Grégoire SISSOKO

Paper Title:

Irradiation Effect on Silicon Solar Cell Capacitance in Frequency Modulation

Abstract: This paper shows the irradiation effect on a solar cell capacitance under monochromatic illumination in dynamic frequency mode.  From the continuity equation, we determine the expression of excess minority carrier density from which the capacitance and the capacitance efficiency are deduced thereafter studied according to the modulation frequency and the irradiation energy. This paper shows that the capacitance efficiencyand the thickness of the space charge region (SCR)in short-circuit decrease accordingto the irradiation energy increasing.

 Solar cell, Irradiation, frequency, capacitance efficiency.


1.       Ly, O.H. Lemrabott, B. Dieng, I. Gaye, S. Gueye, M.S. Diouf And G. Sissoko, (2012)
2.       Techniques de détermination des paramètres de recombinaison et le domaine de leur validité d’une photopile bifaciale au silicium polycristallin sous éclairement multi spectral constant en régime statique. Revue des Energies Renouvelables Vol. 15 N°2 pp187 – 206 (http://www.cder.dz)

3.       G. Sissoko, E. Nanéma, A. Corréa, P. M. Biteye, M.Adj, Silicon Solar cell recombination parameters determination using the characteristic. Renewable Energy, vol-3, pp.1848-1851 Elsevier Science Ltd, 0960-1481/98/#.

4.       A.Cuevas, (2005). The early history of bifacial solar cells, proc 20th EPVEC, pp 801-805

5.       Glunz S.W, KnoblochJ,Biro D, Wetting.W, (1997), optimized high-efficiency silicon solar cells. Proc 14th EPVEC, pp 392-395

6.       El Hadji Ndiaye, Gokhan Sahin, Moustapha Dieng, Amary Thiam, Hawa Ly Diallo, Mor Ndiaye, Grégoire Sissoko, (2015). Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar under Frequency Modulation and Irradiation, Journal of Applied Mathematics and Physics, 3, pp 1522-1535Published Online November 2015 in SciRes. http://www.scirp.org/journal/jamp- http://dx.doi.org/10.4236/jamp.2015.311177

7.       H. Ly Diallo, B. Dieng, I. Ly, M.M. Dione, M. Ndiaye, O.H. Lemrabott, Z.N. Bako, A. Wereme And G. Sissoko, (2012).Determinations of the Recombination and Electrical Parameters of a VerticalMultijunction Silicon Solar Cell. Research Journal of Applied Sciences, Engineering and Technology 4(16); 2626-2631,

8.       A.Jakubowski, (1981). « Graphic method of substrate doping determination from C-V characteristics of MIS capacitors », Solid-State Electronics, Vol. 24, No. 10, pp 985-987,

9.       G. Yaron and D. F.-Bentchkowsky, (1980). « Capacitance voltage characterization of poly Si-SiO2-Si structures », Solid-State Electronics, Vol. 23, pp 433-439.

10.    S. Mbodji, B. Mbow, F. I. Barro and G. Sissoko, (2011). A 3D model for thickness and diffusion capacitance of emitter-base junction determination in a bifacial polycrystalline solar cell under real operating condition, Turkish Journal of Physics, 35, pp.281–291.http://www.ajol.info/index.php/jast/article/view/54834

11.    E.Sow, S. Mbodji, B. Zouma, M. Zoungrana, I. Zerbo, A. Sere and G. Sissoko, (2012),  “Determination in 3D modeling study of the width emitter extension region of the solar cell operating in open circuit condition by the Gauss’s Law.” , International Journal of Science, Environment and Technology (IJSET), Volume 1, N°4, pp. 331 – 340

12.    H. Bayhan, A. S. Kavasoglu, (2003). « Admittance and impedance spectroscopy on Cu(In,Ga)Se2 solar cells », Turk. J. Phys., 27, 529-535.

13.    J. H. Scofield, (1995), « effects of series resistance and inductance on solar cell admittance measurements », Solar Energy Materials and Solar Cells, 37 (2) 217-233.

14.    Gaye , R. Sam , A.D. Seré , I.F. Barro , M.A. Ould El Moujtaba , R. Mané , G. Sissoko, (2014).Influence of Irradiation and Damage Coefficient on the Minority Carrier Density in Transient Response for a Bifacial Silicon Solar Cell, Current Trends in Technology and Science, ISSN : 2279-0535. Volume: 3, Issue: 2, pp 98-104.

15.    Chenvidhya D., Kirtikara K. and Jivacate C. (2005) PV Module Dynamic Impedance and Its Voltage and Frequency Dependencies. Solar Energy Materials and Solar Cells, 86, 243-251. http://dx.doi.org/10.1016/j.solmat.2004.07.005

16.    A.HübnerA.G.Aberle, and R.Hezel, (Munich, 2001). 20% Efficient Silicon Solar Cells Bifacial, 14th European PVSEC, pp 1796-1798.

17.    G.Sissoko, C. Museruka, A. Correa, I. Gaye and A.L. Ndiaye., (1996, 15 - 21 June). ‘Light Spectral Effect on Recombinaison Parameters of Silicon Solar Cell’, Proceedings of the World Renewable Energy Congress, Denver, USA, Part III, pp. 1487- 1490.

18.    Mandelis, A.A. Ward and K.T. Lee.(1989). Combined AC photocurrent and photothermal reflectance response theory of semiconducting p-n junctions. J. Appl. Phys. Vol.66. No.11. pp 5572 – 5583. http://dx.doi.org/10.1063/1.343662

19.    Ibrahima Tall, Boureima Seibou, MAO El Moujtaba Amadou Diao, Momadou Wade, Gregory Sissoko; (Jan 2015).Diffusion Coefficient Modeling of a Silicon Solar Cell under Irradiation Effect in Frequency: Electric Equivalent Circuit; International Journal of Engineering and Technology Trends(IJETT)-Volume 19 Number 2 -ISSN: 2231
5381, p.56-61, (http://www.ijettjournal.org)

20.    M.A. Ould El Moujtaba, M. Ndiaye, A.Diao, M.Thiame, I.F. Barro and G. Sissoko.(2012). Theoretical Study of the Influence of Irradiation on a Silicon Solar Cell under Multispectral Illumination. Res. J. Appl. Sci. Eng. Technol., Volume 4. Issue 23.pp 5068-5073.http://www.maxwellsci.com/jp/abstract.php?jid=RJASET&no=234&abs=21

21.    MouhamadouMously Diallo, Boureima Seibou, Hamet Yoro Ba, Issa Zerbo, Grégoire Sissoko. (2014). One-dimensional study of a Bifacial Silicon Solar Cell Illuminated from the Front Surface by a Monochromatic Light Under Frequency Modulation: Influence of Irradiation and Damage Coefficient. Current Trends in Technology and Sciences. ISSN: 2279-0535. Vol 3.Issue 6. pp 416-421. http://www.ctts.in/assets/upload/5628ctts-36170%20vol-3%20iss-6.pdf

22.    M. Kunst and A. Sanders.(1992). Transport of Excess Carriers in Silicon Wafers.Semiconductor Science and Technology.Volume 7.Numero 1. pp 51-59. http://dx.doi.org/10.1088/0268-1242/7/1/009

23.    G. Sissoko, A. Correa, E. Nanema, M. N. Diarra, A. L. Ndiaye, A. Adj.,(1998). “Recombination parameters measurement in silicon double sided field solar cell”; World Renewable Energy Congress , pp.1856-1859.

24.    Ly Diallo, H., Wade, M., Ly, I., Ndiaye, M., Dieng, B., O. H Lemrabott, A.S. and Maiga Sissoko, G. (2012) 1D Modeling of a Bifacial Solar Cell Silicon under Monochromatic Illumination Frequency Modulation: Determination of the Equivalent Electrical Circuit Related to the Recombination Area Velocity. Research Journal of Applied Sciences, Engineering and Technology, 4, 1672-1676.

25.    C. D. Thurmond, (Aug 1975), « The standard thermodynamic functions for the formation of electron and hole in Ge, Si, GaAs and GaP », J. Electrochem. Soc, vol. 122, pp 133-41.

26.    Thiam, M. Zoungrana, H. Ly Diallo, A Diao, N. Thiam, S. Gueye, M.M. Deme, M. Sarr and G. Sissoko, (2013). Influence of Incident Illumination Angle on Capacitance of a Silicon Solar Cell under Frequency Modulation, Res.J. App. Sci., Eng. and Technology, 5 1123-1128

27.    Ali Hamidou, Amadou Diao, Séré Ahmed Douani, Ali Moissi, Moustapha Thiame,

28.    Fabé Idrissa Barro, Grégoire Sissoko, (February 2013). Capacitance determination of a Vertical Parallel Junction Solar Cell under Multispectral Illumination in steady state, International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-2, Issue-3, pp.1-4






Vikram Duhan, Ritu

Paper Title:

A Hybrid Approach to Reduce Peak-to-Average Power Ratio in Single-Carrier FDMA

Abstract: Single-carrier frequency division multiple access (SC-FDMA) is an improved methodology over orthogonal frequency division multiple access (OFDMA), where input information is changed from time domain to frequency domain by Discrete Fourier Transform (DFT) before applying to conventional OFDMA procedure. By applying the DFT before passing it through the Inverse Discrete Fourier Transform (IDFT) it ensures that the subcarriers are orthogonal to each other which transmit signal as the single bearer signal stimulating the SC-FDMA. SC-FDMA results in reducing the Peak-to-average power ratio (PAPR) as compare to OFDMA. In this paper computational complexity of the framework is further reduced by utilizing composite of Hartley and Hilbert transformation as a part of DFT and IDFT operation. This technique improves SC-FDMA output performance measure parameters by attaining a remarkable balance between PAPR and bit error rate (BER) reduction. The simulation results depict that hybrid transformation technique have lower PAPR than Fast Fourier Transform (FFT).

SC-FDMA, OFDMA, DFT, Hattley, Hilbert, Peak- to-Average Power, Bit Error Rate (BER)


1.       H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag., vol. 44, no. 3, March 2006, pp. 38–45
2.       3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved UTRA, http://www.3gpp.org/ftp/Specs/html-info/25814.htm

3.       M. Danish Nisar, Hans Nottensteiner, and Thomas Hindelang, “On Performance Limits of DFT-Spread OFDM Systems”, in Sixteenth IST Mobile Summit, July 2007 in Budapest, Hungary.

4.       B.E. Priyanto, H. Codina, S. Rene, T.B. Sorensen, P. Mogensen, “Initial Performance Evaluation of DFT-Spread OFDM Based SC-FDMA for UTRA LTE Uplink”, IEEE Vehicular Technology Conference (VTC) 2007 Spring, Dublin, Ireland, Apr. 2007

5.       Luqing Wang and Chintha Tellambura, “A Simplified Clipping and Filtering Technique for PAR Reduction in OFDM Systems”, IEEE Signal Processing Letters, Vol. 12, No. 6, pp.453-456 June 2005

6.       Wenjin Wang, Xiqi Gao, Fu-Chun Zheng, Wen Zhong, “CP-OQAM-OFDM Based SC-FDMA: Adjustable User Bandwidth and Space-Time Coding”, IEEE Transactions On Wireless Communications, Vol. 12, No. 9, pp.4506-4517, September 2013

7.       Fumihiro Hasegawa, Akihiro Okazaki, Hiroshi Kubo, Damien Castelain, and David Mottier, “A Novel PAPR Reduction Scheme for SC-OFDM with Frequency Domain Multiplexed Pilots”, IEEE Communications Letters, Vol. 16, No. 9, September 2012

8.       Taewoo Lee, Hideki Ochiai, “Peak Power Reduction of SC-FDMA Signals Based on Trellis Shaping”, Globocom 2012 symposium on selected areas,3268-3273

9.       Prafulla. D. Gawande, Sirddharth. A. Ladhake, “PAPR Performance of Ofdm System by Using Clipping and Filtering Method”, International Journal of Advances in Engineering & Technology, Vol. 6, Issue 2, pp. 789-794, May 2013,

10.    Jinwei Ji, Guangliang Ren, Huining Zhang, “PAPR Reduction in Coded SC-FDMA Systems via Introducing Few Bit Errors”, IEEE Communications Letters, Vol. 18, No. 7, July 2014

11.    Ishu,Naresh Kumar, “PAPR Reduction in Wavelet based SCFDMA using Pulse Shaping Filters for LTE Uplink Transmission”, International Journal of Applied Engineering Research, Volume 9, Number 20 (2014) pp. 6481-6492

12.    Aping Yao, Yi Zheng, “Peak-To-Average Power Reduction of OFDM Signals Using Adaptive Digital Filter”, IEEE ICASSP, pp. 305-308, 2006

13.    Meng Ma, Xiaojing Huang, Y. Jay Guo, “An Interference Self-Cancellation Technique for SC-FDMA Systems, IEEE Communications Letters, Vol. 14, No. 6, June 2010

14.    Leonhard Korowajczuk, LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis, John Willey & Sons,2011






Nitin. P. Sherje, S. V. Deshmukh

Paper Title:

Design, Development and Performance Evaluation of Semiactive Control Device: Magnetorheological Damper

Abstract:  Vibration mitigation with semi-active control device has recently received considerable attention, because of its strong potential to control devices without imposing heavy power demands. This paper presents a design and development of Magnetorheological damper for commercial vehicles and performance evaluation experimentally. Semi-active control devices includes: Magnetorheological (MR) fluid dampers, semi-active stiffness dampers, semi-active tuned liquid column dampers, and piezoelectric dampers. In the last few years, a number of MR fluid-based devices have been researched all over the world. It has become popular in various applications like civil, automobile, biomedical, space shuttle etc. because of its advantages, high strength, Good controllability, wide dynamic range, fast response rate, low energy consumption and simple structure. Hence the work is focused on design and development of Magnetorheological damper considering the commercial vehicle and testing the performance experimentally. It has been observed that the designed damper had wide dynamic range and response. The performance of damper is tested using three different fluids MR1, MR2 and MR3. These fluids are composed by using different carrier fluids, carbonyl iron powder (5 µm) size and additives. The carrier fluids used are low viscosity paraffin oil, silicon oil, synthetic oil and additives used are AP3 Greece and Arosil.

 MR damper, magnetic potential, magnetic coil.


1.       Honghui Zhang, Changrong Liao, Weimin Chein, Shanglian Huang, A magnetic design method of MR fluid dampers and FEM analysis of magnetic saturation, Science online paper.
2.       Weng W. Chooi Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions, Volume 86, Issues 3–5, February 2008, Pages 473–482B.F. Spencer Jr., S.J. Dyke, M.K. Sain and J.D. Carlson,

3.       Phenomenological Model of a Magnetorheological Damper, Proceedings of the 12th Conference on Analysis and Computation, ASCE, Chicago, Illinois.

4.       Yaojung Shiao, Chun-Chi Lai and Quang-Anh Nguyen, The Analysis of a Semi-Active Suspension System, SICE Annual Conference 2010, August 18-21, 2010, The Grand Hotel, Taipei, Taiwan.

5.       Jiang Xue-Zheng, Wang Jiong, Hong Sheng, Semiactive control of vehicle suspension using MR Damper, J Cent South Southe Uni, Research Gate, Springer, 2012, 1839-1845.

6.       Haiping Du, Kam Yim Sze, JamesLam, Semi-active H∞ control of vehicle suspension with magneto-rheological dampers, Journal of Sound and Vibration 283 (2005) 981–996.

7.       R.S. Prabakar, C. Sujatha, S. Narayanan, Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper, Journal of Sound and Vibration 326 (2009) 400–420.

8.       M. Zapateiro, N.Luo, H. R. Karimi, J.Vehı, Vibration control of a class of semiactive suspension system using neural network and backstepping techniques, Mechanical Systems and Signal Processing, 23 (2009) 1946–1953.

9.       N. R. Fisco, H. Adeli, Smart structures: Part I—Active and semi-active control, Scientia Iranica (A), (2011) 18(3) 275-284.

10.    S.J. Dyke, B.F. Spencer Jr., M.K. Sain and J.D. Carlson, An Experimental Study of MR Dampers for Seismic Protection, Special Issue on Large Civil Structures.

11.    Faycal Ikhouane, Oriol Gomis-Bellmunt, A limit cycle approach for the parametric identification of hysteretic systems, Systems & Control Letters 57 (2008) 663–669.

12.    R. Turczyn, M. Kciuk, Preparation and study of model Magnetorheological fluids, Journal of achievements in materials and manufacturing engineering, 2008, 27(2).

13.    Fang, C; Zhao, B.Y; Chen, L.S; Wu, Q & Hu, N.L.K. The effect of the green additive guar gum on the properties of magnetorheological fluid. Smart Mater. Struc., 2005, 14(1), N1–N5.

14.    Wu, W.P; Zhao, B.Y; Wu, Q & Hu, L.S.C.K. The strengthening effect of guar gum on the yield stress of magnetorheological fluid. Smart Mater. Struc., 2006, 15(4), N94–N98.

15.    Chiranjit Sarkar, Harish Hirani, Synthesis and Characterization of Antifriction Magnetorheological Fluids for Brake, Defence Science Journal, Vol. 63, No. 4, July 2013, pp. 408-412.

16.    S.Elizabeth Premalatha1,2, R. Chokkalingam1, M. Mahendran, Magneto Mechanical Properties of Iron Based MR Fluids, American Journal of Polymer Science 2012, 2(4): 50-55.

17.    Kumbhar B. K., Satyajit R. Patil, Suresh M. Sawant, Synthesis and characterization of fo Magneto-rheological fluids for MR brake application, Engineering science and Technology an International Journal, Elsevier, 18(2005),432-438.





Lyudmila Aleksandrova

Paper Title:

Passive Solar Heating and Hot Water Supply for Medical Purposes in Extreme Situations

Abstract: In the paper are shown several ways for passive solar heating and hot water supply by using rainwater for medical purposes, demonstrated in patent BG66192 (B1) – „Solar energy application for hot water residential supply and air heating in a modular medical unit (operation theatre) in extreme situations” . Here are also explained the applications of stretched membranes as well as the use of tensegrity structures as a way of execution of protective screens for the chambers and volumes.

  passive, solar heating, hot water supply, medical purposes, extreme situations.


1.       Yanko Aleksandrov Refrigeration chambers and volumes for use in extreme situations. IJITEE- India. Volume- 6, Issue 2, July 2016. Page №.; 30-37.
2.       Aleksandrov Yanko [BG]  BG 111651 (A).  MOVEABLE COLD STORAGE CHAMBER FOR POSITIVE TEMPERATURE; Classification: international; E04H5/12; Espacenet.

3.       Aleksandrov Yanko [BG] BG 111658 (A). SYSTEM FOR SOLAR HEATING  OF COOLING CHAMBER WITH POSITIVE TEMPERATURES; Classification: international:    E04B2/00;  E04C1/00;  Espacenet. 

4.       Aleksandrova Lyudmila [BG]; VSU LYUBEN KARAVELOV [BG]  Patent  BG66192 (B1) ― 2011-12-30. „Solar energy application for hot water residential supply and air heating in a modular medical unit (operation theatre) in extreme situations.” Еspacenet.

5.       Classification: - international: F24J2/42 - cooperative: Y02E10/40 Application number: BG20060109516 20060421

6.       Priority number(s): BG20060109516 20060421

7.       Also published as: BG109516 (A)

8.       Aleksandrova Liudmila Chapter 5. „Connection of the walls of operation blocks with rectangular shape to the coordination axes of the carrying construction of refrigeration chambers, according to Ukrainian norms”, in the monograph “Exploitation of medical modules and sub-modules in extreme situations”. 2016. ISBN 978-954-331-068-5.






Teressa Chikohora, Thulaganyo Dimakatso, Edmore Chikohora

Paper Title:

A Technical Framework for Assessing Higher Education E-Learning Readiness

Abstract:  E-learning is one of the fast growing technologies in Higher Education which has seen institutions adopting a platform to enhance their traditional teaching, learning and assessment methods. Most institutions use already established platforms like Blackboard and Moodle, where they pay a fee for using the facility. However institutions are limited by the Service level agreements with the service providers such that they may not use other environments effectively.  The study is motivated by the challenges that institutions face after investing in this e-learning infrastructure. Institutions tend to under-utilise the implemented platform yet the implementation costs are high. A thorough analysis on the technical readiness of the institution is therefore required so as to inform the decision on whether to invest or not. A survey was conducted to identify the hardware, software and networking resource requirements for an e-learning platform. Questionnaires and interviews were used as data collection instruments.  The study defines a framework that may be used to assess the technical readiness of a university to implement an e-learning platform. The framework also uses the e-LRS model to inform the readiness levels.  The defined framework will be useful in ensuring that universities benefit from the huge investments in e-learning infrastructure.

e-learning, readiness, framework.


1.       Al-Amer, K. and Al Soufi, A. (2011).Faculty perceptions and utilization of a learning management system at the Higher Colleges of Technology in UAE.Proceedings of the IADIS International Conference on e-learning 2011.
2.       Aydin, C.H., & Tasci, D. (2005). “Measuring Readiness for e-Learning: Reflections from an Emerging Country”. Educational Technology & Society, 8 (4), 244-257.

3.       Borotis, S. and Poulymenakou, A. (2004) E-Learning Components: Key Issues to Consider Before Adopting e-Learning Interventions. Proc. Of e-Learn 2004, Washington, DC.

4.       Govindasamy, T (2002), Successful implementation of e-Learning Pedagogical considerations, Internet and Higher Education, 4 (2002) 287–299. Elsevier Science.

5.       Graham, C. R. (2006). Chapter 1: Blended learning system: Definition, current trends, future directions. Handbook of blended learning. San Francisco, CA: Pfeiffer.

6.       Gumińska, M & Madejski. J, (2007), Web based e-learning platform as a source of the personalized teaching materials,[online] , VOLUME 24 ISSUE 2, International OCSCO World Pres,  Available: http://www.journalamme.org/papers_vol24_2/24251.pdf,  [accessed 12/09/14]

7.       Howard Community College, (2012), Technical Requirements for eLearning, [online] available: http://www.howardcc.edu/academics/eLearning/technical/techreq.html, ©2012 Howard Community College. [Accessed 21/09/14]

8.       Leal.J.P & Queirós. R (n.d), E-LEARNING FRAMEWORKS: A SURVEY, [online] http://www.dcc.fc.up.pt/~zp/papers/INTED_2010.pdf, [accessed on 19/09/14]

9.       Madar. M.J & Willis. O, (2014), “Strategic Model of Implementing E-Learning, INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 5.

10.    Ouma. G.O, Awuor. F.M, Kyambo, B, (n.d) E-Learning Readiness in Public Secondary Schools in Kenya, available: http://www.eurodl.org/?p=archives&year=2013&halfyear=2&article=592, [accessed 20/09/14]

11.    Okinda. R, (2013), KTTC’s eLearning Readiness Survey (2013).

12.    Piotrowski. M, (2010), what is an E-Learning Platform? [online] ZHAW Zurich University of Applied Sciences.  Available: http://www.irma-international.org/viewtitle/43445/, [accessed 17/10/14]

13.    Psycharis. S, (2005), Presumptions and actions affecting an e-learning adoption by the educational system Implementation using virtual private networks. University of the Aegean.

14.    Schreurs. J, Ehler. U, Moreau. R, (2008), Measuring e-learning readiness [online], Avaialable: https://uhdspace.uhasselt.be/dspace/bitstream/1942/8740/1/ICL08.pdf, [accessed on 19/09/14]

15.    Piotrowski, M., 2010. What is an e-learning platform?, in Learning management system technologies and software solutions for online teaching: tools and applications, I. Global, Editor.






Pritam Singha Roy, Samik Chakraborty

Paper Title:

Design of h-Slotted Microstrip Patch Antenna with Enhanced Bandwidth for C-Band Application

Abstract: In this paper a compact h- shaped slotted microstrip patch antenna has been proposed for C-band applications. The antenna parameters such as Return loss, Bandwidth, Gain, VSWR are improved .The comparison between measured  and simulated results for unslotted  and h-slotted  microstrip patch antenna has been discussed  . The proposed antenna has been fabricated and tested in laboratory .The measured and simulated results are exhibits good agreement. The proposed antenna achieved 16.6% of bandwidth at centre frequency of 7.52 GHz with VSWR ≤ 2 and gain is 6.46dBi. The return loss of -27.97 dB is obtained for h-slot microstrip antenna with dielectric substrate (Glass PTFE      εr =2.55) of thickness (h) =1.6 mm. The proposed antenna   is simulated with IE3D® software.

Bandwidth; Gain; h-slot;Microstrip antenna; Return loss.


1.    N. G. Alexopoulos, D. R. Jackson., “Fundamental superstrate (cover) effects on printed circuit antennas,” IEEE Trans. Antennas Propagat., vol. 32, 1987, pp. 807–815.
2.    M. K. Meshram, B. R. Vishvakarma, “Gap-coupled microstrip array antenna for wide-band operation,” International Journal of Electronics, vol. 88, 2001, pp. 1161-1175.

3.    J-S. Row, K. L, Wong, “'Resonance in a superstrate-loaded rectangular microstrip structure,” IEEE Trans. Antennas Propagat, vol. 29, 1993, pp. 1349–1355.

4.    T.K.Lo and Y.Hwng, “Microstrip antennas of very high permitivity using iris,”Electron Lett., vol.40 no. 12, pp.718-719,Jun .2004

5.    T. M. Au , K.F. Tong and K.M. Luk, “Analysis of offset dual-  patch microstrip antenna,” IEE Proc. Microwave. Antennas Propagat., Vol.141, No.6, 1994, pp. 523-526.

6.    Axelrod, M. Kisliuk and J. Maoz, “Broadband microstrip-fed slot radiator,” Microwave J., June 1989, pp. 81-94.

7.    M. Kahrizi, T.K.Sarkar and Z.H.Maricevic, " Analysis of a wide radiating slot in the ground plane of a microstrip line," IEEE Trans. Microwave Theory Tech. , Vol. MTT-41, Jan. 1993, pp.2937.

8.    R.A. Sainati CAD of micro strip antenna for wireless applications. Artech House, Inc 1996

9.    D.M.Pozar,”Microstrip Antennas,”Jhon Wiley and ons,Hoboken,1995,pp.79-81

10. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, ArtechHouse, 2001.