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Abstract: Quantum computing is an emerging technology in 

which quantum mechanical properties are suitably utilized to 

perform certain compute-intensive operations faster than classical 

computers. Quantum algorithms are designed as a combination of 

quantum circuits that each require a large number of quantum 

gates, which is a challenge considering the limited number of qubit 

resources available in quantum computing systems. Our work 

proposes a technique to optimize quantum arithmetic algorithms 

by reducing the hardware resources and the number of qubits 

based on ZX calculus. We have utilized ZX calculus rewrite rules 

for the optimization of fault-tolerant quantum multiplier circuits 

where we are able to achieve a significant reduction in the number 

of ancilla bits and T-gates as compared to the originally required 

numbers to achieve fault-tolerance. Our work is the first step in 

the series of arithmetic circuit optimization using graphical rewrite 

tools and it paves the way for advancing the optimization of various 

complex quantum circuits and establishing the potential for new 

applications of the same. 

Keywords: Circuit Optimization, Quantum Circuit, Quantum 

Computing, T-count, ZX-calculus. 

I. INTRODUCTION 

In classical computing, vast amounts of data cannot be 

computed simultaneously which makes it impractical to 

model and solve problems of such data-intensive nature. The 

large-scale fault-tolerant realization of quantum computers 

on the contrary, is promising due to its ability to compute 

these amounts of data simultaneously, opening up a wide 

range of applications like prime factorization of large 

numbers, molecular structuring to find new drugs and 

cybersecurity. Quantum circuit computations are performed 

using quantum algorithms, which make use of various 

arithmetic circuits such as subtraction, multiplication, and 

addition.  
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Any implementation of these circuits is conditional to 

keeping the overall resources consumed at an acceptable 

level, which is achieved by the process of Quantum circuit 

optimization, usually at a gate level as a collection of gates 

generally contains all one-bit quantum gates and hence the 2-

bit quantum ex-or gate or exclusive-or gate can also be 

represented as a combination of these gates [1][15][16][17]. 

Quantum circuit optimization is a vital topic in the study of 

quantum circuits and can be defined as the transformation of 

given computations into novel circuits using fewer or simple 

gates while maintaining their functionality. Since the 

beginning, when quantum circuits were designed using 

quantum algorithms, research has been carried out for the 

compilation and optimization of these circuits. The 

techniques used target various facets like minimizing the 

qubits count [2, 3], ancilla bits and garbage bits, reduction in 

the limitations due to hardware resources [4] and in the 

number of gates that are more expensive when simulated in 

error-corrected hardware [5]. For instance, the ancilla 

constant inputs and outputs are used for computation but are 

not useful since the input or output is garbage bit [6] and 

therefore the circuit overhead such as the ancilla and garbage 

outputs need to be minimized. An example of these 

optimization was the implementation of a reversible quantum 

integer multiplier that was a garbage output optimized circuit 

which achieved an efficiency of sixty to ninety per cent 

compared to the existing designs [7]. Despite research in this 

field, the optimizations were costlier to implement in error-

corrected hardware error [5] and correction protocols were 

not investigated in the early work. When assessing optimal 

circuit constructions, these protocols place constraints on the 

cost metrics. Many papers have begun to recognize that to 

implement fault-tolerant circuits, Clifford + T universal gates 

can be utilized to overcome noise-error imposed limits. By 

avoiding uncontrollable errors caused by the quantum-bits 

interaction, also known as Quantum fault-tolerance, the 

circuits are more robust and accurate in design. The presented 

concept underlays the framework for large-scale quantum 

circuit optimization of fault-tolerant quantum circuits. The 

techniques like gate substitution, calculation 2 of small (false-

)normal forms for distinct families of circuits, and 

optimization of phase polynomials are the most common 

approaches for quantum circuit optimization [5]. A novel 

method of quantum circuit optimization, formulated from the 

ZX-calculus is presented here. The circuits are first 

interpreted as ZX-diagrams, which provide a flexible, low-

level language graphical description of quantum calculations 

[8].  
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Using the rules of ZX-calculus, a strategy for 

simplification can be devised and to demonstrate that the final 

reduced diagram obtained can be translated back into a 

quantum circuit.  This optimization method provides a new 

normal form which is desirable in size and reduces the T-gate 

count of quantum circuits. For Clifford + T gate circuits, this 

method helps us to investigate or explore gates that interfere 

with the Clifford architecture [8]. The above is demonstrated 

by implementing a fault-tolerant 6-qubit multiplier, followed 

by the optimization of the same. The paper is organized as 

follows. In section 2, the methodology behind the 

implementation of quantum gates is discussed, followed by a 

brief overview of ZX calculus.  

The section concludes by discussing the implementation of 

the Multiplier circuit. Section 3 highlights the key steps of the 

execution and optimization results. Section 4 discussed the 

results and Section 5 provides the conclusion to the work. 

II. PRELIMINARIES 

Quantum gates act as building blocks to quantum circuits. 

They operate using qubits, also known as quantum bits, which 

have quantum information encoded in them. The 

entanglement property helps the quantum gate to avoid loss 

of information since the qubits are entangled inside a 

quantum gate. The Clifford gate sets are utilized to carry out 

the fault-tolerant circuit implementation. It is already shown 

that the Gottesman Knill theorem allows efficient classical 

simulation of quantum circuits composed of gates in the 

Clifford set[9][18][19]. This makes it possible to simulate 

circuits with several gates in the order of 1000[10, 11]. This 

however needs a quantum computer that needs to use gates 

outside of the Clifford set so that the speed is maintained. It 

is commonly noted for most models to have Clifford group 

with an efficient set of generators while the non-Clifford 

group gates require more expensive procedures to implement 

[12].The most popular non-Clifford gate to use in conjunction 

with the Clifford set is the T gate. The gates included in the 

set, along with a few other elementary gates are described 

below it. 

A. Quantum Gates 

▪ Hadamard Gate: The Hadamard gate is used to 

create superposition of states in a single qubit. It is 

represented as shown in Fig 1. A superposition of |0 > and |1 

> states can be visualized as the displacement away from the 

polar point of a Bloch sphere. The gate can be defined as 

follows – 

                                   𝐻 =  (1
√2

⁄ ) × [
1 1
1 −1

]                     (1) 

 

 
Fig. 1: Hadamard Gate 

▪ T Gate: The T gate is used to induce a π/4 phase on 

a single qubit and can be related to the Phase gate and the 

fourth root of Pauli-Z. However, it is not a Clifford gate. It is 

represented as shown in Fig 2. The gate can be defined as 

follows – 

                                            𝑇 =  
1 0

0 𝑒
(

𝑖𝜋

4
)
                              (2) 

  

Fig. 2: T Gate 

▪ Hermitian of T Gate: The Hermitian of T gate is 

used to induce a negative π/4 phase on a single qubit and can 

be related to the S gate as well (as the product of the S gate 

with itself). The gate can be defined as follows – 

                                            𝑇𝑇 =  
1 0

0 𝑒
(

−𝑖𝜋

4
)
                             (3) 

 

   

 

Fig. 3: Hermitian of T Gate 

▪ Phase Gate: The Phase gate induces a 90-degree 

rotation about the Z-axis. It is represented as shown in Fig 4. 

The gate can be defined as follows – 

                                            𝑆 =  
1 0
0 𝑖

                              (4) 

 
  

  

 

Fig. 4: S Gate 

 

▪ Hermitian of Phase Gate: The Hermitian of Phase 

gate induces a 90-degree rotation about the Z-axis. It is 

represented as shown in Fig 5. The gate can be defined as 

follows – 

 

                                            𝑆𝑇 =  
1 0
0 −𝑖

                                  (5) 

 

 

    

Fig. 5: Hermitian of S Gate 

 

▪ NOT Gate: Similar to a classical NOT gate, the 

quantum NOT gate also reverses the state of a qubit. It is 

represented as shown in Fig 6. The gate can be defined as 

follows – 

 

                                            𝑁𝑂𝑇 =  
0 1
1 0

                            (6)      

 
 

 

 

Fig. 6: NOT Gate 

 

▪ CNOT Gate: The CNOT gate is a 2-qubit gate, 

where one qubit is a control qubit and the other is a target 

qubit, upon which the X gate is applied to if the control is 

true. It is represented as shown in Fig 7. The gate can be 

defined as follows – 
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                𝐶𝑁𝑂𝑇 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

                            (7)      

 
 

 

 

 

Fig. 7: CNOT Gate 

B. ZX-Calculus 

Having gone over the basic quantum gates and their 

function, the other concept that requires some background is 

ZX-Diagrams and their Calculus. ZX-diagrams are 

essentially a graphical representation of complex matrices of 

size 2n × 2 m. This notation allows calculations to be done 

with it, which can simplify the effort that it would otherwise 

take. A ZX-diagram consists of spiders and wires, which 

constitute the basic building blocks of ZX-Calculus. The thin 

lines are called wires, where the ones that are present on the 

left of the dot are inputs and any wires that are to the right 

side of the same are outputs [8]. Spiders, also known as 

generators are linear maps with the probability of having 

many inputs or outputs. There are two types of spiders: the Z 

spider illustrated as a green dot and the X as a red dot where 

each represents a complementary set of bases. This can be 

seen in Fig 8.  

 

 

 

Fig. 8: Z and X Spiders 

 

This linear mapping built using spiders is used to model 

different quantum gates. ZX-Calculus has been used in the 

simplification of circuits in the past as well. One popular 

method combines the ‘sum-of-stabilisers’ method with an 

automated simplification strategy based on the ZX calculus. 

They adapted these techniques from the original setting of 

Clifford circuits with magic state injection to generic ZX-

diagrams and show that, by interleaving this” chunked” 

decomposition with a ZX-calculusbased simplification 

strategy, stabilizer decompositions can be obtained that are 

many orders of magnitude smaller than existing approaches 

[13]. Similarly, the usability of ZX-Calculus for small 

computations on quantum circuits and states is already 

discussed along with the Clifford computation and graphical 

proof of the Gottesman-Knill theorem, and the recent 

completeness theorems for the ZX-calculus that show that, in 

principle, all reasoning about quantum computation can be 

done using ZX-diagrams [14] There are two main differences 

between ZX diagrams and quantum circuits. ZX-diagrams 

need not conform to a rigid topological structure of circuits 

and hence can be deformed continuously. The second is that 

there are a set of rewrite rules for ZX-diagrams like the copy 

rule, Bi-algebra rule, and fusion rules collectively referred to 

as the ZX-calculus. An example of simplification of a ZX-

diagram is demonstrated below – Let us begin with a ZX-

diagram with 3 CNOT gates as shown in Fig 9. 

 

Fig. 9: ZX-Diagram of Circuit with 3 CNOT Gates 

 

We can apply the bi-algebra rule to this. 

 

 

Fig. 10: After Bi-Algebra Law is Applied 
 

Next, we can pull the gate through the swap as shown in Fig 

11. 

 

 

Fig. 11: Circuit After Swap Gate 

This is followed by merging the two red nodes and two green 

nodes. 

 
Fig. 12: Merging the Nodes 

 

To this, we can apply the Hopf law as shown in Fig 13 

 

 

Fig. 13: Circuit after Hopf Law is Applied 

Finally, passing this through the swap gate removes the 

blank spider and gives us the simplified diagram as shown 

Fig 14 
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Fig. 14: ZX-Diagram of Simplified Circuit 

III. METHOD 

The fault tolerant implementation of quantum arithmetic 

circuits is gaining a lot of attention from the research 

community because of their fundamental use in a variety of 

applications and the need to adjust for physical quantum 

computers’ proclivity for noise error. There are various such 

implementations, such as Integral multiplication, Integral 

Divider, Non-restoring square root. These form a class of 

fundamental arithmetic circuit implementations. For 

instance, one implementation of the Integral Multiplier is by 

Thapliyal et al.,2019. The modules do not produce any 

garbage outputs and also restore inputs to their starting value 

and therefore is an efficient implementation in terms of Qubit 

use and T-gates. Other implementations include Galois 

Squaring and Exponentiation, Bilinear Interpolation and 

Reversible Square. All of these can be optimized for their T-

count or T-depth in their fault-tolerant implementations as the 

quantum T gate, which is a non-Clifford gate, used to obtain 

a universal gate set 

A. Integer Multiplier Circuit 

For the implementation of Quantum Multiplier circuit 

using Shift and Add algorithm, conditional Adder circuits are 

utilized. In conditional adder circuit, two sets of input signals 

A and B are given, along with the ‘ctrl’ input. Quantum 

registers are used to store the following qubits, i.e., for a n bit 

conditional adder, a quantum register for first input A with n 

qubits and 2 qubits, a second quantum register for input B 

with n qubits and another quantum register with a single qubit 

for control input are used. Registers form the basis of 

quantum circuit. Quantum operations are forced sequentially 

on quantum bits to generate the result. The nth qubit in first 

Quantum Register is transformed to MSB and the n qubits in 

the second quantum register transforms to the other bits of the 

sum. All the other qubits are unchanged at the output. The 

circuit is as shown in Fig 15. The conditional Adder circuits 

are placed in a shifted manner to perform multiplication. For 

the multiplication of two n bit numbers, n conditional adders 

are used. The first stage of adder can be replaced by an array 

of Toffoli gates, which helps to reduce the overall T-count in 

the circuit. The T gate count in a 6-bit conditional adder is 

140, whereas Toffoli gate array has only 42 T gates. There 

are 25 qubits in this quantum circuit, 6 of which correspond 

to the first input, 6 again to the second input and 13 ancilla 

inputs initialized to zeroes. Each of the 6 qubits in the second 

input acts as the control input to a corresponding conditional 

adder. At the end of computation, 12 ancilla bits contain the 

12 product bits and the final ancilla input is unchanged 

B. ZX Optimization 

ZX calculus is a graphical language which can be used to 

create graphical representations of quantum circuits. The 

calculus works by using Z and X functions, which allows us 

to modify the quantum circuit model while maintaining 

soundness of reasoning. By this way, the properties of 

circuits, protocols, and entanglement states, can be depicted 

in a visually clear and logically complete order. ZX 

optimization begins with the ZX-diagrams being converted to 

graph-like form where every spider is only of the Z type 

which can be achieved using twisting and re-definition, and 

every spider is associated with some output and no non-zero 

phases. This is followed by the process of removing as many 

internal spiders in the graph-like form by pivoting and 

inverting allowed by a set of rules in ZX-calculus. These core 

rules of ZX-calculus help in simulating the Clifford + T gate 

set easily. We can simulate simplified ZX-diagrams that do 

not have an equivalent quantum circuit as ZX-diagram has 

the ability to flexibly portray quantum calculations than any 

other circuit [7]. The extraction of the circuits is also a direct 

procedure, where spiders are unfused and replaced with 

Clifford gates and CZ gates on the inputs and outputs as per 

requirement. These are not just mere flexible circuits but 

contain rich equational theory: the ZX-calculus and can be 

deformed arbitrarily. The core parameters of the ZX-calculus 

give a thorough theory for Clifford circuits, which can be 

efficiently classically simulated. 

IV. RESULTS 

  To introduce the resistance to noise, in our integer 

multiplier circuit we have replaced the Toffoli gate with 

Clifford + T gate architecture. The circuit is then converted 

into a quantum gate using Python commands. The quantum 

gate is appended to the multiplier code replacing the Toffoli 

gate thereby making the circuit fault tolerant. The multiplier 

circuit using the Clifford gate is shown in Figure (15). To 

perform the ZX calculus, we import an open-source Python 

library called “PyZX” in jupyter notebook. Firstly, we change 

the multiplier code into QASM code and transform it into 

basic quantum gates. The next step is to identify the gates 

present in the non-optimized multiplier circuit, followed by 

the conversion into a graph. The graph-like state is a crucial 

step before simplifying as it allows the optimization to result 

in a minimum number of internal spiders. The final step is the 

extraction of the optimized circuit and printing of the gates 

present in the circuit after optimization. In the end, we have 

verified the functionality of the circuit. For measuring the 

cost-effectiveness of our resultant optimized circuit, we 

perform a cost analysis in which T-gate count and ancilla 

inputs are the primary factors considered, the results of which 

have been tabulated in Table 1. The T gate count reduced 

from 742 to 488 after optimization which is shown in Fig 16. 
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Fig. 15: Integer Multiplier Circuit 

Table- I: Comparison of Multiplier Circuit Before and 

after Optimization for 6-Bit Multiplier 

Features Before Optimization After Optimization 

Number Of Qubits 25 25 

 Number of Gates 1786 2416 

T-gate count 742 488 

Clifford Gate 
count 

1044 2328  

 

The Clifford gate count increases from 1044 to 2328. 

Where n is the number of bits for which the adder is designed, 

in a conditional adder circuit, the T gate count is given by 21n 

+ 14, and the Toffoli gate array uses 7n T- gates. This brings 

the total T-count to 

 

                                       21𝑛2 − 14                                              (8) 

 

The total ancilla inputs used in the design are given by 

 

                                       2𝑛 + 1                                             (9) 

                       

For a 6-qubit circuit design, the T count is 742, with an ancilla 

count of 13. 

 

 

Fig. 16: Optimization Results 

V. CONCLUSION 

  In order to introduce the resistance to noise, in our integer 

multiplier circuit we have replaced the Toffoli gate with 

Clifford + T gate architecture. The circuit is then converted 

into a quantum gate using Python commands In this work, a 

new method of optimizing quantum arithmetic circuits using 

ZX calculus is introduced. In particular, the fault-tolerant 

implementations of these circuits are considered and the 

trade-offs required with regard to the hardware cost are 

minimized by the use of this method. For the fault-tolerant 

implementation of the 6-qubit multiplier circuit, the 

optimization resulted in a 34% reduction in the T-gate count 

with a trade-off of an increase in the Clifford gate count. The 

T-gate count is reduced when compared with the previous 

designs without any increase in the number of qubits which 

yielded an overall cost reduction for the hardware 

implementation of the circuit. 
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