
International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075 (Online), Volume-13 Issue-4, March 2024 

28 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.D982613040324 

DOI: 10.35940/ijitee.D9826.13040324 
Journal Website: www.ijitee.org 

Survey of Attacks against HTTPS: Analysis, 

Exploitation, and Mitigation Strategies 

Adithyan Arun Kumar, Gowthamaraj Rajendran, Nitin Srinivasan, Praveen Kumar Sridhar, Kishore 

Kumar Perumalsamy 

Abstract: This research paper aims to provide a comprehensive 

overview of known attacks against HTTPS, focusing on the SSL 

and TLS protocols. The paper begins by explaining the working 

of HTTPS, followed by detailed descriptions of SSL and TLS 

protocols. Subsequently, it explores common attacks against 

HTTPS, providing an in-depth analysis of each attack, along 

with proof-of-concept (PoC) demonstrations. Furthermore, the 

paper outlines mitigation strategies to address each attack, 

emphasizing the importance of proactive security measures. 

Finally, a conclusion is drawn, highlighting the evolving nature 

of HTTPS attacks and the continuous need for robust security 

practices. 

Keywords: HTTPS, TLS, SSL, Heartbleed, BEAST 

I. INTRODUCTION

In today's digital age, secure web communication is of 

paramount importance to protect sensitive data, ensure 

privacy, and establish trust between users and websites. 

Hypertext Transfer Protocol Secure (HTTPS) has emerged 

as the standard protocol for secure web communication. It 

combines the Hypertext Transfer Protocol (HTTP) with the 

Secure Sockets Layer (SSL) or Transport Layer Security 

(TLS) protocols to provide encryption, integrity, and 

authentication mechanisms. HTTPS serves as a crucial 

safeguard against various security threats that can 

compromise the confidentiality and integrity of data 

transmitted over the web. By encrypting the communication 

channel between the client and the server, HTTPS mitigates 

the risk of eavesdropping, data tampering, and unauthorized 

access. It ensures that sensitive information, such as login 

credentials, financial transactions, and personal data, 

remains confidential and protected from malicious actors. 

Manuscript received on 28 February 2024 | Revised 

Manuscript received on 08 March 2024 | Manuscript Accepted 

on 15 March 2024 | Manuscript published on 30 March 2024. 
*Correspondence Author(s) 

Adithyan Arun Kumar*, Department of Information Security, Carnegie 

Mellon University, San Jose, United States. E-mail:

adithyanhaxor@gmail.com, ORCID ID: 0000-0001-9790-2657
Gowthamaraj Rajendran, Department of Information Security, 

Carnegie Mellon University, San Jose, United States. E-mail: 

gowthamaraj360@gmail.com,  ORCID ID: 0000-0001-9422-3907 
Nitin Srinivasan, Department of Computer Science, University of 

Massachusetts Amherst, Sunnyvale, United States. E-mail: 

nitinsr1217@gmail.com,  ORCID ID: 0009-0001-6472-4441 
Praveen Kumar Sridhar, Department of Data Science, Northeastern 

University, San Jose, United States. E-mail: prasri.pk@gmail.com, ORCID 

ID: 0009-0001-6486-1614 
Kishore Kumar Perumalsamy, Department of Computer Science, 

Carnegie Mellon University, San Jose, United States. E-mail: 

kishore7173@gmail.com, ORCID ID: 0009-0009-5661-7644 

© The Authors. Published by Blue Eyes Intelligence Engineering and 
Sciences Publication (BEIESP). This is an open access article under the 

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

HTTPS also plays a pivotal role in building trust and 

confidence among users. The presence of a valid SSL/TLS 

certificate, indicated by a padlock symbol or a green address 

bar, assures users that they are interacting with a legitimate 

and trusted website. This not only protects users from 

phishing attacks and spoofed websites but also enhances the 

reputation and credibility of online businesses. 

II. OVERVIEW OF HTTPS PROTOCOL

HTTPS is an extension of the standard HTTP protocol 

that adds an extra layer of security through the integration of 

SSL or TLS. The SSL/TLS protocols provide encryption, 

authentication, and integrity mechanisms to secure the 

communication channel. The process of establishing an 

HTTPS connection involves several steps: 

Fig. 1: Establishing an HTTPS Connection 

1) Client Request: The client initiates a connection to the

server by sending an HTTPS request. The request includes

the URL of the website and specifies the use of HTTPS.

2) Server Certificate: The server responds by sending its

digital certificate, which contains the server's public key,

identifying information, and the digital signature from a

trusted Certificate Authority (CA).

3) Certificate Verification: The client verifies the

authenticity and validity of the server's certificate. It checks

the certificate's digital signature, expiration date, and the

CA's trustworthiness.

https://www.openaccess.nl/en/open-publications
https://doi.org/10.35940/ijitee.D9826.13040324
http://www.ijitee.org/
mailto:adithyanhaxor@gmail.com
https://orcid.org/0000-0001-9790-2657
mailto:gowthamaraj360@gmail.com
https://orcid.org/0000-0001-9422-3907
mailto:nitinsr1217@gmail.com
https://orcid.org/0009-0001-6472-4441
mailto:prasri.pk@gmail.com
https://orcid.org/0009-0001-6486-1614
mailto:kishore7173@gmail.com
https://orcid.org/0009-0009-5661-7644
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.D9826.13040324&domain=www.ijitee.org


 

Survey of Attacks Against HTTPS: Analysis, Exploitation, and Mitigation Strategies 

29 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.D982613040324 

DOI: 10.35940/ijitee.D9826.13040324 
Journal Website: www.ijitee.org 
 

4) Key Exchange: Upon successful verification, the client 

generates a random session key and encrypts it using the 

server's public key. The encrypted session key is sent to the 

server. 

5) Session Establishment: The server decrypts the session 

key using its private key, which only the server possesses. 

Both the client and server now share the same session key, 

which will be used to encrypt and decrypt data during the 

session. 

6) Secure Communication: With the session key 

established, the client and server can now securely exchange 

data over an encrypted channel. This ensures the 

confidentiality and integrity of the transmitted information. 

 HTTPS employs various encryption algorithms, such as 

the Advanced Encryption Standard (AES), RSA, and 

Elliptic Curve Cryptography (ECC), to protect the data 

exchanged between the client and the server. The choice of 

encryption algorithm depends on the SSL/TLS version, 

cipher suite negotiation, and server configuration. By 

implementing HTTPS, websites can create a secure 

environment for users to browse, interact, and conduct 

transactions, mitigating the risk of data breaches, identity 

theft, and unauthorized access. However, it is important to 

be aware of the potential attacks against HTTPS to ensure 

robust security measures are in place. 

III. SSL AND TLS 

A. Key Principles of Secure Web Communication: 

■ Confidentiality: Secure web communication ensures that 

the information transmitted between the client and the server 

remains confidential. Encryption techniques, such as SSL 

and TLS, are used to encrypt the data, making it unreadable 

to unauthorized parties. 
■ Integrity: Secure web communication ensures the 

integrity of data. It guarantees that the data remains 

unaltered during transmission. This is achieved through the 

use of hash functions and digital signatures, which enable 

verification of data integrity at the receiving end. 
■ Authentication: Secure web communication involves 

verifying the identities of both the client and the server. It 

ensures that the client is communicating with the intended 

server and that the server is a trusted entity. Authentication 

prevents impersonation and man-in-the-middle attacks. 
■ Non-repudiation: Non-repudiation ensures that the 

sender of a message cannot deny sending it. It provides 

proof of the authenticity and integrity of the communication, 

which can be crucial for legal or audit purposes. 

B. Role of SSL and TLS in Establishing a Secure 

Connection: 

 SSL (Secure Sockets Layer) and its successor, TLS 

(Transport Layer Security), are cryptographic protocols that 

play a critical role in establishing secure connections over 

the internet. They provide the necessary encryption, 

authentication, and integrity mechanisms to ensure secure 

web communication. 

1) Encryption: SSL and TLS protocols use encryption 

algorithms to protect the confidentiality of data transmitted 

between the client and the server. They employ symmetric 

key encryption to encrypt the actual data and asymmetric 

(public-key) encryption for exchanging the symmetric 

session key securely. 

 

2) Key Exchange: SSL and TLS protocols facilitate the 

secure exchange of encryption keys between the client and 

the server. This is achieved through a process called the 

handshake, where the client and server negotiate and agree 

upon the encryption algorithm, generate session keys, and 

establish a secure communication channel. 

 

3) Authentication: SSL and TLS protocols verify the 

authenticity of the server's identity using digital certificates. 

These certificates are issued by trusted Certificate 

Authorities (CAs) and contain the server's public key, 

identifying information, and the digital signature from the 

CA. The client validates the certificate to ensure it has not 

been tampered with and belongs to the intended server. 

 

4) Integrity: SSL and TLS ensure the integrity of data by 

using hash functions and digital signatures. Hash functions 

generate unique checksums for data, allowing the receiver to 

verify that the data has not been modified during 

transmission. Digital signatures provide an additional layer 

of integrity verification by allowing the receiver to verify 

the authenticity of the data and ensure it has not been 

tampered with. 

By leveraging SSL and TLS, secure web communication 

is achieved through the establishment of a secure and 

encrypted channel, ensuring the confidentiality, integrity, 

and authenticity of data exchanged between the client and 

the server. These protocols have become the industry 

standard for secure web communication, providing a 

foundation for secure e-commerce, online banking, and 

other sensitive online transactions. 

C. Overview of SSL and TLS Versions: 

SSL (Secure Sockets Layer) and TLS (Transport Layer 

Security) are cryptographic protocols used for secure 

communication over the internet [4]. They have evolved 

over time with multiple versions, each introducing 

improvements in security and functionality. The major 

versions of SSL and TLS are as follows: 
■ SSL 1.0: This was the first version of SSL, but it had 

significant security flaws and was quickly deprecated. 
■ SSL 2.0: Released in 1995, SSL 2.0 addressed some of 

the security vulnerabilities in SSL 1.0. However, it still has 

several weaknesses, and its usage is strongly discouraged 

due to security concerns. 
■ SSL 3.0: Introduced in 1996, SSL 3.0 improved upon its 

predecessors and became widely adopted. It provided 

stronger encryption algorithms and better security features. 

However, vulnerabilities such as POODLE and BEAST led 

to its deprecation. 
■ TLS 1.0: TLS 1.0, released in 1999, was an upgrade to 

SSL 3.0. It introduced stronger security mechanisms, 

including better integrity checks and protection against 

cipher block chaining attacks.  

  

  

 

 

https://doi.org/10.35940/ijitee.D9826.13040324
http://www.ijitee.org/


International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075 (Online), Volume-13 Issue-4, March 2024  

30 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.D982613040324 

DOI: 10.35940/ijitee.D9826.13040324 
Journal Website: www.ijitee.org 
 

■ While still widely supported, it is considered outdated 

and insecure due to various vulnerabilities. 
■ TLS 1.1: Released in 2006, TLS 1.1 further enhanced 

security by addressing vulnerabilities in TLS 1.0. It 

introduced support for newer cryptographic algorithms and 

improved protection against cipher suite downgrade attacks. 
■ TLS 1.2: Released in 2008, TLS 1.2 brought significant 

security enhancements. It introduced stronger cipher suites, 

improved protocol negotiation, and enhanced protection 

against known attacks. TLS 1.2 is widely supported and 

considered the minimum recommended version for secure 

web communication. 
■ TLS 1.3: Released in 2018, TLS 1.3 is the latest version 

of the protocol. It provides substantial improvements in 

security, performance, and privacy. TLS 1.3 features a 

simplified handshake, enhanced encryption algorithms, and 

forward secrecy by default. It also reduces latency and 

mitigates various attacks, making it the most secure and 

efficient version of TLS. 

D. Handshake Process: Key Exchange, 

Authentication, and Session Setup 

 The SSL/TLS handshake is a process that occurs at the 

beginning of an HTTPS connection. It establishes the 

parameters of the secure communication and ensures the 

confidentiality and integrity of the subsequent data 

exchange. The handshake process involves the following 

steps: 
■ Client Hello: The client initiates the handshake by 

sending a Client Hello message to the server. This message 

includes the highest supported SSL/TLS version, a random 

number, and a list of supported cipher suites. 
■ Server Hello: The server responds with a Server Hello 

message, selecting the highest SSL/TLS version mutually 

supported by the client and server. The server also sends its 

digital certificate, which contains the server's public key. 
■ Certificate Validation: The client validates the server's 

certificate to ensure its authenticity. It checks the 

certificate's digital signature, expiration date, and verifies 

that it has been issued by a trusted Certificate Authority 

(CA). 
■ Key Exchange: The client generates a random session 

key and encrypts it using the server's public key obtained 

from the certificate. The encrypted session key is sent to the 

server. 
■ Session Setup: The server decrypts the session key using 

its private key, which only the server possesses. Both the 

client and the server now share the same session key, which 

will be used for symmetric encryption and decryption of 

data during the session. 
■ Cipher Suite Negotiation: The client and server agree on 

a cipher suite from the list provided by the client during the 

Client Hello. The cipher suite determines the encryption 

algorithms, key exchange mechanism, and message 

authentication 

IV. ATTACK 1: MAN-IN-THE-MIDDLE (MITM) 

A Man-in-the-Middle (MitM) [10] attack is a security 

threat that targets the integrity and confidentiality of HTTPS 

communications. In this attack, an adversary intercepts the 

communication between a client and a server, effectively 

positioning themselves as a proxy between the two parties. 

The attacker can eavesdrop on the exchanged data, modify 

it, or inject malicious content without the knowledge of the 

client or the server. 

A. Working and Proof-of-Concept (PoC) 

Demonstration 

The following steps illustrate the working of a MitM 

attack against HTTPS [10]: 
■ Intercepting the Communication: The attacker positions 

themselves between the client and the server by either 

compromising a network device, exploiting vulnerabilities 

in network protocols, or conducting attacks like ARP 

spoofing [2][13]. This allows them to intercept the HTTPS 

communication. 
■ Impersonating the Server: The attacker generates a fake 

SSL/TLS certificate that resembles the legitimate server's 

certificate. This certificate is signed by a self-signed or 

compromised certificate authority. 
■ Initial Handshake: The client initiates the SSL/TLS 

handshake by sending a Client Hello message, intending to 

establish a secure connection with the server. 
■ Attacker's Response: The attacker intercepts the Client 

Hello message and responds to the client, pretending to be 

the server. The attacker's response includes their fake 

certificate. 
■ Certificate Validation: The client receives the attacker's 

fake certificate and performs certificate validation. If the 

client does not properly validate the certificate or if the 

attacker has employed techniques such as Certificate 

Authority (CA) compromise, the client may consider the 

certificate as legitimate. 
■ Session Setup: Believing the attacker's certificate to be 

genuine, the client proceeds with the SSL/TLS handshake 

and establishes a secure connection with the attacker, 

assuming it to be the actual server. 
■ Data Interception or Modification: With the secure 

connection established, the attacker can now intercept, 

monitor, modify, or inject malicious content into the HTTPS 

communication between the client and the server. This can 

include stealing sensitive information, such as login 

credentials or financial data, or injecting malware or 

phishing content. 

B. Mitigation Strategies: Certificate Validation, 

Public Key Pinning 

To mitigate MitM [10] attacks against HTTPS, the 

following strategies can be employed: 
■ Certificate Validation: Clients must validate the 

authenticity of the server's SSL/TLS certificate. This 

involves verifying the digital signature, expiration date, and 

the certificate chain leading to a trusted Certificate 

Authority (CA). Implementing certificate pinning, where the 

client stores and trusts specific certificate details, can add an 

extra layer of protection against forged or compromised 

certificates. 

 

 

 

 

https://www.openaccess.nl/en/open-publications
https://doi.org/10.35940/ijitee.D9826.13040324
http://www.ijitee.org/


 

Survey of Attacks Against HTTPS: Analysis, Exploitation, and Mitigation Strategies 

31 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.D982613040324 

DOI: 10.35940/ijitee.D9826.13040324 
Journal Website: www.ijitee.org 
 

■ Public Key Pinning: Public key pinning is a technique 

where clients associate specific public keys with the server's 

domain. This ensures that only certificates signed by the 

authorized key(s) are accepted, preventing attackers from 

using fake or compromised certificates. Implementing 

HTTP Strict Transport Security (HSTS) headers and 

preloading can enforce the use of HTTPS and pinning 

mechanisms. 
■ Mutual Authentication: Employing mutual 

authentication can enhance security. In addition to the client 

validating the server's certificate, the server can also request 

the client to present a valid certificate, ensuring the client's 

identity. This prevents attacks where the client unknowingly 

connects to a malicious server. 
■ Certificate Transparency: Adopting Certificate 

Transparency mechanisms can enhance the visibility of 

certificate issuance and detect any unauthorized or 

fraudulent certificates. Certificate Transparency logs allow 

the monitoring of certificate issuance and help identify 

potentially malicious certificates. 

V. ATTACK 2: SSL/TLS STRIPPING 

 SSL/TLS Stripping is a type of attack that targets the 

downgrade of secure HTTPS connections to insecure HTTP 

connections [1][3]. This attack takes advantage of the fact 

that many websites still support both HTTP and HTTPS 

protocols. The attacker intercepts the initial HTTPS request 

made by the client and downgrades it to an unencrypted 

HTTP request, removing the security provided by SSL/TLS. 

This allows the attacker to intercept and manipulate the 

communication between the client and the server, 

potentially compromising the confidentiality and integrity of 

the data. 

A. Attack Methodology & Proof of Concept 

The SSL/TLS Stripping attack typically involves the 

following steps: 
■ Intercepting the HTTPS Request: The attacker positions 

themselves between the client and the server, either through 

network-level attacks like ARP spoofing or by 

compromising an intermediary device [2]. When the client 

attempts to establish an HTTPS connection, the attacker 

intercepts the initial request. 
■ Modification of Response: The attacker modifies the 

server's response to the client, replacing HTTPS links with 

plain HTTP links. This manipulation causes the client's 

browser to establish an unencrypted HTTP connection 

instead of the intended HTTPS connection. 
■ Downgrade to HTTP: The modified response is sent 

back to the client, which, due to the attacker's modifications, 

contains HTTP links instead of HTTPS links. The client's 

browser, unaware of the manipulation, proceeds to connect 

to the server using an insecure HTTP connection. 
■ Communication Interception: With the communication 

downgraded to HTTP, the attacker can intercept and read 

the exchanged data between the client and the server. This 

includes any sensitive information transmitted over the 

connection, such as login credentials or personal data. 

A PoC for SSL/TLS Stripping would involve setting up 

a controlled environment where the attacker can intercept 

the communication between a client and a server [1][4]. By 

using tools such as a proxy server or network sniffing 

software, the attacker can demonstrate the ability to modify 

HTTPS responses, replace HTTPS links with HTTP links, 

and intercept the data transmitted over the downgraded 

HTTP connection. 

B. Mitigation Strategies 

To mitigate SSL/TLS Stripping attacks, the following 

strategies can be implemented: 
■ HSTS (HTTP Strict Transport Security): Websites can 

implement HSTS, a security feature that instructs the client's 

browser to only communicate with the server over HTTPS, 

even if the user enters an HTTP URL or follows a link with 

an HTTP protocol. HSTS ensures that the connection is 

always encrypted and prevents attackers from downgrading 

to insecure HTTP connections. 
■ HTTPS Enforcement: Websites should enforce the use 

of HTTPS by redirecting all HTTP requests to their HTTPS 

counterparts. This can be achieved through server-side 

configurations or the use of web application firewalls 

(WAFs) that enforce HTTPS connections. By redirecting all 

traffic to HTTPS, the risk of SSL/TLS Stripping attacks is 

significantly reduced [1]. 
■ Network Monitoring and Intrusion Detection: Deploying 

network monitoring and intrusion detection systems can 

help detect and identify SSL/TLS Stripping attacks. These 

systems can detect anomalies, such as sudden downgrades 

from HTTPS to HTTP, and raise alerts for further 

investigation and mitigation. 

VI. ATTACK 3: BEAST 

 The BEAST (Browser Exploit Against SSL/TLS) attack 

is a cryptographic attack that targets the SSL/TLS protocols 

used in HTTPS [4]. It exploits a vulnerability in the 

implementation of the Cipher Block Chaining (CBC) mode 

of encryption. The attack allows an attacker to decrypt 

portions of an encrypted HTTPS session, potentially 

compromising the confidentiality of sensitive information. 

 The impact of the BEAST attack on HTTPS is 

significant as it poses a threat to the security of data 

transmitted over encrypted connections. By decrypting parts 

of the session, an attacker could potentially extract sensitive 

information, such as login credentials or session cookies, 

leading to unauthorized access or session hijacking. 

A.  Attack Methodology and Proof-of-Concept 

 The BEAST attack follows the following steps: 
■ Initialization Vector (IV) Discovery: The attacker 

initiates a large number of HTTPS requests, each containing 

a known plaintext block [5]. By observing the resulting 

encrypted ciphertext, the attacker can deduce information 

about the Initialization Vector (IV) used in the CBC 

encryption. 

 

 

 

 

 

 

https://doi.org/10.35940/ijitee.D9826.13040324
http://www.ijitee.org/


International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075 (Online), Volume-13 Issue-4, March 2024  

32 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.D982613040324 

DOI: 10.35940/ijitee.D9826.13040324 
Journal Website: www.ijitee.org 
 

■ Byte-by-Byte Decryption: The attacker systematically 

decrypts one byte of the targeted encrypted block by sending 

a crafted HTTPS request. The attacker manipulates the 

plaintext of the request in such a way that the corresponding 

ciphertext, when decrypted, provides information about the 

targeted byte. 
■ Exploiting Cookie Vulnerabilities: The attacker focuses 

on capturing and decrypting the session cookie, which is 

typically sent with each HTTPS request. By extracting the 

session cookie, the attacker can gain unauthorized access to 

the user's session. 

 Proof-of-Concept (PoC) demonstrations of the BEAST 

attack have been performed in controlled environments, 

showcasing the ability to decrypt parts of the encrypted 

communication. These demonstrations highlight the 

vulnerability of the CBC mode of encryption in SSL/TLS 

and the need for effective mitigation strategies. 

B. Mitigation Strategies 

 To mitigate the BEAST attack and enhance the security 

of HTTPS, the following strategies can be employed: 
■ Upgrade to TLS 1.1 or TLS 1.2: The BEAST attack 

primarily targets SSL 3.0 and TLS 1.0, which are vulnerable 

to the attack. Upgrading to TLS 1.1 or TLS 1.2, which have 

improved security mechanisms, helps protect against the 

BEAST attack [6]. TLS 1.1 and TLS 1.2 use 

countermeasures, such as per-record Initialization Vectors 

(IVs), to mitigate the vulnerability exploited by the BEAST 

attack. 
■ Cipher Suite Selection: Choosing a secure cipher suite is 

crucial in mitigating the BEAST attack. Preferably, cipher 

suites that use authenticated encryption, such as those based 

on the Galois/Counter Mode (GCM), should be used. These 

cipher suites provide better security and are not vulnerable 

to the BEAST attack. It is essential to prioritize cipher suites 

that support TLS 1.1 and TLS 1.2 and have strong 

encryption algorithms, key exchange mechanisms, and 

message authentication codes [9][15]. 
■ Implementing Forward Secrecy: Forward secrecy, also 

known as Perfect Forward Secrecy (PFS), ensures that even 

if the private key of the server is compromised in the future, 

past encrypted communications remain secure. By 

supporting cipher suites that provide forward secrecy, such 

as Diffie-Hellman-based key exchange algorithms (e.g., 

DHE and ECDHE), the impact of a successful BEAST 

attack can be limited. 
■ TLS Renegotiation: Disable or strictly control the usage 

of TLS renegotiation, as it can be exploited to facilitate the 

BEAST attack. Renegotiation introduces additional 

complexities in the SSL/TLS protocol, which can potentially 

be leveraged by attackers. 

VII. ATTACK 4: CRIME 

 The CRIME (Compression Ratio Info-leak Made Easy) 

attack is a security vulnerability that affects the security of 

HTTPS communication. It leverages the use of data 

compression within the SSL/TLS protocol to decrypt 

sensitive information, such as session cookies, transmitted 

over an encrypted connection. 

A.  Attack Scenario and Proof of Concept 

The CRIME attack follows the following steps: 
■ Compression Negotiation: The attacker initiates a 

connection with the target server and engages in the 

SSL/TLS handshake process. During this process, the 

compression method used in the communication is 

negotiated between the client and the server. 
■ Injecting Malicious Code: The attacker injects malicious 

JavaScript or other code into a web page visited by the 

victim. This code performs repetitive requests to the target 

server while modifying a single character of the data being 

transmitted in each request. 
■ Data Analysis: By carefully controlling the injected data 

and monitoring the size of the encrypted response, the 

attacker can deduce information about the original plaintext. 

Through a process of trial and error, the attacker can decrypt 

sensitive information, such as session cookies, byte by byte. 

 Proof-of-Concept (PoC) demonstrations of the CRIME 

attack have been successfully performed, showcasing the 

ability to decrypt session cookies and gain unauthorized 

access to user accounts. These demonstrations highlight the 

potential threat that CRIME poses to the confidentiality of 

data transmitted over HTTPS connections. 

B. Mitigation Strategies 

 To mitigate the CRIME attack and enhance the security 

of HTTPS, the following strategies can be employed: 
■ Disabling TLS/SSL Compression: The CRIME attack 

relies on the use of compression within the SSL/TLS 

protocol. Disabling compression mitigates the vulnerability 

exploited by the attack. Compression should be disabled 

both on the server and the client side. This can be achieved 

by modifying the server's SSL/TLS configuration or 

utilizing appropriate security frameworks and libraries. 
■ Protocol Version Upgrades: Upgrading to newer 

versions of the SSL/TLS protocol, such as TLS 1.2 or TLS 

1.3, can provide protection against the CRIME attack. These 

versions incorporate countermeasures to mitigate the 

vulnerability exploited by the attack. By ensuring that both 

the server and client support the latest secure protocol 

versions, the risk of CRIME attack can be significantly 

reduced. 
■ Implementing Context-Specific Encryption: Applying 

encryption selectively, based on the type of data being 

transmitted, can provide an additional layer of protection 

[8][14]. For example, encrypting sensitive data, such as 

session cookies or authentication tokens, using application-

level encryption mechanisms can prevent their exposure 

even if a vulnerability like CRIME exists. 
■ Web Application Hardening: Implementing secure 

coding practices and performing regular security audits of 

web applications can help identify and mitigate 

vulnerabilities that can be exploited in attacks like CRIME. 

Proper input validation, output encoding, and secure session 

management are crucial to prevent attacks targeting 

sensitive data. 

 

 

 

 

 

https://www.openaccess.nl/en/open-publications
https://doi.org/10.35940/ijitee.D9826.13040324
http://www.ijitee.org/


 

Survey of Attacks Against HTTPS: Analysis, Exploitation, and Mitigation Strategies 

33 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.D982613040324 

DOI: 10.35940/ijitee.D9826.13040324 
Journal Website: www.ijitee.org 
 

By implementing these mitigation strategies, 

organizations can significantly reduce the risk of the 

CRIME attack and protect the confidentiality of data 

transmitted over HTTPS connections. Continuous 

monitoring and proactive security measures are essential to 

stay ahead of evolving threats. 

VIII.  CONCLUSION 

 In conclusion, this research paper explored various 

attacks against HTTPS, focusing on both SSL and TLS 

protocols [7][12][13]. The importance of HTTPS in securing 

web communications was emphasized, highlighting its role 

in protecting sensitive data and ensuring the privacy and 

integrity of online transactions. The paper provided an 

overview of the HTTPS protocol, discussing its key 

principles and the fundamental role of SSL and TLS in 

establishing secure connections. 

DECLARATION STATEMENT 

Funding No, I did not receive. 

Conflicts of Interest 
No conflicts of interest to the best of our 

knowledge. 

Ethical Approval and 

Consent to Participate 

No, the article does not require ethical 

approval and consent to participate with 

evidence. 

Availability of Data 

and Material 

 

Not relevant. 

 

Authors Contributions 
All authors have equal participation in this 

article.  

REFERENCES 

1. S. Puangpronpitag and N. Sriwiboon, "Simple and Lightweight 

HTTPS Enforcement to Protect against SSL Striping Attack," 2012 

Fourth International Conference on Computational Intelligence, 

Communication Systems and Networks, Phuket, Thailand, 2012, pp. 

229-234, doi: 10.1109/CICSyN.2012.50. 

2. Nagendran, K., et al. "Sniffing HTTPS Traffic in LAN by Address 

Resolution Protocol Poisoning." International Journal of Pure and 

Applied Mathematics 119.12 (2018): 1187-1195. 

3. A. Adithyan, K. Nagendran, R. Chethana, G. Pandy D. and G. 

Prashanth K., "Reverse Engineering and Backdooring Router 

Firmwares," 2020 6th International Conference on Advanced 

Computing and Communication Systems (ICACCS), Coimbatore, 

India, 2020, pp. 189-193, doi: 10.1109/ICACCS48705.2020.9074317. 

4. P. Sirohi, A. Agarwal and S. Tyagi, "A comprehensive study on 

security attacks on SSL/TLS protocol," 2016 2nd International 

Conference on Next Generation Computing Technologies (NGCT), 

Dehradun, India, 2016, pp. 893-898, doi: 

10.1109/NGCT.2016.7877537. 

5. V. Platenka, A. Mazalek and Z. Vranova, "Attacks on devices using 

SSL/TLS," 2021 International Conference on Military Technologies 

(ICMT), Brno, Czech Republic, 2021, pp. 1-6, doi: 

10.1109/ICMT52455.2021.9502818. 

6. F. Qi, Z. Tang and G. Wang, "Attacks vs. Countermeasures of SSL 

Protected Trust Model," 2008 The 9th International Conference for 

Young Computer Scientists, Hunan, China, 2008, pp. 1986-1991, doi: 

10.1109/ICYCS.2008.433. 

7. G. Rajendran, H. V. Sathyabalu, M. Sachi and V. Devarajan, "Cyber 

Security in Smart Grid: Challenges and Solutions," 2019 2nd 

International Conference on Power and Embedded Drive Control 

(ICPEDC), Chennai, India, 2019, pp. 546-551, doi: 

10.1109/ICPEDC47771.2019.9036484 

8. P. P. Parthy and G. Rajendran, "Identification and prevention of social 

engineering attacks on an enterprise," 2019 International Carnahan 

Conference on Security Technology (ICCST), Chennai, India, 2019, 

pp. 1-5, doi: 10.1109/CCST.2019.8888441 

9. R. Oppliger, R. Hauser and D. Basin, "SSL/TLS Session-Aware User 

Authentication," in Computer, vol. 41, no. 3, pp. 59-65, March 2008, 

doi: 10.1109/MC.2008.98. 

10. S. Stricot-Tarboton, S. Chaisiri and R. K. L. Ko, "Taxonomy of Man-

in-the-Middle Attacks on HTTPS," 2016 IEEE Trustcom/Big Data 

SE/ISPA, Tianjin, China, 2016, pp. 527-534, doi: 

10.1109/TrustCom.2016.0106. 

11. Implementation of ARP Spoofing for IOT Devices Using 

Cryptography AES and ECDSA Algorithms. (2019). In International 

Journal of Recent Technology and Engineering (Vol. 8, Issue 2S11, 

pp. 2889–2893). https://doi.org/10.35940/ijrte.b1363.0982s1119  

12. Prabhakaran, Prof. R., & Asha, Dr. S. (2019). Analysis of Cyber 

Attacks Vulnerabilities In Electrical Power Systems. In International 

Journal of Innovative Technology and Exploring Engineering (Vol. 8, 

Issue 9, pp. 925–928). https://doi.org/10.35940/ijitee.i7848.078919   

13. Mathew, A. R. (2019). Cyber-Infrastructure Connections and Smart 

Gird Security. In International Journal of Engineering and Advanced 

Technology (Vol. 8, Issue 6, pp. 2285–2287). 

https://doi.org/10.35940/ijeat.f8681.088619  

14. Sharma, T., & Sharma, R. (2024). Smart Grid Monitoring: Enhancing 

Reliability and Efficiency in Energy Distribution. In Indian Journal of 

Data Communication and Networking (Vol. 4, Issue 2, pp. 1–4). 

https://doi.org/10.54105/ijdcn.d7954.04020224  

15. Balamurugan, A., R, S. D., J, S., & K, Sivasankari. (2021). Secure 

Online Transaction using Iris. In Indian Journal of Cryptography and 

Network Security (Vol. 1, Issue 2, pp. 5–14). 

https://doi.org/10.54105/ijcns.a1408.111221  

AUTHORS PROFILE 

Adithyan Arun Kumar is a distinguished Product 

Security Engineer at Salesforce, California, with a rich 

background in Information Security from Carnegie 

Mellon University. Specializing in risk evaluation, threat 

modeling, penetration testing, and security automation, 

Adithyan has a notable history of automating threat 

models during his tenure at Salesforce and TEEL Lab at Carnegie 

Mellon.His contributions to the field are recognized by major corporations 

like Apple and Microsoft, where he is acknowledged in their Hall of Fames.  

 

Gowthamaraj Rajendran is a Security Researcher at 

Splunk, California, with a rich background in Threat 

detection and Red Teaming. He also holds certificates 

such as OSWE, OSWA, OSCP, CRTP. He has authored 

around 10+ CVEs till date.  

 

Nitin Srinivasan is a Software Engineer III at Google, 

California where he works on the ML Developer 

Infrastructure and Security team. He has made 

significant contributions to prominent ML Frameworks 

such as TensorFlow, enhancing build efficiency and 

expanding its accessibility and usability across various 

platforms. He holds a Master's degree in Computer Science from the 

University of Massachusetts Amherst, where his focus was in deep learning 

and natural language processing.  
 

Praveen Kumar Sridhar is a highly skilled Machine 

Learning Engineer and Research Assistant with an 

extensive background in data science, natural language 

processing (NLP), and machine learning. Holding a 

Master's degree in Data Science from Northeastern 

University, he has contributed significantly to the fields 

of machine learning and NLP. His research and development efforts include 

the creation of an advanced moderation system for social media platforms, 

the development of NLP pipelines utilizing architectures such as Llama and 

GPT, and the creation of churn frameworks. These contributions 

demonstrate his capacity to innovate and push the boundaries of AI and 

machine learning technologies.  

 

Kishore Kumar Perumalsamy works as a Software 

Engineer at Adobe Headquarters in San Jose, California, 

with a fervor for building secure, intelligent, and 

scalable software systems. He earned his Master's in 

Mobile and IoT Engineering from Carnegie Mellon 

University, serving as a Teaching Assistant for Software 

Architecture and a Research Assistant in the renowned TEEL Labs of the 

CS department.  

 

 

 

 

https://doi.org/10.35940/ijitee.D9826.13040324
http://www.ijitee.org/
https://doi.org/10.35940/ijrte.b1363.0982s1119
https://doi.org/10.35940/ijitee.i7848.078919
https://doi.org/10.35940/ijeat.f8681.088619
https://doi.org/10.54105/ijdcn.d7954.04020224
https://doi.org/10.54105/ijcns.a1408.111221


International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075 (Online), Volume-13 Issue-4, March 2024  

34 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.D982613040324 

DOI: 10.35940/ijitee.D9826.13040324 
Journal Website: www.ijitee.org 
 

 
Disclaimer/Publisher’s Note: The statements, opinions and 

data contained in all publications are solely those of the 

individual author(s) and contributor(s) and not of the Blue 

Eyes Intelligence Engineering and Sciences Publication 

(BEIESP)/ journal and/or the editor(s). The Blue Eyes 

Intelligence Engineering and Sciences Publication (BEIESP) 

and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, 

instructions or products referred to in the content. 

 

https://www.openaccess.nl/en/open-publications
https://doi.org/10.35940/ijitee.D9826.13040324
http://www.ijitee.org/

