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Abstract: The increasing prevalence of cyber threats across 

Internet of Medical Things (IoMT) ecosystems poses critical 

challenges for safeguarding patient safety and data integrity, 

necessitating a dynamic, resilient intrusion detection system (IDS). 

In this work, we present a comprehensive machine learning 

framework for classifying cyberattacks in IoMT settings using 

biometric and network traffic data from the publicly available 

WUSTL-EHMS-2020 dataset. We conduct a unique comparative 

analysis using three paradigms: a Graph Neural Network (GNN) 

model to capture structural dependencies; a Transformer deep 

learning model to capture contextual relationships; and a 

lightweight baseline classifier, Logistic Regression. We undertook 

extensive data preparation, including label encoding, normalisation, 

and stratified sampling to maintain class balance. The Transformer 

achieved the highest overall classification accuracy in the IoMT 

ecosystem (93.5%), outperforming both GNN (88.7%) and Logistic 

Regression (92.8%) across all evaluation metrics. Our research 

demonstrates the superior ability of attention-based models to 

identify complex threat patterns in heterogeneous IoMT data. Our 

study provides a reproducible benchmarking framework and lays 

the groundwork for future efforts related to hybrid modelling, 

explainable AI, and federated learning to improve the 

cybersecurity of Smart Healthcare Systems. 
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I. INTRODUCTION

The Internet of Medical Things (IoMT) has transformed

healthcare by facilitating real-time monitoring of medical 

devices and data-driven clinical action. The connectivity of 

IoMT devices, however, raises substantial cybersecurity 

concerns, especially within the realm of intrusion detection. 

Current IDS approaches and classical ML models are 

inadequate to handle the unique multimodal and temporal 

dimensions of the data being generated by IoMT devices. This 

study is the first to assess GNNs, Transformers, and Logistic 

Regression on the WUSTL-EHMS-2020 data set, which 

comprises biometric and network-layer features, and to use these 

results to determine their performance in terms of accuracy, 

scalability, and real-world multi-class cyberattack detection in 

IoMT networks. 

II. RELATED WORK

A. Machine Learning in Intrusion Detection

Machine learning has become a hand-in-glove enabler for

intrusion detection in IoMT, offering greater agility than 

standard rule-based systems. Lightweight models such as 

decision trees and logistic regression have shown promise in 

some experiments. Still, they are not sufficiently capable of 

accounting for the heterogeneous, high-dimensional data 

often seen in IoMT environments. Advanced architectures 

such as Graph Neural Networks (GNNs) and Transformers 

provide more effective representations of spatial and 

temporal dependencies, respectively. Recent studies indicate 

that GNNs and Transformers could improve our ability to 

detect complex patterns associated with different types of 

IoMT attacks. Still, few comparisons have been conducted 

in specific domains. This study seeks to fill that gap by 

examining GNNs, Transformers, and Logistic Regression on 

the WUSTL-EHMS-2020 dataset within a common 

framework for IoMT cyberattack detection. 

III. LITERATURE REVIEW

In recent years, advancements in the IoMT have 

revolutionised real-time patient monitoring, remote 

diagnostics, and intelligent decision-making in healthcare 

settings. However, along with revolutionizing healthcare, 

advancements in IoMT have created a set of critical 

cybersecurity challenges, leading many researchers to focus 

on IDS and datasets designed  

for IoMT settings. 

In [1], a NIDS is proposed 

to operate at the middleware 

layer of lamping 
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(asymmetric) IoT networks, utilising PCA for 

dimensionality reduction, followed by a classification 

module to detect attacks. This system has reached 

classification accuracy rates of 98%. In [2], a systematic 

literature review assessed 28 important documents and 

reviewed their conclusions on IDS in IoMT from 2018 to 

2024. The studies were examined and then categorized into 

five areas: (1) IDS model that applied artificial use of 

intelligent methods, (2) datasets, (3) security requirements, 

(4) detection processes, and (5) evaluation metrics. When 

reviewing these areas, the study revealed significant 

problems, including device heterogeneity, limited datasets, 

and inconsistencies in evaluation. The study also stated a 

structured roadmap for potential IDS solution development. 

In [3], the authors also reviewed various machine learning 

classification algorithms, including Naive Bayes, Logistic 

Regression, Decision Trees, Random Forest, and Adaptive 

Boosting, in the context of IDS solutions for IoMT 

environments. The best-performing algorithm across the 

listed critical evaluations of accuracy, F1 score, false positive 

rate, and false detection rate was Adaptive Boosting. In [4], 

the authors reviewed the evolution of IoMT, including the 

introduction of machine learning integrations, 

interoperability challenges, and security challenges. The 

review highlighted the increased reliance on telehealth, real-

time health monitoring, and innovative diagnostics, while 

also conveying the prevalent challenges associated with data 

privacy, interoperability, and scaling infrastructure. In [5], 

the authors examine security threats emerging at the 

confluence of AI and IoT, highlighting malware intrusion, 

man-in-the-middle attacks, and breaches of data security and 

privacy in the Internet of Medical Things and Internet of 

Energy Things. They propose methods, including artificial 

immune systems, differential privacy, and federated 

learning, and situate them in the context of security-sensitive 

AI applications. In [6], the authors propose a deep ensemble 

framework for IDS that combines Transformer-based neural 

networks, DCNNs, LSTM networks, data augmentation, and 

RFE in IoMT. Our evaluation of the proposed framework on 

the WUSTL-EHMS-2020 and CICIoMT2024 datasets 

shows auspicious performance, with our approach scoring 

100% accuracy on WUSTL-EHMS-2020 and 99% accuracy 

on CICIoMT2024. In [7], a predictive modelling framework 

for Type 1 Diabetes Mellitus (DM1) management using 

wearable sensors and Random Forest algorithms is 

presented. The findings emphasise the value of person-

specific modelling in health monitoring and suggest that 

ML-integrated IoMT architectures provide scalable, real-

time support for chronic disease management. In [8], IoMT-

Traffic Data is introduced, a benchmark dataset that captures 

benign and eight types of attack traffic at both the packet and 

flow levels. Traditional and deep learning models were tested 

on the dataset, achieving F1-scores above 90%, with traffic-

flow-based models outperforming packet-level approaches 

by up to 5%. In [9], BFLIDS, a federated learning–based IDS 

enhanced by blockchain, smart contracts, and IPFS for 

secure, privacy-aware IoMT security, is proposed. The 

proposed model achieved accuracies of 96%–98%, 

approaching centralized methods. In [10], an ensemble-

based IDS for IoMT is proposed, using Logistic Regression 

and K-Nearest Neighbour (KNN) classifiers to detect attacks 

such as MITM, Data Injection, and DDoS. The developed 

model was tested on two IoMT datasets, achieving 

classification accuracies of 92.5% and 99.54, and precision 

scores of 96.74% and 99.22, respectively. In [11], a PUF is 

introduced, along with a mutual authentication and key 

exchange protocol for secure communication among IoMT 

nodes for remote patient monitoring driven by a pandemic. 

The protocol has low computational overhead, is resistant to 

cloning and tampering, and can withstand various attacks, 

including impersonation, replay delay, and side-channel. In 

[12], the authors introduce a meta-learning-based ensemble 

IDS that uses performance indicators such as accuracy, loss, 

and confidence metrics to determine the appropriate 

weightings for base classifiers. Empirical evidence supports 

the model's superior performance compared to standard 

ensemble methods. In [13], a multi-layer decentralised IoMT 

security model with AES encryption, the SHA-512 hash 

algorithm, NIZKPs, and ABAC; a Bi-LSTM GRU-based 

intrusion detection model with a binary detection accuracy 

of 99.94% and a multi-class detection accuracy of 99.89%. 

In [14], the authors evaluated ML classifiers, including 

Naive Bayes, Logistic Regression, Decision Trees, Random 

Forest, and Adaptive Boosting, for IDS in IoMT scenarios. 

The Adaptive Boosting model yielded the best results across 

key performance metrics. In [15], CICIoMT2024, a multi-

protocol intrusion detection dataset developed from a 

realistic IoMT testbed containing 40 devices (25 real, 15 

simulated) using Wi-Fi, MQTT, and Bluetooth protocols, is 

introduced. The dataset consists of 18 assault scenarios, 

including DDoS, DoS, Recon, MQTT-related, and Spoofing 

attacks. This research provides a significant contribution to 

the domain by alleviating the data shortage that has hindered 

the evaluation of intrusion detection methods for IoMT. The 

paper in [16] addresses data fusion issues relevant to the 

IoMT domain, including security. It proposes the ESDNB 

algorithm, which achieved accuracies of 99.53%- 99.99%. 

The paper also explained vulnerabilities, including malware 

propagation, gaps in architectural standardisation, and cross-

platform issues. The paper in [17] revisits the use of 

Federated Learning (FL) to secure IoMT applications while 

preserving data privacy in decentralised health care systems. 

This architecture helps overcome traditional ML limitations 

in data security and compliance. In [18], Smart Health is a 

lightweight machine-learning–driven framework designed to 

detect malicious behaviour in IoMT environments. The 

system monitors physiological data from IoMT devices to 

differentiate between normal operations and injected attacks 

such as data tampering and device manipulation. 

Experimental results report an accuracy of 92% and an F1 

Score of 90% for detecting malicious activity. In [19], the 

existing privacy and security frameworks in healthcare IoT 

are evaluated. The existing vulnerabilities in devices, data, 

and communications are discussed, and a framework is 

presented to achieve end-to-end protection from device 

manufacturing to data disposal. In [20], Meta-IDS is 

proposed, capable of detecting  

both known and zero-day 

attacks in IoMT networks. 

The model combines 
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signature-based and anomaly-based techniques and 

incorporates privacy-preserving mechanisms. Evaluated on 

WUSTL-EHMS-2020, IoTID20, and WUSTL-IIOT-2021 

datasets, the system achieved detection accuracies of 99.57% 

to 99.99% and extremely low misclassification rates. 

IV. PROPOSED METHODOLOGY 

A. Dataset Description 

In this investigation, the WUSTL-EHMS-2020 dataset was 

utilised to compare the capabilities of machine learning 

models to identify cyber threats in IoMT settings. The dataset 

was obtained from an intelligent healthcare monitoring 

platform developed at Washington University in St. Louis, 

which recorded actual patient monitoring data. The extracted 

data combines behavioural data from biometric sensor 

signals and network-level traffic data, as well as data from 

multiple physiological and communication channels, making 

this dataset especially useful for IoMT intrusion detection 

use cases. 

The dataset contains 45 features, including time-series data 

from biometric sensors such as heart rate, blood oxygen 

saturation, and temperature, as well as network flow 

components such as source/destination ports, protocol types, 

packet sizes, and inter-arrival times. This multimodal nature 

allows for modelling internal (physiological anomalies) and 

external (network intrusion) threats at times as the same. 

Each sample in the dataset includes an associated attack-

category label, making it a supervised-learning dataset. 

To maintain quality and consistency, and since all non-

numeric values were deleted or converted, missing values 

were replaced with zero. Additionally, Z-score normalisation 

was used to standardise all features, and an 80:20 stratified 

split was applied to ensure that both the training and test sets 

had the same class distribution. Overall, this dataset is a 

novel benchmark among existing datasets, as it provides 

physical and cyber health indicators in a unified format, 

enabling a complete and realistic assessment of intrusion 

detection models in innovative healthcare ecosystems. 

Table I: Summary of WUSTL-EHMS-2020 Dataset Attributes 

Attribute Description 

Dataset Name 
WUSTL-EHMS-2020 with Attack 

Categories 

Source 
Washington University in St. Louis Smart 

Healthcare Monitoring System Total  

Instances 
16,320 (approximate, based on class split 

used in evaluation) 

Number of Features 45 

Feature Types 
Numerical (e.g., biometric + network flow 

metrics) 

Biometric Features 
Heart rate, oxygen saturation, temperature, 

respiratory rate, etc. 

Network Flow 

Features 

Source IP/Port, Destination IP/Port, Protocol 

Type, Packet Size, Duration Attack  

Category Labels 3 Classes (Normal, Suspicious, Attack) 

Label Distribution 
Imbalanced (Class 2 >> Class 0 > Class 1) 

Target  

Variable 
Attack Category (encoded as label) Missing 

Values  

Handling Filled with 0 after coercion to a numeric  

Normalization Applied Z-score (mean=0, std=1) 

Train-Test Split Ratio 80:20 (Stratified) 

Use Case Domain Intrusion Detection in IOMT 

Source and Collection Process 

The data collection took place in an experimental testbed 

built to emulate real-time IoMT systems, which contained 

physiological sensors alongside networking elements. 

Data were acquired using a variety of wearable biomedical 

sensors, all connected to an Electronic Health Monitoring 

System (EHMS). The biomedical sensors were used to 

collect biometric signals, including heart rate, blood 

pressure, body temperature, and breathing rate, reflecting the 

physiological state of the study subjects. In contrast, real-

time network traffic metadata was being collected. 

To realistically depict attacks, the research team introduced 

security threats or cyber threats into the environment to 

represent attacks that occurred, including: 

Denial-of-Service (DoS) attacks, Port scans 

Spoofed packet injections, Data exfiltration simulation 

All attacks were performed in a sandboxed testbed 

environment using tools such as Wireshark, Nmap, and 

hping3, which posed no risk to patient data. 

Each instance in the dataset was manually labelled based 

on the determined network behaviour and type of attack 

configuration, resulting in three categories of events: 

Regular Traffic - Legitimate physiological and network 

behaviour. Suspicious Activity - Low confidence anomalies 

of uncertain origin. Confirmed Attack - Detected and 

confirmed cyber attacks 

B. Preprocessing and Feature Engineering: Data 

Cleaning 

When we initially inspected the data set, we found many 

missing values and some non-numeric values. To start 

creating a cleaned data set, we needed to convert all features 

to numeric types. This was done by using ‘pandas.to numeric 

() ‘with the errors set to "coerce." Any NaN value that 

resulted was then imputed to zero (‘0‘) since it was deemed 

that missing readings were due to a temporary disconnection 

of sensors or packet drop. 

C. Label Encoding 

The categorical target column ‘Attack Category ‘was input 

to the ‘Label Encoder ‘from ‘scikit-learn ‘. 

The three classes of attack — Normal, Suspicious, and 

Attack — were converted to numeric values 0, 1, and 2, 

respectively. The conversion enabled the use of classification 

algorithms that operate on numeric output classes. 

D. Feature Normalization 

To address differences in scale across features, primarily 

for Featurization during convergence, and to slightly help 

linear models, each feature was scaled using either min-max 

scaling or z-scaling. This produced standard metrics with a 

mean of 0 and a standard deviation of 1 using the 

StandardScaler module. Importantly, this is a critical step for 

algorithms such as logistic regression and neural networks 

that rely on the absolute value of each feature's magnitude. 

E. Stratified Learning 

When separating the samples for modelling and validation 

into 80:20 train-test splits, stratified sampling was done for 

each component. Stratified sampling was essential to ensure 

that each class was appropriately 

represented in both the 

training and testing datasets. 

Stratified sampling allowed 
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the distribution of each feature to closely mirror the original 

sample distribution, thereby minimising bias against the 

majority class and giving each class within the dataset an 

equal opportunity for performance comparisons. 

F. Categorisation of Features 

The dataset is numerical primarily, but the features may be 

divided into two broad, semantic categories: 

Biometric Features: Vital signs, such as temperature, heart 

rate, oxygen saturation, and respiratory patterns. These 

metrics are indicators of the patient's physiological state. 

Network Flow Features: Protocol type, source/destination 

ports, packet size, time duration, and other transport-level 

statistics were used to monitor device-level management 

communications and identify abnormal occurrences. 

At this stage, neither dimensionality reduction (e.g., PCA) 

nor feature selection algorithms were applied to facilitate 

model interpretation or enable comparisons across our 

models. Future work will explore any influence (positive or 

negative) of different technology feature selection or 

embedding techniques on the performance of the model 

mentioned or the generalizability of the results. 

V. MODEL SELECTION 

To evaluate the effectiveness of various ML paradigms for 

cyberattack classification in IoMT environments, this study 

selects and compares three distinct model architectures: 

Graph Neural Network (GNN), a Transformer-based deep 

learning model, and Logistic Regression. Each model was 

chosen to reflect a different capability in learning spatial, 

sequential, or linear patterns within the dataset, which 

contains both biometric and network flow data. 

A. Graph Neural Network (GNN) 

GNNs have shown promise in cybersecurity due to their 

ability to model structural dependencies and relational 

patterns. In the context of IoMT, GNNs are particularly useful 

for capturing interactions among connected medical devices 

and network traffic flows. The GNN used in this work is built 

upon a two-layer GCN architecture using PyTorch 

Geometric. The node features are derived from the 45 pre-

processed attributes and the synthetic edge. Connections are 

established via randomised adjacency to simulate graph 

behaviour in the absence of a physical topology. This model 

aims to exploit latent feature correlations and detect patterns 

indicative of coordinated or localized threats. 

B. Transformer Model 

Transformers have disrupted the field of sequence 

modelling by adopting self-attention methods that enable the 

model to assess and aggregate input features in context. In 

this work, a custom Transformer encoder will be used to 

model complex dependencies among the many features 

available in the dataset. Three layers define the custom 

Transformer architecture: 

An input projection layer that embeds the feature vectors 

into 128 dimensions 

Two stacked Transformer encoder blocks containing 

multi-head attention (eight heads) 

A Classification head that consists of a fully connected 

layer, unlike Recurrent Neural Networks (RNNs), 

Transformers can process all feature representations at once 

and model both short- and long-range dependencies. Thus, 

the Transformer architecture is a natural fit for the high-

dimensional, non- sequential feature spaces we see in IoMT 

datasets. 

C. Logistic Regression 

To establish a computationally efficient and interpretable 

baseline, the Logistic Regression model emulates a policy-

learning environment in which decisions (i.e., 

classifications) are made based on reward-linked feature 

weights. This model is particularly relevant in real-time 

medical applications where explainability, low-latency 

inference, and limited computational capacity are critical. 

The logistic model is trained using cross-entropy loss and 

optimised to maximise likelihood. 

D. System Architecture 

The proposed system architecture has a layered design to 

enable effective intrusion detection in an Internet of Medical 

Things (IOMT) environment. It begins with data acquisition 

and network monitoring, during which biometric and traffic 

data are collected and analysed under normal and attack 

conditions. The collected data is then processed through 

preprocessing and feature engineering to improve data 

quality. Machine learning models are used for comparative 

analysis to interpret detection performance and results. 

E. Data Acquisition Layer 

This layer consists of wearable medical sensors and IoMT 

devices, such as wearable electrocardiogram (ECG) patches 

and devices for continuous monitoring (cm) of physiological 

parameters, to monitor a patient’s heart rate, temperature, 

oxygen saturation, and respiration (breaths/min). The devices 

provide continuous streams of real-time data and 

communicate using Internet-based network protocols, such 

as Message Queuing Telemetry Transport (MQTT), 

Constrained Application Protocol (CoAP), or HyperText 

Transfer Protocol (HTTP). Multiple sensors are integrated 

into an EHMS, which acts as the initial aggregator of all data. 

F. Network Monitoring and Attack Simulation Layer 

In the experimental testbed, we deploy controlled network 

traffic-monitoring tools on the publicly accessible local 

medical network to obtain packet-level metadata for traffic 

flows, such as protocol type, source/destination ports, packet 

size, inter-arrival time, and duration. Simulated 

cyberattacks—such as DoS, spoofed packets, port scans, and 

injection attacks—are launched within the sandboxed 

environment to emulate real-world threat scenarios. Our 

experimental testbed allows us to inject simulated 

cyberattacks in the sandbox, including Denial-of-Service 

(DoS) attacks, spoofed packets, port scans, and injection 

attacks. These attacks were launched using several tools, 

including hping3 and custom scripts. In the end, the testbed 

provides the system-labelled data   

for each traffic flow. 
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G. Data Preprocessing and Feature Engineering Layer 

All captured datasets are forwarded to the processing 

module to undergo: 

▪ Label encoding of attack categories 

▪ Numerical feature coercion and missing value 

handling 

▪ Standardisation using Z-score normalization 

▪ Feature vector construction combining biometric and 

network flow attributes 

This layer may be considered a uniform input layer to 

enable the learning algorithms to prepare a labelled input 

model. 

H. Machine Learning Model Layer 

Three parallel machine learning pipelines are 

implemented: 

▪ A Graph Neural Network (GNN) architecture that 

models synthetic graph relationships among data 

instances to capture structural correlations. 
▪ A Transformer-based model that uses multi-head self-

attention to learn contextual feature dependencies. 

A Logistic Regression model serving as a lightweight, 

interpretable baseline. Each model is independently trained 

and evaluated on the same pre-processed dataset. 

I. Evaluation and Visualization Layer 

After training, each model is evaluated and discussed using 

standard classification metrics, including accuracy, 

precision, recall, F1-score, and visualisation tools such as 

confusion matrices, ROC curves, and precision-recall curves. 

This layer provides valuable information to describe the 

relative strengths and weaknesses of all architectures 

operating under real-time IoMT traffic. 

J. Result Interpretation and Comparative Analysis 

Layer 

The system concludes with a comparison to discuss Model 

detection capabilities and to explain any trade-offs among 

difficulty, explainability, and classification accuracy. This 

layer is an essential component for considering the context 

of each model's usability in real-time, resource-constrained 

medical settings. 

 

 

[Fig.1: Intrusion Detection System Architecture in IoMT 

Environment] 

 

[Fig.2: Workflow Pipeline] 

 

[Fig.3: Data Processing and Model Training Funnel] 

VI. EXPERIMENTAL SETUP 

A. Tools and Frameworks 

The implementation used Google Colab Pro, which 

provides accelerated resources, and was implemented in 

Python. 

i. The Body of Work Used Several Libraries and 

Frameworks, as follows: PyTorch: to build and train 

the GNN and Transformer models. 

PyTorch Geometric: To implement the GCN (Graph 

Convolutional Network). 

Scikit-learn: To use Logistic Regression, preprocess the 

dataset (label encoding, standardization), split into training 

and test sets, and calculate evaluation metric scores. 

Matplotlib & Seaborn: To visualize plots including 

confusion matrices and performance curves. 

NumPy & Pandas: To perform numerical operations and 

structured data operations. 

The dataset was loaded as a CSV file and underwent 

preprocessing as described in earlier sections. A stratified 

train-test split (80% training, 20% testing) was applied to 

preserve class proportions during training and evaluation. 

This ensured that the models were exposed to a 

representative distribution of  

attack and normal instances. 

 

 

https://doi.org/10.35940/ijitee.B1208.15020126
https://doi.org/10.35940/ijitee.B1208.15020126
http://www.ijitee.org/


 

Comparative Evaluation of Transformer, GNN, and Reinforcement Learning Models for Intrusion 

Detection in Internet of Medical Things 

 

 

                                     6 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.B120815020126 

DOI: 10.35940/ijitee.B1208.15020126 

Journal Website: www.ijitee.org 

B. Training Parameters 

i. GNN Model: 

▪ Epochs: 50 

▪ Hidden Layer Size: 64 

▪ Optimizer: Adam 

▪ Loss Function: Negative Log Likelihood (NLL) 

▪ Learning Rate: 0.01 

▪ Edge Index: Randomly generated (3000 edges) 

ii. Transformer Model: 

▪ Epochs: 10 

▪ Embedding Size: 128 

▪ Number of Heads: 8 

▪ Layers: 2 Transformer encoder blocks 

▪ Loss Function: Cross-Entropy 

▪ Optimizer: Adam 

▪ Learning Rate: 0.001 

▪ Batch Size: 64 

iii. Logistic Regression: 

▪ Maximum Iterations: 500 

▪ Solver: lbfgs 

▪ Regularization: Default (L2) 

▪ No batch training (fit on complete training data) 

C. Reproducibility and Logging 

i. To ensure reproducibility: 

▪ A random seed (42) was set across NumPy, 

PyTorch, and Scikit-learn. 

▪ All-important metrics (accuracy, precision, recall, 

F1-score) were recorded 

▪ Confusion matrices, along with ROC/PR curves, 

were also created and stored for each model. 

D. Validation Strategy 

i. Cross-Validation Strategy 

A single-pass validation approach using a stratified split 

was implemented, and performance was evaluated on an 

unseen 20 per cent test set. All metrics (accuracy, precision, 

recall, F1-score, ROC curve, and PR curve) were computed 

on this test subset to assess real-world generalizability. 

ii. Class Balance Awareness 

In conjunction with stratification, the per-class performance 

metrics were also recorded and analysed to evaluate models’ 

performance across the majority and minority classes. This 

includes analysing confusion matrices and computing class 

precision/recall measures, as well as simulating 

ROC/Precision Recall curves to assess sensitivity to 

underrepresented attack types. 

iii. Reproducibility 

To ensure consistency across model runs, all splitting and 

model initialization procedures fixed a random seed (42). All 

experiments had the same training and testing partitions 

throughout this study. This strategy provided a valid 

justification for fairness while also enhancing efficiency, 

proposing a meaningful balance between evaluative 

accuracy and computational suitability, especially given 

resource limitations in real-world IoMT applications. 

E. Evaluation Metrics 

To evaluate the effectiveness of the developed intrusion 

detection models, a robust set of performance measures was 

employed, including overall classification performance and 

class-wise discriminative performance, both of which are 

important for assessing imbalanced datasets such as 

WUSTL-EHMS-2020. 

▪ Appendix A. Accuracy 

Accuracy measures the correctness of the model overall, in 

terms of the number of correct predictions to the number of 

total predictions: whilst accuracy can serve as a helpful 

guideline, it can also be a little misleading in terms of 

imbalanced datasets, in that accuracy can be increased in part 

because of the majority class. 

Accuracy =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
  …   (𝟏) 

▪ Appendix B. Precision 

Precision captures the ratio of true positives to all 

optimistic predictions made by the model. 

This means that good precision is a low false-positive rate 

of predictions, which is relevant in a health system, as false 

alerts could create a burden for operators sifting through 

them. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  …   (2) 

▪ Appendix C. Recall 

Recall measures model performance by identifying all 

actual positives. 

In the context of IoMT intrusion detection, high recall is 

used to ensure that no malicious activity that could threaten 

system safety is missed. 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  …   (3) 

▪ Appendix D. F1-Score 

The F1-score is the harmonic mean of precision and recall. 

It balances the trade-off between false positives and false 

negatives, making it especially useful for imbalanced 

classes: 

F1-Score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
  …   (4) 

       

▪ Appendix E. ROC-AUC 

ROC curves plot the actual positive rate (Recall) against the 

FPR over a variety of classification thresholds. The AUC 

represents the probability that the model ranks a random 

positive instance higher than a random negative one. The 

higher the ROC-AUC, the greater the likelihood of overall 

separability. 

▪ Appendix F. Precision-Recall Curve 

For imbalanced datasets, PR curves provide a more 

informative view of model performance than ROC curves. 

They plot precision versus recall at various thresholds and are 

particularly useful when the positive class (e.g., confirmed 

attack) is rare. 

Metric Usage in This Study: All metrics were computed 

using scikit-learn on the 20%   

stratified test set for each 

model. In addition, metrics 

were analysed for minority 
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vs. majority classes. 

F. Observations 

The data set is heavily skewed toward confirmed attacks 

(Class 2), which account for the majority of samples. Both 

Normal (Class 0) and Suspicious (Class 1) categories are 

under-represented, making up less than 13% combined. 

Confusion matrices were visualised as heatmaps to show 

which classes were being misclassified. 

ROC and PR curves were generated for each class to show 

the models' thresholds and sensitivity. 

This multi-metric approach ensures that a balanced 

detection capability can be evaluated, especially under 

normal circumstances for real-world IoMT security 

environments. 

VII. RESULTS AND DISCUSSION 

A. Class Distribution Analysis 

When developing models to classify both normal and 

abnormal behaviour, it is necessary to have reasonable 

definitions of normal and malicious behaviour for effective 

cyberattack detection in IoMT. In this dataset, all records are 

classified into three separate categories.  

Class 0 - Normal: Benign and expected activity for biometrics 

and network. 

Class 1 - Suspicious: Possible probing, borderline, noise, or 

ambiguous traffic that may not be malicious. 

Class 2 - Confirmed Attack: Observed malicious activity, for 

example, Denial-of-Service (DoS), spoofing. 

The following summarizes the class distribution from test set. 

Table II: Confusion Matrix Heatmap for GNN Model on 

Test Data 

Class Label Instances Proportion 

0 Normal ~5.6%  

1 Suspicious 225 ~6.9% 

2 Confirmed Attack 2,855 ~87.5% 

Total 3264 100%  

 

This class imbalance is a challenge for traditional classifiers 

because they typically learn primarily toward the majority 

class during training. 

B. Impact on Model Performance 

The imbalance of the data set had an observable effect on 

the performance of all three models: 

The GNN model achieved good overall accuracy but 

struggled with recall for Class 1 (Suspicious), often 

predicting Class 2 instead. 

The Transformer model achieved the best accuracy across 

all classes using the attention mechanism, but still 

underperformed in precision for the minority classes. 

The Logistic Regression model is interpretable and 

lightweight; however, it tends to over-predict Class 2, leading 

to false positives for attacks. 

C. Handling the Imbalance 

To address this issue: 

▪ A stratified train-test split was applied to maintain the 

same class distribution in both sets. 

▪ Macro-averaged performance metrics were reported 

to ensure fair evaluation across classes. 

▪ Confusion matrices and class-wise ROC/PR curves 

were analysed to visualise misclassifications and 

assess model robustness to imbalance. 
 

 

[Fig.4: Class Distribution] 

D. Confusion Matrices (Heatmaps) 

i. Graph Neural Network (GNN) 

The confusion matrix for the GNN model is shown in 

Figure 5, and the raw results are as follows: 

Table III: Confusion Matrix Heatmap for GNN Model 

on Test Data 

Predicted: Class 0 Predicted: Class 1 Predicted: Class 2 

Actual: 78 Class 0 0 106 

Actual: 7 Class 1 0 218 

Actual: Class 2 39 0 2816 

ii. Understanding 

The GNN demonstrated its ability to predict most of class 

2(Attack) examples with a high degree of precision, as 

anticipated based on the class imbalance. The GNN struggled 

to recognise Class 0 (Normal) instances and Class 1 

(Suspicious) instances, regularly classifying them as 

attacks/benign. There were no correct predictions for Class 1 

– our model’s first “blind spot” for ambiguous or intermediate 

traffic patterns. Class 0 obtained a fair recall, but many false 

positives. 

 

 

[Fig.5: Confusion Matrix – Graph Neural Network] 
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E. Transformer Model 

The Transformer model's confusion matrix on the test set is 

summarised below in Table 4: 

Table IV: Confusion Matrix Heatmap for the Transformer 

Model on the WUSTL-EHMS-2020 Test Set 

Predicted: Class 0 Predicted: Class 1 Predicted: Class 2 

Actual: 184 Class 0 0 0 

Actual: 2 Class 1 49 174 

Actual: Class 2 15 21 2819 

i. Interpretation 

The Transformer model classified all instances of Class 0 

(Normal traffic), achieving very high precision and recall in 

identifying regular traffic. The second class, Class 2 

(Confirmed Attacks), also performed well, as the model 

correctly classified an overwhelming majority of instances. 

When it did misclassify, it did so in just 36 of 2855 cases, 

indicating that the model was generally strong and 

particularly good at capturing the most common attack types. 

On the other hand, Class 1 (Suspicious activity), which was 

under-represented and ambiguous, proved the most difficult 

for the model to classify. While the model correctly predicted 

49 samples, 174 were misclassified as attacks, and two were 

classified as usual, resulting in moderate recall but relatively 

lower precision. 

ii. Advantages of a Transformer in This Context 

Self-attention mechanisms allowed the model to learn 

complex dependencies across multiple features, including 

subtleties in the relationships between biometric and network 

traffic features, and its ability to simultaneously process input 

enabled it to efficiently learn in a high-dimensional space, 

which contributed to faster convergence and better 

generalisation. 

 

 

[Fig.6: Confusion Matrix – Transformer Model] 

iii. Logistic Regression Model 

The confusion matrix provides essential metrics for class-

wise performance and is summarised in Table 5. 

Table 5: Confusion Matrix Heatmap for the Logistic 

Regression Model on the WUSTL-EHMS-2020 Test Set. 

Predicted: Class 0 Predicted: Class 1 Predicted: Class 2 

Actual: 184 Class 0 0 0 

Actual: 1 Class 1 0 224 

Actual: Class 1 10 0 45 

F. Interpretation 

The model accurately classified regular traffic (Class 0) 

with 100% accuracy, showing that the benign behaviours 

were appropriately separated. It also classified Class 2 

(confirmed attacks) with high confidence, with only 10 false 

negatives and zero false positives. Class 1 (suspicious) traffic 

was completely misclassified – only one was not labelled as 

an attack, and none was labelled as suspicious traffic. 
 

 

[Fig.7: Confusion Matrix – Logistic Regression] 

G. ROC and Precision-Recall Curves 

i. Graph Neural Network (GNN) 

ROC and PR curves provide another lens for evaluating 

model performance across different classification thresholds. 
 

 

   [Fig.8: Graph Neural Network Curve] 

ii. ROC Curve Analysis 

The ROC-AUC of the GNN was ~0.88, indicating 

moderately strong class separability. The ROC curve shows 

that Class 2 (Confirmed Attack) was well-defined, with a 

very steep rise in TPR and a high AUC for other traffic, 

indicating good performance in differentiating attacks from 

otherwise regular traffic. Conversely, the ROC curves for 

Class 0 (Normal) and especially Class 1 (Suspicious) had 

much less curvature, which suggests that the performance at 

identifying non-dominant classes was much weaker. 

iii. Precision-Recall Curve Analysis 

The PR curve, based on Precision and Recall, provides a 

better evaluation for imbalanced datasets where the ROC 

curve can be too optimistic. The PR curve for Class 2 was 

ideal, sustaining high precision and recall across thresholds. 

This also reinforced the model's   

bias for the majority class. The 

precision-recall curve for 

Class 0 showed moderate 
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performance, with precision reduced at lower thresholds. The 

precision-recall curve for Class 1 was relatively low and flat, 

which signifies that the GNN was not able to classify 

suspicious traffic accurately. 

iv. Transformer Model 

 

[Fig.9: Transformer Model Curve] 

v. ROC Curve Analysis 

The AUC-ROC value for Class 2 (Confirmed Attack) was 

greater than .95 for the Transformer model, which is 

indicative of a remarkable ability to distinguish between 

attack and non-attack samples. The AUC-ROC for Class 0 

(Normal) was consistently above the diagonal, with a score 

of approximately 0.94, indicating moderate sensitivity and 

low false-positive rates. In comparison, Class 1 (Suspicious) 

had a lower AUC-ROC of roughly 0.78, indicating moderate 

difficulty in differentiating suspicious activity from other 

classes, but performed better overall than the GNN and 

logistic regression models. 

vi. Precision-Recall Curve Analysis 

Overall, the precision-recall curve for Class 2 (Confirmed 

Attack) was nearly perfect, with precision and recall being 

high for all thresholds, indicating the Transformer model's 

performance in classifying attack samples. Class 0 (Normal) 

conditions showed strong precision-recall curve scores; 

however, precision dropped as thresholds decreased. 

However, the PR curve of Class 1 was better shaped than the 

models', indicating that the Transformer Model had better 

recall of suspicious activity while being less compromised by 

lower precision. 

vii. Logistic Regression Model 

 

[Fig.10: Logistic Regression Curve] 

viii. ROC Curve Analysis 

The ROC-AUC score for Class 2 (Confirmed Attack) was 

high (~0.96), indicating that the RL proxy model performs 

very well at detecting defined malicious behaviour. The ROC 

AUC for Class 0 (Normal) likewise showed near-perfect 

discrimination for the benign class with an AUC of ~0.99, 

matching the perfect classification seen in the confusion 

matrix. On the contrary, the ROC curve for Class 1 

(Suspicious) was close to the diagonal baseline, with an AUC 

of ~0.50, indicating that the model cannot correctly classify 

ambiguous attacks or less frequently observed attack patterns. 

H. Precision-Recall Curve Analysis 

The PR curve for Class 2 (Attack) remained very strong and 

aligned, indicating the model’s tendency to correctly and 

confidently classify malicious instances. The PR curve for 

Class 0 (Normal) was once again extreme, indicating very 

high reliability and almost no false positives. Unfortunately, 

the PR curve for Class 1 (Suspicious) was nearly flat and low, 

suggesting once again that the model did not correctly capture 

the intermediate class. This also indicates that the model 

likely classified most ambiguous cases as full-blown attacks 

(Class 2), resulting in high recall but low precision. 

I. Comparative Analysis of Model Performance 

To appropriately evaluate the quality of the machine 

learning models (GNN, Transformer, and logistic 

regression), we examined both quantitative and visual 

metrics, including classifier accuracy, confusion matrices, 

per-class precision and recall, F1 Scores, and ROC/Precision-

Recall curves.  

The summary results are shown in Table 6 below. 

Table VI: Model Performance Metrics on WUSTL-

EHMS-2020 Data Set 

Model Accuracy Precision Recall 
F1-

Score 

ROC-

AUC 

GNN 88.66% 0.51 0.47 0.48 ~0.85 

Trans-

Former 
93.50% 0.85 0.74 0.75 ~0.92 

Logistic-

Regression 
92.80% 0.62 0.67 0.64 ~0.90 

J. Graph Neural Network (GNN) 

The GNN model performed well overall, with 88.66% 

accuracy, and performed exceptionally well at detecting the 

Confirmed Attack class (Class 2), as expected. However, 

recall and F1-score were very low for the minority classes, 

particularly for Suspicious traffic (Class 1), indicating that 

GNNs may require more defined graph connectivity to 

appropriately characterise class boundaries in imbalanced 

IoMT data. 

K. Transformer 

The transformer framework and all provided performance 

measures yielded the best results among the three 

alternatives, achieving 93.5% accuracy, a macro F1-value of 

0.75, and an average ROC-AUC of ~0.92, while also 

accommodating high-dimensional contextual variables. The 

transformer model achieved greater accuracy in pinpointing 

both normal and anomalous activities than the other two 

models. Lastly, the model's application of the self-attention 

mechanism produced rational classifications, even with an 

imbalanced dataset, demonstrating some generalisation 

across the three classes of interest. 

L. Logistic Regression 

Despite being a linear, lightweight model, Logistic 

Regression delivered competitive results, achieving 92.80% 

accuracy and a surprisingly high   

AUC (~0.90) for binary 

separability between the 

regular and malicious classes. 
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However, it completely failed to detect Class 1 (Suspicious), 

which is critical in the early-stage threat detection. 

VIII. CONCLUSION AND FUTURE WORK 

In this study, three models (Transformer, GNN, and 

Logistic Regression) for detecting cyberattacks in IoMT 

environments were compared on the WUSTL-EHMS-2020 

dataset. We have a Transformer model that outperformed 

GNN and Logistic Regression models on all metrics explored 

and generalised well to imbalanced, high-dimensional 

biometric and network flow data.  Although Logistic 

Regression demonstrated competitive accuracy and required 

only a small amount of computation, the GNN's performance 

was limited because the dataset lacked a clear topological 

structure. We discussed the value of considering attention-

based architectures, achieving the right data balance, and 

visual interpretability when creating an effective IDS solution 

for IoMT environments.  Future work will involve deploying 

the models for real-time detection and response, expanding to 

consider federated learning, as the context of IoMT suggests 

cross-organizational collaboration, and, following those 

efforts, exploring mechanisms for explainable AI in the 

design of IDS solutions to help clinicians react to these 

detections and build trust. 
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