
International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-1 Issue-5, October 2012 

Retrieval Number: E0279091512/2012©BEIESP 

17 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

 

Abstract— In this paper, we have studied Microcomputer with 

out interlocked pipeline stages instruction format instruction data 

path decoder module function and design theory basend on RISC 

CPUT instruction set. We have also designed instruction fetch(IF) 

module of 32-bit CPU based on RISC CPU instruction set. 

Function of IF module mainly includes fetch instruction and 

latch module address arithmetic module check validity of 

instruction module synchronous control module. Function of IF 

modules are implemented by pipeline and simulated successfully 

on    Xilinx Spartan 3E fpga device Xc3s200..  

Keywords- MIPS, Data Flow, Data Path, Pipeline 

I. INTRODUCTION 

Because memory was expensive in old days, designer of 

instruction  enhanced  complication  of  instruction  to  reduce 

program length. Tendency of complication instruction design 

brought  up  one  traditional  instruction  design  style,  which  

is named “Complex Instruction Set Computer-CISC” 

structure. But  great  disparity  among  instructions  and  low  

universal property  result  in  instruction  realization  difficulty  

and  long running-time  cost.  Comparing  to  CISC,  RISC  

CPU  have more  advantages,  such  as  faster  speed simplified 

structure easier  implementation.  RISC CPU is extensive use 

in embedded system.  Developing CPU with RISC structure is 

necessary choice. 

II. INSTRUCTION SET OF MIPS 

A. MIPS Processor. 

Microcomputer without interlocked  pipeline stages was 

abbreviated as MIPS. It was also informally called as  

Millions  of  instructions  per  second.  MIPS  was  already  

been  pronoun  of  MIPS  instruction  set  and  MIPS  

instruction  set  architecture  

B. MIPS Instruction Set. 

ISA(Instruction  Set  Architecture)  of  processor  is  

composed  of  instruction  set  and  corresponding  registers.  

Program based on same ISA can run on the same 

instruction  set. MIPS instruction has been developed from 

32-bit MIPSI  to  64-bit  MIPSIII  and  MIPSIV  since  it  was  

created.  To assure downward compatibility, every generation 

production. of  MIPS  instruction  directly extends  new  

instruction  based  on  old  instruction  but  not  abnegates  any  

old  instruction,  so MIPS  processor  of  4-bit  instruction  set   

can  execute  32-bit  instruction. All  MIPS  instructions  

are  all  32-bit  specified  nstruction and  instruction  address  

is   

 
Manuscript received on October, 2012.   

 Rama Krishna, ECE Department,JNTUK University/ Kaushik College 

of Engineering/ Visakhapatnam, India. 

B.Venu Gopal, Assoc .Professor, Dept. of ECE, Kaushik College of 

Engineering /visakhapatnam, India.  

word  justification.  MIPS  divides instructions into three 

formats:  immediate  format(I-Format) register  

format(R-Format)  and  jump  format(J-Format)[2].  Three 

instruction format shows as Figure.1.  

Meaning of every instruction field as following: 

 OP: 6-bit operation code;  

 rs: 5-bit source register;  

 rt: 5-bit  temporary  (source/destination)register number  

or branch condition;  

 immediate:  16-bit  immediate,  branch  instruction  offset  

or  address offset;  

 destination: 26-bit destination address of  conditional 

jump;  

 rd: 5-bit destination register number;  

 shamt: 5-bit shift offset;  

 funct: 6-bit function field;  

 

R-type Format: 

Opcode rs rt rd Shift 

amt 

Function 

6-bits 5-bits 5-bits 5-bits 5-bits 6-bits 

I-type Format: 

Opcode rs rt Address 

6-bits 5-bits 5-bits 16-bits 

J-type Format: 

Opcode Destination 

5-bits 26-bits 

Figure 1:MIPS Instruction format. 

MIPS instruction decoder or  MIPS instruction  execution is 

very  high  performance  because  of  three  type  format  with 

given length. Several simple MIPS instructions can 

accomplish complicated operation by complier [3]. 

III. DATA FLOW 

Data  flow  is  determined  by  hardware  data  path,  which  

express  data  flow  process.  There  is  no  clear  difference 

between  data  and  control.  Operation  code operand memory  

address  and  value register  address  and  value jump 

destination address and content are usually included in data,  

but  control  composes  of  control  signal  of  unit time 

sequence  control  signal  and  interrupt  control  signal,  and 

these signals are not always defined clearly and strictly. 

A. R-Format Data Path 

In  R-Format  data  path,  fetch  instruction  from  memory  

and  analyze  instruction  into  different  parts.  Two  register 

specified by instruction fetch data from register file and ALU 

execute  instruction  command.  Finally,  after  ALU  outputs 

answer  write  the  answer  to  

register  file.  Figure.  2  shows  

R-Format data path. 

Design and Analysis of 32-bit RISC Processor 

Based on MIPS 

Rama Krishna V, Venu Gopal B 



 

Design and Analysis of 32-bit RISC Processor Based on MIPS 

 

Retrieval Number: E0279091512/2012©BEIESP 

18 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

For  example,  ADD  R1,R2,R3  instruction,  which  is  

add signed  word  instruction(R1=  R2+  R3).  Data  flow  of  

this instruction  shows  as  following:  PC  fetches  ADD  

R1,R2,R3 instruction from memory. At first, the instruction 

access two registers  R2  and  R3  and  value  of  the  two  

register  is  put  to ALU. After arithmetic is over, ALU write 

back result to R1 register. And then, data flow is in the end. 

 

 
Figure. 2  R-Format Instruction Data Path 

 

For  another  example,  SRL  R1,R2,R3  instruction,  

which  is  shift  word  right  logical  instruction.  Data  flow  

of  this  instruction  shows  as  below:  PC  fetches  SRL  

R1,R2,R3 instruction from memory. At first, the instruction 

access two register  R2  and  R3  and  value  of  the  two  

register  is  put  to ALU. After arithmetic is over, ALU write 

back answer to R1 register, And then, data flow is in the 

end. 

B. RI-Format Data Path 

 

 
Figure. 3  RI-Format Instruction Data Path 

 

RI-Format instruction is similar to R-Format  

instruction[4].  The  difference  between  them  is  that  the 

second  read  register  of  R-format  instruction  is  replaced   

by immediate of RI-Format instruction. The immediate is 

32-bit signed number which is extend by 20-bit number, and 

put to ALU as the second operand.  Finally, write-back result 

to register file. RI-Format data path shows as Figure. 3. 

Format includes ADDI R1, R2, data6 instruction SUBI R1, 

R2, data6 instruction etc. When  ADDI  R1,  R2,  data6  

instruction  executes,  PC fetches  ADDI  R1,  R2  data6  

instruction  from  memory  and register  R2  value  is  put  to  

ALU.  At  the  same  time, immediate data6 is extended to 

32-bit signed number and put to  ALU  Finally,  after  ALU  

completes  add  of  the  two operands,  ALU  writes  back  

answer  to  R1  register.  The difference  data  flow  between  

SUB  R1,R2  data6  instruction and  ADD  R1,R2,data6  

instruction  is  that  the  former instruction do subtraction. 

C. Load Word Data Path 

Load word data path is similar to I-Format data path. The 

difference between the two data path is that result is written to 

memory in load word data but result is written to register in 

I-Format. In load word data path, fetch data from memory and  

load  it  to  register  file.  Load  word  data  path  shows  as  

Figure. 4. LW R1, R2, data6 instruction is the only one 

instruction in  load  word  data  path.  It  works  shows  as  

below:  PC  fetch LW R1, R2, data6 instruction from memory. 

R1 register is to load data. Firstly send R2 register value to 

ALU, at the same time,  extend data6 immediate to 32-bit  and  

send  it to  ALU. The answer of adding the two numbers is 

memory address And then, copy content of the memory 

address to R1 register.   

 
Figure. 4  Load Word Data Path 

D.  Memory Word Data Path 

Memory word data path is similar to load word data path, 

but  target  which  register  is  to  write  is  memory  but  not 

register file.  There is only SW R1, R2, data6 instruction in 

load word instruction.  PC  fetches  SW  R1,  R2,  data6  

instruction  from memory. R1 register stores data which is to 

be stored. Firstly, send  R2  register  value  to  ALU,  at  the  

same  time,  extend data6 immediate to 32-bit and send it to 

ALU. The result of adding  the  two  numbers  is  memory  

address.  Memory instruction data path shows as Figure. 5.   

 
Figure. 5  Memory Instruction Data Path 

E. Register Jump Data Path 

In  register  jump  data  path,  one  register  compares  to  0. 

When  jump  instruction  is  jump  if  zero  instruction  and 

register value is 0, the second register value loads to program 

counter.  When  jump  instruction  is  jump  if  zero  instruction 

and value in register is not 0, the next program counter value 

is  loaded  and  instruction  execution  continues.  Jump  if  not 

zero  instruction is  similar. Figure.  6 shows  jump  instruction 

data path. 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-1 Issue-5, October 2012 

Retrieval Number: E0279091512/2012©BEIESP 

19 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

 
Figure. 6  Jump Instruction Data Path 

Register jump  instruction  includes  two  instructions:  BZ 

R1, R2 instruction and BNZ R1, R2 instruction. BZ R1, R2 

instruction expresses if it is equal to constant 0 jump. Program 

counter fetches BZ R1, R2 instruction from memory, and 

instruction accesses R1 register and R2 register. And  then,  

send  value  of  the  two  registers  to  branch  unit. Branch  unit  

judges  whether  R1  value  is  equal  to  0. If  R1 value  is  

equal  0,  send  value  of  register  R2  to  program counter. If  

R1  value is  not equal  0, PC adds 1 and program continues 

executing orderly. BNZ  R1,  R2  instruction  expresses  if  it  

is  not  equal  to constant 0 then jump. Program counter 

fetches BNZ R1, R2 instruction from memory, and instruction 

accesses R1 register and R2 register.  And then, send value of 

the two registers to branch unit. Branch unit judges whether 

R1 value is equal to 0. If R1 value is not equal 0, send value of 

register R2 to program counter. If R1 value is equal 0, PC 

adds 1 and  

Program continues executing in sequence. 

IV. PIPELINE DESIGN 

Pipeline decomposition enhances throughput rate of 

instruction.  Clock cycle is decided by the slowest stage 

running time. In general words, pipeline includes five stages: 

instruction fetch (IF) instruction decoder (ID) execution 

(EXE) memory/ IO(MEM) write-back(WB).  
 

A. Instruction Fetch (IF) Instruction  fetch (IF)   

stage  is  request  for  instruction which is fetched from 

memory. Main component of IF stage shows  as  Figure.  7.  

Instruction  and  PC  is  memorized  in IF/ID  pipeline  register  

as  temporary  memory  for  next  clock cycle. Helpful Hints 

 
Figure. 7 IF Stage 

IF stage mainly depends on program counter(PC) current  

value. CPU fetches  instruction from  ROM based on PC value  

and PC adds 1 automatically. Finally, send all these 

information to IF/ID pipeline register to decoder. 

B.  Instruction Decoder( ID) 

ID  stage  sends  control  command  to  other  units of 

processor based on decode of instruction. Figure. 8 shows ID 

stage structure. Instruction is sent to control unit and decoded 

here.  Read register  fetches  data  from  register  file.  Branch 

unit is also included in ID stage. Input  of  ID  stage  is  from  

IF  stage.  ID  stage  decodes instruction  to  control  signals  

and  prepared  operand.  For example,  if  instruction  is  

I-Format  instruction,  extend immediate  to  32-bit  data  and  

access  register  file.  If instruction is J-Format instruction, 

EXE stage comes after branch unit process completes. 

 
Figure. 8  ID  Stage 

C.  Execution (EXE) 

EXE stage executes arithmetic. Main component of EXE 

stage is ALU. Arithmetic logic unit and shift-register 

compose of ALU. Figure. 9 shows EXE stage structure. 

Function of EXE stage is to do operation of instruction, such 

as add and subtraction. ALU sends result to EX/MEM 

pipeline register before entering MEM stage.  

 
Figure. 9  EXE  Stage 

D.  Memory and IO (MEM)  

Function  of  MEM  stage  is  to  fetch  data  from  memory and 

store  data  to  memory.  Another  function  is to input  data to 

processor  and  output  data.  If  instruction  is  not  memory 

instruction  or  IO  instruction,  result  is  sent  to  WB  stage. 

MEM stage structure shows as Figure. 10. 

 
Figure. 10 MEM  Stage 

Storing  data  in  register  is  main  function  after  result  is 

calculated. Some result may be not stored in RAM definitely, 

and some  result  can  be  written  to  register  directly. Give  an 

example, some temporary variable is not memorized in RAM 

because  of  low  execution  

efficiency. However,  some 

data must  be  stored  in  RAM.  



 

Design and Analysis of 32-bit RISC Processor Based on MIPS 

 

Retrieval Number: E0279091512/2012©BEIESP 

20 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Memory data in  RAM  or  register depending on  demands in 

MEM stage. There is a data copy in MEM/WB pipeline 

register. 

E.  Write-Back (WB) 

WB stage charges of writing result、store data and input 

data to register file. The purpose of WB stage is to write data 

to destination register. For example,  ADD  R1,  R2,  R3 

instruction memories  result  in  R1  register  to  make program 

run faster. Figure. 11 shows WB unit instruction. 

 
Figure. 11 WB Stage 

 

V. INSTRUCTION  FETCH  STAGE  DESIGN 

A.  Function Statement. 

Function of instruction fetch(IF) stage shows as below:  

1) Fetch  instruction  and  latch.  Fetch  instruction  from 

instruction  register  depending  on  PC  value  and  send  

the instruction to IF/ID pipeline register to latch.  

 2) Address  arithmetic.  Based  on  value  of  sel[3..0]  in 

pcselector,  select  next  value  of  PC  from  four  address  

jump sources.  These    address  jump  sources  are  incPC 

branchPC retiPC and retPC . 

 If  instruction  in WB  stage  of  pipeline  is  jump  

instruction  or successful  branch  instruction,  select 

branchPC  value  and destination  address  of  program  

jump  acts  as  address  arithmetic result;   

 If instruction is not jump instruction or fail branch 

instruction, PC  adds  1  automatically  and  points  to  

next  instruction  in instruction register;  

 If  instruction  is  interrupt-return  instruction,  select  

retiPC value;  

 If  instruction  is  subprogram  return  instruction,  

select retPC value. 

3) Check  validity  of  instruction.  Check  operation  code 

and function code validity based on definition of 

instruction set. If instruction is wrong, an exception is 

thrown.  

4) Synchronous  control.  Use  CLK  to  control synchronous 

of external sign.. 

B.  Module and Implementation 

 IF stage includes five modules:  incPC、lpm_rom0 progc 

pcselector  and  ifid.  Figure. 12 shows connection of each 

module.  

Their function shows as below: 

 incPC: PC adds 1 automatically. PC points to address of   

next instruction; 

  lpm_rom0: application store program; 

 progc: program counter; 

 pcselector: control next instruction selection; 

 ifid: pipeline latch. 

Every module uses VHDL to describe. Input signal of IF 

stage includes  branchPC , retPC, retiPC, sel clk ifid_flush, 

ifid_enable and pc_enable. Their function shows as below: 

 branchPC: jump address of branch signal 

 retPC: subprogram return address signal 

 retiPC: interrupt return address signal 

 sel : selection signal from pcselector in EXE stage 

 clk: clock signal 

 ifid_flush: data signal 

  ifid_enable、pc_enable: control signal 

 Output signal of IF stage includes ins[31..0] 

 pcvelue[31..0],insOut[31..0]and pcout[31..0]. Their 

function shows as below: 

 ins[31..0]: instruction code fetch from instruction 

register; 

 pcvelue[31..0]: PC value in IF stage; 

 insOut[31..0]: instruction code which is to sent to next 

stage  and comes from pipeline register ifid; 

 pcout[31..0]: program counter value. 

Module Implementation shows as below:  

1)   pcselector  module.  Input  port  includes nextpc[31..0] 

branchpc[31..0] 、 retpc[31..0] 、 retipc[31..0]  and 

sel[3..0].  Output port includes newpc[31..0]. Select data  

from  four  source  data  as next instruction address 

determined by sel[3..0]. The four source data are 

nextpc[31..0] 、 branchpc[31..0] 、 retpc[31..0] and 

retipc[31..0]. 

Input signal  are  nextPC, branchPC, retPC, retiPC  and  sel.  

Output  signal  are  newPC.  Function  of  input  signal shows 

as below:  

�  nextPC: next instruction address;  

�  branchPC: address of branch jump signal;  

�  retPC: subprogram return address signal;  

�  retiPC: interrupt return address signal;  

�  sel: selector signal.  

Time sequence simulation waveform of pcselector Input 

different address  sign  into  nextpc、branchpc、retpc retipc 

ports, and newpc selects one of the four input signal to output 

depending on value in sel[3..0]. 

Figure. 13 pcselector Stage Simulation Waveform 

2)   progc module. Input port includes pcin[31..0]、clk and 

enable. Output port includes pcout[31..0]. The function 

of the  module  is  to  communicate  with  instruction  

memory. When positive clock edge comes, send value of 

address bus pcin[31..0] to instruction memory and fetch 

next instruction from  ins[31..0].  ins[31..0]  is  output  of  

instruction  memory. Send instruction out when negative 

clock  edge  comes.  

3)   incPC  module.  Input  port  includes  pcin[31..0]  and 

output  port  includes  pcout[31..0].  The  function  of 

incPC module is to PC add 

1 and the new PC cat as one 

optional value.  



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-1 Issue-5, October 2012 

Retrieval Number: E0279091512/2012©BEIESP 

21 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

When negative clock sign comes, PC value is sent to 

pcselector  module.  Figure.  15  shows  incPC  module  

entity structure  and  RTL  structure.  Figure.  16  shows  

simulation waveform of incPC module. We can know 

pcIn value adds 1 and send result to pcVal from 

waveform. 

Device Utilization Summary (estimated values) [-] 

Logic Utilization Used Available Utilization 

Number of Slices 1118 4656 24% 

Number of Slice Flip Flops 514 9312 5% 

Number of 4 input LUTs 1951 9312 20% 

Number of bonded IOBs 256 190 134% 

Number of GCLKs 1 24 4% 

 

Figure. 15 Device Utilization Summary 

 
 

Figure. 16 incPC Module Simulation Waveform 
 

 
 

Figure.17 RTL Schematic 

4)   Lpm_rom0 module.  Input  port  includes  address[5..0] 

and  inclock.  Output  port  includes  q[31..0].  Function 

of  the module  is  to  memory  program  machine  code.  

Access memory location  which  is  specified  by  address  

bus address[5..0], moreover, fetch next instruction from 

memory and send out the instruction by instruction bus 

q[31..0]. 

 lpm_rom0  module  can  be  implemented  EAB  of FPGA by 

calling macro function module. Adopt lpm_rom structure 

in  macro  function  library  to  realize  the  module.  

Parameter configuration  is  that  address  bus  address  is  

6-bit and  output bus  q  is  32-bit. Process of  lpm_rom0  

is  described  as  following:  when  positive  inclock  edge  

comes,  latch  address[5..0]  and  ouput  the  data  pointed  

by  value  of address[5..0]  to  output  port  q[31..0].  Set  

up  data  in lpm_rom0  by  memory  initialization  file  

(.mif),  or  edit、update  and  reload  data  on  debugging  

by  system  memory editor tool.  

5)   ifid module. Input port includes pcin[31..0] 、 

insin[31..0] 、clkid_flush  and  ifid_enable.  Output  port 

includes  pcout[31..0]  and  insout[31..0].  Function of  

ifid  is to latch PC and instr of Statge1 and send them to 

next stage. Time sequence simulation waveform of  Ifid  

module shows as Figure. 17. We can see fact that when 

ifid_enalbe is high  level  and  id_flush  is  low  level,  

data  are  not relative  in pipeline. When positive edge of 

clk comes, values of insOutand  pcOut  are  same  to  

insIn  and  pcIn  respectively; When ifid_enable and 

id_flush are all high level, data is relative in pipeline.  

When  positive  edge  of  clk  comes,  insOut  changes to  

“0000H”,  but  pcOut  maintains  its  original  value ;  

After  pipeline  conflicts,  insOut  and  pcOut  returns  to  

normal working  state;  if  ifid_enable  is  low  level,  

pipeline  stops working and insOut and pcOut maintain 

its original state. 

VI. CONCLUSION 

In  this  research,  we  adopt  top-down  design  method  and 

use VHDL to describe system. At first, we design the system 

from the top, and do in-depth design gradually. The structure 

and hierarchical of design is very clear. It is easy to edit and 

debug. Design of instruction fetch (IF) stage simulates 

integrate  and routes on Spartan 3E fpga.  The result indicates  

IF stage completes prospective function.  

REFERENCES 

1. Bai-ZhongYing, Computer Organization, Science Press, 2000.11.  

2. Wang-AiYing,  Organization  and  Structure  of  Computer,    

Tsinghua University Press, 2006.  

3. Wang-YuanZhen,  IBM-PC  Macro  Asm  Program,  Huazhong 

University of Science and Technology Press, 1996.9.  

4. MIPS  Technologies,  Inc.  MIPS32™  Architecture  For  

Programmers Volume II: The MIPS32™ Instruction Set，June 9, 

2003.  

5. Zheng-WeiMin,  Tang-ZhiZhong.  Computer  System  Structure  

(The second edition), Tsinghua University Press,2006.  

6. Pan-Song, Huang-JiYe, SOPC Technology Utility Tutorial , 

Tsinghua University Press,2006.  

7. MIPS32  4KTMProcessor  Core  Family  Software  User's  Manual  , 

MIPS Technologies Inc.  

8. Mo-JianKun,  Gao-JianSheng,Computer  Organization,  Huazhong 

University of Science and Technology Press, 1996.  

9. Zhang-XiuJuan, Chen-XinHua, EDA Design and emulation 

Practice [M]. BeiJing, Engine Industry Press. 2003.   

10. "IEEE Standard of Binary Floating-Point Arithmetic” IEEE 

Standard754, IEEE Computer Society, 1985.  

11. Yi-Kui, Ding-YueHua, Application of AMCCS5933 Controller in 

PCI BUS, DCABES2007, 

2007.7. 

file:///C:/Users/Shiv%20kumar/Downloads/%3f&ExpandedTable=DeviceUtilizationSummary(estimatedvalues)

