
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-2 Issue-4, March 2013

130

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: D0546032413/13©BEIESP

Journal Website: www.ijitee.org

A Server Side Solution for Protection of Web

Applications from Cross-Site Scripting Attacks

A. Duraisamy, M.Sathiyamoorthy, S.Chandrasekar

Abstract — Cross-Site scripting attacks occur when accessing

information in intermediate trusted sites. Cross-Site Scripting

(XSS) is one of the major problems of any Web application. Web

browsers are used in the execution of commands in web pages to

enable dynamic Web pages attackers to make use of this feature

and to enforce the execution of malicious code in a user’s Web

browser. This paper describes the possibilities to filter JavaScript

in Web applications in server side protection. Server side solution

effectively protects against information leakage from the user’s

environment. Cross-Site scripting attacks are easy to execute, but

difficult to detect and prevent. The flexibility of HTML encoding

techniques, offers the attacker many possibilities for

circumventing server-side input filters that should prevent

malicious scripts from being injected into trusted sites. Cross site

scripting (XSS) attacks are currently the most exploited security

problems in modern web applications. These attacks make use of

vulnerabilities in the code of web-applications, resulting in

serious consequences, such as theft of cookies, passwords and

other personal credentials. It is caused by scripts, which do not

sanitize user input.

Keywords-Web Application; Cross Site Scripting; Server Side

Solution; Detection of XSS Attacks, XSS Filter, HTML Input

Filter

I. INTRODUCTION

Cross Site Scripting (XSS), is the most widespread and

harmful web application security issue. It was first noticed,

when CERT (Computer Emergency Response Team)

published an advisory on newly identified security

vulnerability affecting all web applications. This flaw occur

whenever a web application takes data that originated from a

user and sends it to a web browser without first validating or

encoding that content. XSS is used to allow attackers to

execute script in the victim’s browser, which can hijack user

sessions, deface web sites, insert hostile content, and

conduct phishing attacks. Any scripting language supported

by the victim’s browser can also be a potential target for this

attack. Web based applications are accessed using Web

based communication protocols and use Web browsers as

graphical user interface. Many number of Web applications

make use of either basic HTTP or higher level protocols

based on HTTP such as SOAP. The Web browser is used as

graphical user interface (GUI); these applications must

provide HTML data for the browsers to be displayed to the

users.

Manuscript published on 30 March 2013.
*Correspondence Author(s)

A.Duraisamy, Department of Information Technology, University College
of Engineering, Tindivanam (T.N), India.

M.Sathiyamoorthy, Department of Information Technology, University

College of Engineering, Tindivanam (T.N), India.
S.Chandrasekar, Department of Information Technology, University

College of Engineering, Tindivanam (T.N), India.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

In earlier only static HTML Web pages has been used, but

quickly applications have been developed that generated the

HTML code dynamically. To provide more flexibility in the

HTML display and to reduce round-trip delays, browsers

offered the possibility to insert program code into the

HTML document that is read and executed on the fly by an

interpreter integrated into the browser. Java Script code may

not be mixed up with Java Server Pages (JSP); JSP code is

executed at the server side and not at the client browser. The

Java Applets is a different client side technology that allows

the download and execution of Java applications to and at

the client machine. The java Applets normally does not

directly manipulate the browser or HTML document.

Cross-site scripting (XSS) [15] continuously leads the

most wide-spread Web application vulnerabilities lists.

Estimates in [21] suggest that 87 percent of all current Web

sites are vulnerable to XSS. Even though, not even Google

search is spared from such attacks. With XSS vulnerability

in Google’s online spreadsheet application [5] it was

possible to steal a user’s cookie (which was valid for all of

google.com’s subdomains, e.g., mail.google.com,

code.google.com, spreadsheets.google.com). Frequently

online banking applications, which make a very attractive

target for XSS in order to set up phishing sites, are

vulnerable to XSS, as has been demonstrated by Phishmarkt

[1, 2]. Technically, XSS attacks leverage insufficient

input/output validation in the attacked Web application to

inject JavaScript code, which is then executed on the

victim’s machine within the exploited Web site’s context,

thus bypassing the same origin policy. The attacker can craft

the injected script such, that it discloses the victim’s

confidential information, e.g., a session ID. Then, by

hijacking the session, the victim can be impersonated. Also,

XSS enables the construction of very powerful phishing

pages, since the page content is actually delivered by the

correct, trusted site. The HTML document is scanned by the

browser for the presence of JavaScript code. The code will

be read and executed by the browser without displaying to

the user. JavaScript code is written using several HTML

markups as follows: JavaScript code is enclosed by start and

end script tags.

 <script> alert(‘XSS’)</script>

JavaScript code is indicated by a protocol specifier as

follows:

 javascript:alert(‘XSS’);

JavaScript code allows functions that are not executed

directly and can be called later on. These function

definitions occur anywhere in JavaScript section. The code

parts are placed in separate files to provide code

modularization.It can be loaded using optional src parameter

as shown in following example.

http://www.ijitee.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Server Side Solution for Protection of Web Applications from Cross-Site Scripting Attacks

131

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: D0546032413/13©BEIESP

Journal Website: www.ijitee.org

 <script src=”Js-lib.Js”></script>

Uniform resource locator (URL) is used to load the script

code by the web browser. Statements within function

definitions are executed only when the function is called,

while the normal statements are executed directly. Every

HTML tag supports special parameters that allow JavaScript

functions to be called automatically if specific events occur

such as initial load of the document, as shown in example:

 <body onload=“Body_Execute()”> … </body>

 The above function Body_Execute() is called in JavaScript

environments when the page containing the tag is loaded.

Some other examples of event related parameters are:

• onClick for the HTML tags button, checkbox,

radio, reset, submit

• onChange for the HTML tags select, text, text area,

text field

• onSubmit for the HTML tag Submit button, reset

button within a form environment

• onMouseOver for any HTML tag and script tag.

Cross Site Scripting

The possible ways to manipulate HTML documents

displayed by the browser with JavaScript or to influence the

operation of the browser itself are dangerous features if

misused. Some time, unfortunately JavaScript code provides

full access to HTML documents using the document object

model (DOM). A script code can modify at least the

document it is residing in arbitrarily: it is also possible to

completely delete the document and create a totally different

document. Any attacker’s point of view two things are of

special interest: cookies associated to a document and access

credentials, JavaScript also provide access possibilities to

this information. A document can be accessed using the

function call document1.cookie1 and application level

access credentials are often acquired using form based login.

The credentials data are input into input fields residing in a

form environment, since the form is part of the document a

script can access all information in all fields or can simply

modify the target URL of the form, and then the credentials

are sent to the new target, which is under the control of the

attacker.

These above few example shows, that JavaScript’s native

function provides all possibilities for attackers, if malicious

script code can be inserted into a HTML document. To

detect and prevent that script code contained in a document

loaded from some Web site accesses documents loaded from

some other Web site, browsers do not allow access between

documents loaded from different sites (i.e. cross-site

access). Generally there are two types of Cross-Site

Scripting attacks are available:

• Stored or Persistent Cross Site Scripting attacks

• Reflected or non persistent Cross Site Scripting

attacks

 1. Stored XSS Attacks

Persistent or Stored Cross-Site Scripting flaws are those

where some data sent to the server is stored to be used in the

creation of pages that will be served to other users later.

This type of Cross-Site Scripting flaws can affect any user

to our website, if our site is subject to Persistent Cross-Site

Scripting vulnerability. One of the familiar examples of

persistent or stored vulnerability is content management

software such as forums and bulletin boards where users are

allowed to use raw HTML and XHTML to format their

posts. Preventing reflected flaws, the key to securing our

web site against stored flaws is ensuring that all submitted

data is translated to display entities before display so that it

will not be interpreted by the browser as code.

An unprotected site providing a forum where users must

identify with user name and password is the ideal

environment for stored Cross-Site Scripting attacks. In case

of forums where cookies are used to provide successful

authentication, then the attack is performed as follows:

<SCRIPT>document.location(’http://evil.org/steal.cgi?c

=+escape(document.cookie);’)</SCRIPT>

2. Reflected XSS Attacks

It is the most familiar type of Cross-Site Scripting exploit. It

targets vulnerabilities that occur in some websites which

deals with dynamic result generation. An attack is successful

if it can send code to the server that is included in the Web

page results sent back to the browser, and when those results

are sent the code is not encoded using HTML special

character encoding, thus being interpreted by the browser

rather than being displayed as inert visible text. The attack

can be done by using a link using a malformed URL, such

that a variable passed in a URL to be displayed on the page

contains malicious code. Another Uniform Resource

Locator (URL) used by the server-side code to produce links

on the page, can also become a vulnerability employed in a

reflected Cross-Site Scripting flaws. If the username

parameter of the login page is vulnerable, then the attacker

can setup an attack URL with a script that rewrites the

action target which presets the username in the form as

shown below:

<SCRIPT>document.forms.action=’http://evil1.org/steal.cgi

?c=+escape (document.cookie) ;’< /SCRIPT>

This attack mainly involves a link which contains

malicious code in the variable passed in URL.

Vulnerabilities may be the URL used by the server-side

code to produce links on the page, or may be even a user’s

name to be included in the text page so that the user can be

greeted by name, can become a vulnerability employed in a

reflected cross-site scripting exploit.

Impact of XSS-Attack

▪ Access to authentication credentials for Web

application

▪ Cookies, Username and Password

o XSS is not a harmless flaw

▪ Normal users

o Access to personal data (Credit card, Bank

Account)

o Misuse account (order expensive goods)

▪ Denial-of-Service

o Crash Users `Browser, Pop-Up-Flooding,

Redirection Access to Users` machine

o Use ActiveX objects to control machine

o Upload local data to attacker’s machine

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-2 Issue-4, March 2013

132

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: D0546032413/13©BEIESP

Journal Website: www.ijitee.org

▪ Spoil public image of company

o Load main frame content from other

locations

o Redirect to dialler download

Reflected or non persistent XSS detection by

request/response pattern matching

This detection mechanism for reflected XSS attacks is

based on the observation that reflected XSS implies a direct

relationship between the input data (e.g., HTML parameters)

and the injected script. The injected script is fully contained

both in the HTTP request and the HTTP response. Reflected

XSS attacks should be detectable by simply matching

incoming data and outgoing JavaScript using an appropriate

similarity metric using pattern matching techniques. It is to

emphasize that we match the incoming data only against

script code found in HTML with predefined white list

parameter. Non-script HTML content is ignored, the sake of

readability we will uses the term parameters as a generalized

term for all user-provided data in the sequel.

We can define the problem definition to be solved as

follows:

Problem Definition

Given a set of parameters P = {p1, p2… pm} and a set of

scripts S = {s1, s2… sn} find all matches between P and S in

which pi was used to define parts of sj.

In this paper, we present a novel approach to protect users

against XSS attacks that offers the same level of protection

as previous work, but without the necessity for client-side

modifications. To avoid the disadvantage of involving the

end-user, we position a Web browser on a reverse proxy and

XSS filter before the server. Our idea is based upon the fact

that a Web browser on the client’s machine is the ultimate

receiver of JavaScript code, and a straightedge for script

interpretation capabilities. By utilizing a Web browser, we

are able to distinguish between benign and injected Java

Script code. First, we encode all benign JavaScript calls to

syntactically invalid identifiers. Second, we load each

requested page in the Web browser attached to the reverse

proxy and XSS filter, and watch out for scripts trying to

execute. Clearly, all remaining scripts have not been

encoded before hand, and not expected, benign scripts, but

injected, malicious ones. Third, after verifying that there is

indeed no (malicious) script in the page, we decode all

previously generated script IDs to restore the original code,

and deliver the page to the client.

This paper is summarized as following contributions:

1. We introduce XSS filter, a solution for mitigating XSS

attacks, by utilizing a Web browser in order to detect

malicious JavaScript content.

2. We introduce HTML Input filter for analyses incoming

HTTP request and outgoing HTTP response without

any harmful java script.

3. In contrast to previously proposed solutions, our server

side solution does not require client-side modifications.

Thus, each Web site can be protected from XSS flaws

transparently for its visitors.

4. We describe our implementation of “A Server Side

Solution for Protection of Web applications from Cross

site scripting attacks”, and demonstrate its efficiency in

successfully detecting and preventing authentic attacks

on two popular Web application’s XSS vulnerabilities.

II. RELATED WORK

A. Server Side Solution:

The cross site scripting vulnerabilities in Web

applications, a number of testing tools has been proposed

earlier. There are two types of testing tool such as, Black-

box [4] Web application testing tools as well as white-box

[6] vulnerability scanners have been suggested in previous

research, and are successfully used in real time practice.

This kind of tools can generally help in identifying cross site

scripting vulnerabilities, it is likely that some remain

undetected, which clearly recommends additional

safeguards for web application. Such kind of tool also, the

owner of a Web site running a third party Web application

to fix the identified bugs, requires the commitment of the

developers of the Web application, which often have other

priorities that seem more economically rewarding. In [1], an

application-level firewall is suggested, which is located on a

security gateway between server and client, and which

applies all security relevant checks and transformations. By

separating the security relevant part of the code from the rest

of the application, as well as providing a specialized

Security Policy Description Language to design it, the

system helps Web developers to apply measures against

XSS in a less error prone fashion. Comparably to this work,

we also use a reverse Web proxy to implement XSS

mitigation strategies. However, while the security gateway

operates on the incoming requests, our reverse proxy

inspects the server’s replies. This is preferable because it

protects visitors of the page even if an attacker found a way

to inject his malicious content in spite of the security

gateway’s checks. Additionally, by using an actual Web

browser in order to identify scripts instead of a complex

policy that targets various kinds of sanitization , our

approach asks less from Web masters who wish to deploy it,

and leaves less room for mistakes. Scott and Sharp [1]

describe a web proxy that is located between the users and

the web application, and that makes sure that a web

application adheres to pre written security policies. The

main categories of such policy based approaches are that the

creation and management of security policies is a tedious

and error-prone task. Similar to [1], there exists a

commercial product called AppShield, which is a web

application firewall proxy that apparently does not need

security policies. Furthermore,[1] reports that AppShield is a

plug and play application that can only do simple checks

and thus, can only provide limited protection because of the

lack of any security policies.

B. Client-side solution:

Complementary to mitigating XSS on the server-side,

there are several client-side solutions. In [5], a strictly client-

side mechanism for detecting malicious Java Scripts is

proposed. The system consists of a browser-embedded script

auditing component, and IDS that processes the audit logs

and compares them to signatures of known malicious

behavior or attacks. With this system, it is possible to detect

various kinds of malicious scripts, not only

XSS attacks.

http://www.ijitee.org/

A Server Side Solution for Protection of Web Applications from Cross-Site Scripting Attacks

133

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: D0546032413/13©BEIESP

Journal Website: www.ijitee.org

However, for each type of attack a signature must be

crafted, meaning that the system is defeated by original

attacks not anticipated by the signature authors. Client side

cross site scripting protection (Noxes Tool) [3] is a client-

side Web-proxy that relays all Web traffic and serves as an

application-level firewall. The approach works without

attack-specific signatures. However, as opposed to SWAP

[2], Noxes requires user-specific configuration (firewall

rules), as well as user interaction when a suspicious event

occurs.

The main difference of our approach with respect to

existing solutions [2] is that it is a Server-side solution. The

solutions presented server-side that aim to protect specific

web applications. Huang [7] describe the use of a number of

software-testing techniques and suggest mechanisms for

applying these techniques to web applications. The main

aim is to cover and fix web vulnerabilities such as XSS. The

researches Engin Kirda et al [8] and O.Ismail et al [9]

provided a client side solution that fully relies on the user’s

configuration and number of researches have proven that

client side solution is not reliable.

Another client-side approach is presented in [14], which

aims to identify information leakage using tainting of input

data in the browser. All client-side solutions share one

drawback: The necessity to install updates or additional

components on each user’s workstation. While this might be

a realistic precondition for skilled, security-aware computer

users, it is perceived as an obstacle or is not even considered

by the vast majority of users. Thus, the level of protection

such a system can offer is severely limited in practice. Pixy

[11] performs tainted data flow analysis using flow-

sensitive, inter procedural, context-sensitive data flow

analysis and checks if user input is used at a target statement

without any input validation. Web Static Approximation

[20] uses a static string analysis technique to approximate

possible string output for variables in a web application and

checks if the approximated string output is disjoint with

unsafe strings defined in a specification file. If the

approximate string output is disjoint with the unsafe strings,

Web Static Approximation reports that the application is not

vulnerable.

C. Hybrid mitigation approaches:

Some solutions apply hybrid approaches, which also

involve the Web browser. The server annotates the delivered

content and provides information on the legitimacy or level

of privileges of scripts. The Web browser is then responsible

for checking and enforcing these annotations. BEEP

(Browser-Enforced Embedded Policies) [13] proposes to use

a modified browser that hooks all script execution attempts,

and checks them against a policy, which must be provided

by the server. Two kinds of policies are suggested. First,

using a white list of the hashes of all allowed scripts, which

the browser can check against. Second, labeling those nodes

in the HTML source, which are supposed to contain user-

provided content, so the browser can determine whether a

script’s position in the DOM tree is within user-provided

content. The modified browser verifies each script with

respect to the policy and prohibits scripts from execution

that do not comply. Wes Masri and Andy Podgurski have

stated [16] that information flow based work will increase

the false positives and it is not an indicative strength if the

information flow is high. There are validation mechanisms

[17] and scanners proposed to prevent XSS vulnerabilities

[18]. Some software engineering approaches are also

proposed such as WAVES for security assessment. However

none of the solutions are not built for the latest

developments and would fail if tags are permitted in the web

applications. Jayamsakthi et al. [18] provided solutions

based on financial and non financial applications but this

does not cater for the XSS attacks emerge from various

interfaces.

In Nonce spaces [12], the authors propose to use

randomized XML namespaces in order to partition the

content into different trust classes. The client is responsible

for interpreting the namespaces and restricting the content’s

rights according to a policy that is provided alongside the

Web site. The owner of the site can assign the desired trust

levels via XPath expressions, and thus, disallow JavaScript

code in HTML sub trees that are supposed to contain user

contributed content. The mentioned hybrid mitigation

techniques offer the most powerful features and the best

ratio between parameterization costs and level of protection.

However, they share the same drawback as the strictly

client-based solutions: The requirement to being deployed

on user’s machines.

Our solution is similar to BEEP [13] and Nonce spaces in

that we use a server-provided specification of legitimate

JavaScript content and detect when a script has been

injected. However, our solution performs all XSS mitigation

functionality on the server-side. It therefore does not require

any client-side modifications, and can be applied

transparently, without the user even being aware of it. We

focus in this paper on the specific case of Cross-Site

Scripting attacks against the security of web applications in

Server side. This attack relays on the injection of a

malicious code into a web application, in order to

compromise the trust relationship between a user and the

web application’s site. If the vulnerability is successfully

exploited, the malicious user who injected the code may

then bypass, for instance, those controls that guarantee the

privacy of its users, or even the integrity of the application

itself.

Our contribution of this paper on the specific case of

Cross-Site Scripting attacks against the security of web

applications in browser side. This attack relays on the

injection of a malicious code into a web application, in order

to compromise the trust relationship between a user and the

web application’s site. If the vulnerability is successfully

exploited, the malicious user who injected the code may

then bypass, for instance, those controls that guarantee the

privacy of its users, or even the integrity of the application

itself. The main contribution of this paper is that it is the

Server-Side Solution that provides Cross Site Scripting

protection effectively without relying on web application

providers. Server side solution supports a Cross Site

Scripting mitigation mode that significantly reduces the

number of connection alert prompts while, at the same time,

it provides protection against Cross Site Scripting attacks

where the attackers may target sensitive information such as

cookies and session IDs. We propose a mechanism that

limits the amount of information that can be stolen by any

single Cross Site Scripting attack.

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-2 Issue-4, March 2013

134

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: D0546032413/13©BEIESP

Journal Website: www.ijitee.org

This paper describes the possibilities to filter JavaScript

in Web applications in server side protection.Server side

solution effectively protects against information leakage

from the user’s environment. Also it is possible to consider

the fact that the web applications are built for various

purposes. For instance we have researchers web application,

social networking web application, e-mail application, e-

commerce application etc. Each web application is built

with different requirements for performance, security

mechanisms, internationalization and scalability to serve its

customers.

This paper proposes a Cross-site Scripting Protection

System in server side which is based on passive HTTP

traffic monitoring and relies upon the following

observations:

1. There is a strong correlation between incoming

parameters and reflected XSS issues.

2. The set of all legitimate JavaScript’s in a given web

application is bounded.

III. PROPOSED ARCHITECTURE

This proposed architecture describes each module in

detail and derives test plan for the paper entitled “A Server

Side Solution for Protection of Web applications from Cross site

scripting attacks”. In this proposed Architecture (see Figure 1)

present Server Side Solution to mitigate Cross Site Scripting

attacks. The main purpose of Server side solution is that it is

effectively reduces Cross Site Scripting attacks. The Server-

Side Solution that provides Cross Site Scripting protection

without relying on web application providers.

This architecture describes the overall problem and

elaborates on the possibilities to filter JavaScript in Web

applications in server side protection. The cross site

scripting (XSS) attack is based on the possibility to insert

malicious JavaScript code into pages shown to other users.

Due to that reason XSS filtering malicious JavaScript code

is necessary for any Web application. This paper describes

the possibilities to filter JavaScript in Web applications, and

also a filtering XSS architecture is presented that allows

Web application developers to filter JavaScript depending

on the application need to reduce the danger of successful

Cross-Site Scripting attacks. The Server-Side Solution

capability to analyze all web pages for embedded links. That

is, every time Server-Side Solution fetches a web page on

behalf of the user, it analyzes the page and extracts all

external links embedded in that page. Because each link can

be followed without receiving a connection alert; the impact

of Server-Side Solution on the user is significantly reduced.

Static links that are extracted from the web page include

HTML elements with the HREF and SRC attributes and the

URL identifier in Cascading Style Sheet (CSS) files.

The Server-Side Solution allow easy integration into Java

based applications the filter provides a simple interface

encapsulated in the class JavaScriptFilter.The empty

constructor that is, public JavaScriptFilter (String

filterConfigFile) that is called with a configuration file, only

two methods are provided allowing two different access

ways to the filter: public void XSS filter (Reader filterInput,

Writer filteredOutput), public String XSS filter (String

filterInputString).

A Web Application may then create XSS filter classes

which as much configurations as needed, to perform

appropriate input or output filtering. Based on these

concepts, we extended our system with the capability to

analyze all web pages for embedded links. That is, every

time client side solution fetches a web page on behalf of the

user, it analyzes the page and extracts all external links

embedded in that page. When client side solution receives a

request to fetch a page; it goes through several steps to

decide if the request should be allowed. We have used a

technique to determine if a request for a resource is a local

link. It is achieved by checking the Referrer HTTP header

and comparing the domain in the header to the domain of

the requested web page.

Figure 1: Architecture for Cross-Site Scripting in Server

Side

The main components of our proposed architecture are:

1. A JavaScript detection component, which, given the

Web server’s response and request, is capable of

determining whether script content is present or not.

2. A reverse proxy installed in front of the Web server,

which is used to getting incoming HTTP request

parameter from the user and outgoing HTTP response

parameter from the server and subjects them to analysis

by the JavaScript detection component.

3. A XSS filter component, which is used to clean harmful

script from the HTTP request and HTTP response.

4. A HTML Input filter component is located in front of

servelet component ,which is used to inspect escape

comments, balance HTML tags, Remove blanks space,

protocol attributes from the incoming HTTP request

and encode this parameter.

5. A Data Access Object (DAO) component, by using data

access objects instead of accessing the data source

directly, the type and implementation of the actual data

source is decoupled from its usage. This allows moving

from one data source to a different data source without

having to change the business logic.

IV. IMPLEMENTATION AND DISCUSSION

For implementation of JavaScript filters languages that

internally using a Unicode representation of strings are

suited best, since they automatically transform national

character set characters to the Unicode representation.

http://www.ijitee.org/

A Server Side Solution for Protection of Web Applications from Cross-Site Scripting Attacks

135

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: D0546032413/13©BEIESP

Journal Website: www.ijitee.org

The Java programming language is used to implement

these web applications. The JavaScript filter described in the

following section is implemented in Java. This following

section describes the main component and implementation

of our proposed server side solution.

1. XSS Filter

From a connectional point of view filtering JavaScript to

prevent Cross-Site Scripting attacks can be performed on

any data sent to an application as input, or can be performed

on the output sent by the application to Web browsers, or

both .A web security mechanism point of view the whole

HTTP request sent to a Web application must be considered

input and not only the parameter values that are fed by users

into HTML input fields. Cross-Site Scripting filtering for

JavaScript means scanning a data stream for specific string

patterns considered dangerous and then take appropriate

actions like transformation or deletion. There are many

character encodings schemes available that are used to

represent foreign language characters. The character

encoding schemes of the input data for a Web application is

normally indicated in the request header generated by the

client browser.

The first step in XSS filter is to normalize the input data

to specific character encoding. Since standard encodings are

not suited to provide a uniform encoding base Unicode

should be used instead. Most commonly used encoding is

UTF-8. Because the UTF-8 is using a variable length

encoding schema additional actions must be taken to avoid

the problem of illegal UTF-8 character encodings. The case

if a UTF-8 character for which the encoding is one byte long

is encoded using two or more bytes which the additional

bytes set to zero. A simple XSS filter would not match

dangerous characters since the lengths of the character

encodings differ. A JavaScript XSS filter must honor the

character encoding and make sure that only valid encodings

are accepted. JavaScript filters implementing languages that

internally using a Unicode representation of strings are

suited best, since they automatically transform national

character set characters to the Unicode representation. This

XSS filter is used to develop by Java programming language

that is also often used to implement Web applications.

An important concept is that all links that are statically

embedded in a web page can be considered safe with respect

to Cross Site Scripting attacks. The attacker does not

directly use static links to encode sensitive user data. The

reason is that all statically embedded links are composed by

the server before any malicious code at the client can be

executed. A Cross Site Scripting attack, on the other side,

can only succeed after the page has been completely

retrieved by the browser and the script interpreter is invoked

to execute malicious code on that page. All local links can

implicitly be considered safe as well, after all, cannot use a

local link to transfer sensitive information to another domain

external links have to be used to leak information to other

domains. The contribution of our dynamically enhanced

XSS protection mechanism, we analyzed the web pages

recursively.

2. Reverse Proxy

A reverse proxy is used to get the incoming HTTP request

parameter from the web browser and send to the java script

detector component. Again the script detector send to the

appropriate java script to the reverse proxy then it passes to

HTML input filter. The main aim is client connects to the

proxy server and also requesting some web services, such as

a file, connection, web page, or other resources available

from a different server. A reverse proxy is used to passes

requests and replies unmodified are usually called a gateway

or sometimes tunneling proxy. A proxy can be placed in the

user's local computer or at various points between the user

and the destination servers on the Internet. A reverse proxy

is a Internet-facing proxy used as a front-end to control and

protect access to a server on a private network, commonly

also performing tasks such as load-balancing,

authentication, decryption or caching.

3. Html Input Filter

Html Input Filter is using an own HTML implementation

of a HTML parser that is based on pattern matching.

Filtering mechanism was necessary since standard HTML

parser libraries cannot cope with malformed HTML input.

The input parameter first is analyzed using the HTML parser

to build up the HTML object tree. Filtering for JavaScript

code means scanning a data stream for specific string

patterns considered dangerous and then take appropriate

actions like transformation or deletion. The removing of

harmful script and character encoding of input data for a

Web application is normally indicated in the request header

generated by the client browser. If it is untrusted data, which

can be used by attackers to mislead the application or the

JavaScript filter used. A simple java filter would not match

dangerous characters since the lengths of the character

encodings differ. A Java Script XSS filter must honor the

character encoding and make sure that only valid encodings

are accepted.

3.1 Steps to Perform Filtering

The HTML input filter process consists of four modules.

Such as, escape comments, balance HTML tags, remove

blanks and check tags are shown in fig.2. The XSS filtering

is done by a filter class that is using the filter table generated

by the configuration file reader from the XML configuration

file. Finally harmless filtered HTML input is returned to the

application for further processing.

Figure 2: Steps to Perform XSS Filtering

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-2 Issue-4, March 2013

136

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: D0546032413/13©BEIESP

Journal Website: www.ijitee.org

3.1.1 Escape Comments

This method takes the user given string and does a pattern

matching for HTML comments [<! -- -- >]. If it matches

then it removes the HTML comments from the given input

string. The pattern matching is using java.util.regex.matcher

and java.util.regex.pattern class. This method returns a

string after filtering out the HTML comments. It also

replaces the following HTML special characters with

corresponding equivalents shown in table1.

Table 1: HTML Special Character

Original

Character

After

Replacement

Character

& &

\ "

< <

> >

The below prototype shows the pattern matching regular

expressions for this escape comments method is given

below in fig.3.

protected String escapecomments(String s) {

 Pattern p = Pattern.compile("<-!--(.*?)-->",

Pattern.DOTALL);

 Matcher m = p.matcher(s);

 StringBuffer buf = new StringBuffer();

 if (m.find()) {

 m.appendReplacement(buf, "<!--" +

htmlspecialchars(match) + "-->"); }

 m.appendTail(buf);

 return buf.toString(); }

Figure 3: Code for escape comments in HTML

 3.1.2 Balance HTML

This method checks if there are any unbalanced HTML or

Java script tags in the given input string. If it founds any,

then it checks whether the tags are balanced with proper

open and close tags. If the tags are not balanced then, it

removed the unbalanced tag from the given string.

3.1.3 Remove Blank Space

This method checks if there is any HTML or Java script

tag in the given input string. If it founds any, then it pattern

matches it against a set of empty tags. If it matches, then

removes the empty tags from the input string. The ability of

filter to correctly detect XSS attacks strongly depends on

how precisely the JavaScript detection component works in

locating JavaScript content within HTML code. In order to

verify that our implementation works satisfactorily also in

non-traditional ways of embedding script code, we

evaluated it on the XSS Cheat Sheet a collection of various

XSS attack code snippets, that cover a broad range of

nuances regarding filter evasion. All tested examples that

work in an unmodified Firefox browser have been

successfully detected by our JavaScript detection

component.

3.1.4 Check Tags

This method checks whether the given input string has

any java script or HTML tags are incomplete. If it has any

tags then it compare with “white - list”, which is a

predefined set of allowable and non-allowable tags. It then

removes the harmful tags from the input string. It also does

a protocol check and removes from the given input string

shown in fig.4.

Protected String check tags (String s) {

 Pattern p = Pattern.compile("<(.*?)>", Pattern.DOTALL);

 Matcher m = p.matcher(s);

 StringBuffer buf = new StringBuffer();

 while (m.find()) {

 String replaceStr = m.group(1);

 m.appendReplacement(buf, replaceStr); return s; }}

Figure 4: Checking open and close tag in HTML

5. White List Table

White-List table filtering the pre-defined patterns is

specified, since new attack patterns are used they most

probably do not match any of the allowed patterns if these

patterns where constructed carefully. This white-list

provides good protection from attacks they can be hard to

specify depending on the application use case. Most of the

Web applications are simple with respect to the input

expected, so that white list definition is simple in many

cases also. A useful mechanism of White-Lists is that if new

tags are available they explicitly must be included into the

list, thus a sound decision can be made before the new tag is

processed by the application. This white list also increases

the overall security, because of its security shortcomings

Black-List filtering will not be considered in the following.

There are two steps must be performed for HTML filtering

are: Identifying the HTML elements, checking whether the

HTML elements are on the list of allowed entities.

For identifying HTML elements or markup appropriate

parsing of the input is necessary, which technically is

performed by pattern matching. The HTML parsing

techniques can also cope with malformed HTML input,

since attackers may intentionally send malformed requests

to the application. In general most of the HTML parser

must be constructed to fail into a safe state that allows

filtering out the malformed parts, so that the filter may not

be subverted by a fooled parser. Most of publicly available

HTML parser lacks this property and refuse to operate on

malformed HTML input rendering them unusable for

implementing a JavaScript filter.

6. Data Access Object (DAO)

Data access objects provide the portability for

applications from one data source to another data source.

Many modern applications require a persistent database for

their objects. There are currently several common types of

databases: Flat files, object-oriented databases and relational

databases, with relational databases being the most widely

used. Unfortunately these types of databases are accessed in

a very different way. Even databases of the same type, such

as relational databases behave very similar but not exactly

identical. By using data access objects instead of accessing

the data source directly, the type and implementation of the

actual data source is decoupled from its usage. This allows

moving from one data source to a different data source

without having to change the business

logic.

http://www.ijitee.org/

A Server Side Solution for Protection of Web Applications from Cross-Site Scripting Attacks

137

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: D0546032413/13©BEIESP

Journal Website: www.ijitee.org

The use of the data access object may also encourage the

use of additional functionality with proxies, such as caching.

This may improve performance, depending on the use of the

data.

V. CONCLUSION

Cross Site Scripting vulnerabilities are being discovered

and disclosed at an alarming rate. Cross Site Scripting

attacks are generally simple, but difficult to prevent because

of the high flexibility that HTML encoding schemes provide

to the attacker for circumventing server-side input filters.

Several approaches have been proposed to mitigate Cross

Site Scripting attacks. The main advantage of these solutions

is that they rely on service providers to be aware of the

Cross Site Scripting problem and to take the appropriate

actions to mitigate the threat. In this paper, we present

Server Side Solution to mitigate Cross Site Scripting attacks.

The main contribution of server side solution is that it is

effectively reduces Cross Site Scripting attacks. The Server-

Side Solution that provides Cross Site Scripting protection

without relying on web application providers. Server Side

Solution supports a Cross Site Scripting mitigation mode

that significantly reduces the number of connection alert

prompts while, at the same time, it provides protection

against Cross Site Scripting attacks where the attackers may

target sensitive information such as cookies and session IDs.

It acts as a web proxy to protect Cross Site Scripting attacks

in the server side.

REFERENCES

1. Richard Sharp and David Scott,” Abstracting Application Level

Web Security,” In Proceedings of the 11th ACM International World

Wide Web Conference (WWW 2002), May 7-11, 2002.
2. Peter wurzinger, Christian Platzer, Christian Ludl, and Christopher

Kruegel,”SWAP:Mitigating XSS Attacks using a Reverse Proxy,”

In proceedings of the 2009 ICSE Workshop on Software
Engineering for secure systems,pp.33-39,2009.

3. Engin Kirda, Nenad Jovanovic, Christopher Kruegel and Giovanni

Vigna,”Client-Side Cross-Site Scripting Protection,” ScienceDirect
Trans.computer and security ,pp.184-197,2009.

4. Acunetix. Acunetix Web Vulnerability Scanner.

http://www.acunetix.com/, 2008.
5. Nao Ikemiya and Noriko Hanakawa, “A New Web Browser

Including A Transferable Function to Ajax Codes”, In Proceedings

of 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE '06), Tokyo, Japan, pp. 351-352, September 2006.

6. V. Felmetsger, N. Jovanovic, D.Balzarotti, M. Cova, E. Kirda, and

C. Kruegel,”Saner: Composing Static and Dynamic Analysis to
Validate Sanitization in Web Applications,” In IEEE Security and

Privacy Symposium, 2008.

7. Ravi Sandhu and Joon S. Park, “Secure Cookies on the Web”, IEEE
internet computing, Volume 4, pp. 36-44, July/August 2000.

8. Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad

JovanovicNoxes, “A Client Side Solution for Mitigating Cross-Site
Scripting Attacks”, In Proceedings of the 2006 ACM Symposium On

Applied Computing (SAC’06), Dijon, France, pp. 330-337, April

2006.
9. O. Ismaill, M.E. Youki, K. Adobayashi, S. Yamaguch, “A Proposal

and Implementation of Automatic Detection/Collection System for

Cross-Site Scripting Vulnerability”, In Proceedings of the 18th
International Conference On Advanced Information Networking And

Application (AINA’04), Fukuoka, Japan, Volume 1, pp.145-151,

March 2004.
10. G.Vignaand, Christopher Krugel, and William Robertson, “A Multi-

Model Approach to the Detection of Web Based Attacks”, Computer

Networks, Volume 48, Issue 5, pp. 717-738, August 2005.
11. E. Kirda, C. Kruegel, and N. Jovanovic, “Pixy: A Static Analysis

Tool for Detecting Web Application Vulnerabilities”, In Proceedings

of the 2006 IEEE Symposium on Security and Privacy(S&P’06),
California, U.S.A, pp. 27-36, May 2006.

12. Hao Chen and Matthew Van Gundy,”Using randomization to
enforce information flow tracking and thwart crosssite scripting

attacks,”In Proceedings of the 16th Annual Network and Distributed
System Security Symposium (NDSS), 2009.

13. T. Jim and N. Swamy and M. Hicks. ,”BEEP: Browser- Enforced

Embedded Policies,” In 16th International World Wide Web
Conference (WWW2007), Banff, 2007.

14. C. Kruegel, E. Kirda, G. Vigna P. Vogt, F. Nentwich, and N.

Jovanovic, ”Cross site scripting prevention with dynamic data
tainting and static analysis,” In 14th Annual Network and Distributed

System Security Symposium (NDSS), 2007.

15. CERT “Advisory CA-2000-2002- Malicious HTML Tags Embedded
in Client Web Requests” http://www.cert. org/advisories/CA-2000-

02.html, 2000.

16. Sy-Yen Kuo, Yao-Wen Huang, Chung-Hung Tsai, and D. T.
Lee,“Non Detrimental Web Application Security Scanning”, In

Proceedings of 15th International Symposium on Software Reliability

Engineering (ISSRE'04), France, pp. 219-230, November 2004.
17. Chung-Hung, Tsai Yao-Wen Huang, Shih-Kun Huang, and Tsung-

Po Lin, “Web Application Security Assessment By Fault Injection

and Behavior Monitoring”, In Proceedings of the 12th international
conference on World Wide Web, Budapest, Hungary, pp. 148 – 159,

May 2003.

18. Dr.M.Ponnavaikko and Jayamsakthi Shanmugam, “A Solution to
Block Cross Site Scripting Vulnerabilities Based on Service Oriented

Architecture”, In Proceedings of 6th IEEE international conference

on computer and information science (ICIS 07) published by IEEE
Computer Society in IEEE Xplore, Australia, pp. 861-866, July 11-

13, 2007.
19. Martin Johns, Bjorn Engelmann, and Joachim Posegga,”XSSDS:

Server-side Detection of Cross-Site Scripting Attacks,” proc. IEEE

Computer Security Applications Conference, pp. 335–343, October
2008.

20. Yasuhiko Minamide, "Static Approximation of Dynamically

Generated Web Pages," In Proceedings of the 14th International
Conference on World Wide Web, Chiba, Japan, pp. 432–441,May

2005.

21. WhiteHat Security. Website Security Statistics Report.
http://www.whitehatsec.com/home/ resource/stats.html, 2008.

22. B. (BK) Rios. Google XSS. http://xs-sniper.com/

blog/2008/04/14/google-xss/, 2008.
23. Phishmarkt :: de. http://baseportal.com/ baseportal/phishmarkt/de,

2006.

24. Phishmarkt::at. http://baseportal.com/baseportal/phishmarkt/at, 2007.

25. S.-Y. Kuo, Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, and D. Lee,”

Securing Web Application Code by Static Analysis and Runtime

Protection,” In Proceedings of the 13th International World Wide
Web Conference (WWW 2004), May 2004.

AUTHOR PROFILE

Mr.A.Duraisamy received his M.E degree in Computer

Science and Engineering from College of Engineering
Guindy, Anna University Main Campus Chennai, India

in 2010 and B.E degree in Computer Science and
Engineering from Anna University, Chennai, India in

2006. He is currently working as a Teaching Fellow in

University College of Engineering, Tindivanam,
Tamilnadu, India. His areas of interest are: Web Application Security,

Image Processing, Networking, Bio-Metrics, Cloud Computing and Data

Base Management System. He has published Three Papers in International
Journals, Three National Conferences and Life Member in Indian Society

for Technical Education.

Mr.M.Sathiyamoorthy received his M.E degree in

Computer Science and Engineering from College of

Engineering Guindy, Anna University Main Campus
Chennai, India in 2007 and B.E degree in Computer

Science and Engineering from Madras University,

Chennai, India in 2003. He is currently working as a
Teaching Fellow in University College of Engineering,

Tindivanam, Tamilnadu, India.

His areas of interest are: Web Services, Web Application Security,
Cryptography and Network Security, peer to peer Networking and Data

Base Management System. He has published One Paper in International

Journal. He worked in Tata Consultancy Services Ltd, Chennai as Assistant
Systems Engineer for 2.5 years.

http://www.ijitee.org/
http://www.cert/
http://www.whitehatsec.com/home/
http://xs-sniper.com/
http://baseportal.com/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-2 Issue-4, March 2013

138

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: D0546032413/13©BEIESP

Journal Website: www.ijitee.org

Mr. S.Chandrasekar received his B.E. Degree (CSE)
from Thiruvalluvar College of Engineering and

Technology in 2005. He obtained his M.E degree (CSE)

from Rajalakshmi Engineering College, Chennai, India
in 2009.

He is currently working as a Teaching Fellow with

University College of Engineering, Tindivanam, A
constituent College of Anna University, Chennai, India.

His current research interests include Network and

security, Mobile Computing, Image Processing, Web Applications Security
and Database Management System. He has presented a Paper in National

Conference.

http://www.ijitee.org/

