

Eco-Efficient Concretes: Use Of Ceramic Powder As A Partial Replacement Of Cement

Amitkumar D. Raval, Indrajit N. Patel, Jayeshkumar Pitroda

Abstract— The ceramic industry inevitably generates wastes, irrespective of the improvements introduced in manufacturing processes. In the ceramic industry, about 15%-30% production goes as waste. These wastes pose a problem in present-day society, requiring a suitable form of management in order to achieve sustainable development. In this research study the (OPC) cement has been replaced by ceramic waste powder accordingly in the range of 0%, 10%, 20%, 30% 40%, & 50% by weight for M-25 grade concrete. The wastes employed came from ceramic industry which had been deemed unfit for sale due to a variety of reasons, including dimensional or mechanical defects, or defects in the firing process. The results demonstrate that the use ceramic masonry rubble as active addition endows cement with positive characteristics as major mechanical strength and the economic advantages. Reuse of this kind of waste has advantages economic and environmental, reduction in the number of natural spaces employed as refuse dumps. Indirectly, all the above contributes to a better quality of life for citizens and to introduce the concept of sustainability in the construction sector.

Keywords: Ceramic Waste, Compressive Strength, Eco-Friendly, Industrial Waste, Low Cost, OPC Cement, Sustainable

I. INTRODUCTION

This research analyzed the impact of the use of ceramic powder, obtained as residue from theceramics industry, on the mechanical properties of conventional concrete. The councils of large-and medium-sized towns have for years been increasingly concerned with the collection, storage andmore recently treatment of domestic waste. Parallel to this, there has been a growing social and political awareness of environmental issues, particularly where this relates to the deterioration of the environment. Ceramic waste from factories producing constructionindustry materials has been accumulating on frequentlyillegal rubbish tips, creating increasingly large piles. Although they are usually chemically inert, the rubbishtips where this waste accumulates, given their size andthe scant environmental control exercised, have asignificant visual impact that destroys the intrinsicquality of the landscape. The advancement of concrete technology can reduce the consumption of natural resources and energy sources. They have forced to focus on recovery, reuse of natural resources and find other alternatives. Presently large amounts of Ceramic waste are generated in ceramic industries with an important impact on the environment and humans.

Manuscript published on 30 July 2013.

Retrieval Number: B0964073213/13©BEIESP

Journal Website: www.ijitee.org

*Correspondence Author(s)

Amitkumar D. Raval, Student of final year M.E. C E & M, B.V.M. Engineering college, Vallabh Vidyanagar

Dr.Indrajit N. Patel, Applied Mechenics Department, BBIT, Vallabh Vidyanagar-Gujarat-India

Prof. Jayeshkumar Pitroda, Assistant Professor& Research Scholar, Civil Engg Department, B.V.M. Engineering College, Vallabh Vidyanagar-Gujarat-India

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

The use of the replacement materials offer cost reduction, energy savings, arguably superior products, and fewer hazards in the environment. Indian ceramic production is 100 Million ton per year. In ceramic industry, about 15%-30% waste material generated from the total production. This waste is not recycled in any form at present. However, the ceramic waste is durable, hard and highly resistant to biological, chemical, and physical degradation forces. The Ceramic industries are dumping the waste in any nearby pit or vacant spaces, near their unit although notified areas have been marked for dumping. This leads to serious environmental and dust pollution and occupation of a vast area of land, especially after the powder dries up so it is necessary to dispose the Ceramic waste quickly and use in the construction industry. As the ceramic waste is piling up every day, there is a pressure on ceramic industries to find a solution for its disposal

II. EXPERIMENTAL MATERIALS

A. Materials

b) Cement (OPC)

The Ordinary Portland Cement of 53 grade conforming to IS: 8112 is be use. Physical property of cement is as per table 2.

a) Ceramic waste

Ceramic material is hard, rigid. It is estimated that 15 to 30% waste are produced of total raw material used, and although a portion of this waste may be utilized on-site, such as for excavation pit refill. Chemical properties of ceramic waste is as per table 1.

Figure: 1. Ceramic waste powder Source: Kohinoor tiles, Himmatnagar, Gujarat

Figure: 2.Microscopic Views of Ceramic Particles Source: SVNIT, Surat, Gujarat

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

TABLE-1 CHEMICAL PROPERTIES OF CERAMIC WASTE

Materials	Ceramic Powder (%)
SiO_2	63.29
Al_2O_3	18.29
Fe_2O_3	4.32
CaO	4.46
MgO	0.72
P_2O_5	0.16
K_2O	2.18
Na ₂ O	0.75
SO_3	0.10
CL-	0.005
TiO_2	0.61
SrO_2	0.02
Mn_2O_3	0.05
L.O.I	1.61

Source: GEO TEST HOUSE, Baroda, Gujarat

TABLE-2 PHYSICAL PROPERTIES OF MATERIALS

Materials	Specific Gravity	IS CODE
Cement	3.12	IS: 8112 - 1989
Ceramic Waste	3.11	-
Fine Aggregate	2.38	IS: 383
Coarse Aggregate	2.76	IS: 383
Super Plasticizer	1.20	IS: 9103:1999

c) Aggregate

Aggregate give body to the concrete, reduce shrinkage and effect economy. One of the most important factors for producing workable concrete is a good gradation of aggregates. Minimum paste means less quantity of cement and less water, which are further mean increased economy, higher strength, lower shrinkage and greater durability.

d) Coarse Aggregate

The fractions from 20 mm to 4.75 mm are used as coarse aggregate. The Coarse Aggregates from crushed Basalt rock, conforming to IS: 383 is being use. The Flakiness and Elongation Index were maintained well below 15%.

e) Fine aggregate

Those fractions from 4.75 mm to 150 microns are termed as fine aggregate. The river sand is used in combination as fine aggregate conforming to the requirements of IS: 383.

TABLE-3 PHYSICAL PROPERTIES OF FINE AGGREGATE, COURSE AGGREGATE

Fine	Coarse Aggregate		
Aggregate	20 mm	10 mm	
	aown	down	
3.35	7.54	3.19	
1753	1741	1711	
1.20	1.83	1.35	
	3.35 1753	Aggregate 20 mm down 3.35 7.54 1753 1741	

Retrieval Number: B0964073213/13©BEIESP Journal Website: www.ijitee.org

f) Water

Water is an important ingredient of concrete as it actually participates in the chemical reaction with cement. Since it helps to from the strength giving cement gel, the quantity and quality of water are required to be looked into very carefully.

III. DESIGN MIX

A mix M25 grade was designed as per Indian Standard method (IS 10262-2009) and the same was used to prepare the test samples. The design mix proportion is done in Tab 4.

TABLE-4
DESIGN MIX PROPORTION FOR (M25 MIX)

	W (Lit)	C (Kg/m	F.A. (Kg/m	C.A. (Kg/m ³)		Chemic al
		3)	3)	20mm	10mm	Admixt ure
By weig ht, [kg]	174. 8	364.3	696.9	749.6	499.7	2.5
By volu me[m³]	0.48	1	1.80	2.07	1.31	-

W= Water, C= cement, F.A. = Fine Aggregate, C.A. = Coarse Aggregate

TABLE-5 CONCRETE DESIGN MIX (M25 MIX) PROPORTIONS

Sr.	Conc rete	Conci	ete Desig	n Mix P	roportic	n
No.	Type	W/C ratio	C	F.A.	C.A.	c.w.
1	В0	0.48	1.00	1.80	3.38	-
2	B1	0.52	0.90	1.80	3.38	0.10
3	B2	0.52	0.80	1.80	3.38	0.20
4	В3	0.52	0.70	1.80	3.38	0.30
5	B4	0.52	0.60	1.80	3.38	0.40
6	B5	0.52	0.50	1.80	3.38	0.50

IV. EXPERIMENTAL SET UP TABLE-6

DESIGN MIX PROPORTION FOR VARIOUS CONCRETE

Sr.N o.	Concrete Type	OPC cement Replacement with Ceramic waste
1	В0	Standard Concrete
2	B1	10% replacement
3	B2	20% replacement

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

4	В3	30% replacement
5	B4	40% replacement
6	B5	50% replacement

V. EXPERIMENTAL METHODOLOGY

The evaluation of ceramic waste for use as a replacement of cement material begins with the concrete testing. Concrete contains cement, water, fineaggregate, coarse aggregate and grit. With the control concrete, i.e. 10%, 20%, 30%, 40%, and 50% of the cement is replaced with ceramic waste, the data from the ceramic waste is compared with data from a standard concrete without ceramic waste. Three cube samples were cast on the mould of size 150*150*150 mm for each 1:1.80:3.38 concrete mix with partial replacement of cement with a w/c ratio as 0.48 were also cast. After about 24 h the specimens were de-moulded and water curing was continued till the respective specimens were tested after 7, 14 and 28 days for compressive strength test.

Compressive strength

Compressive strength tests were performed on compression testing machine using cube samples. Three samples per batch were tested with the average strength values reported in this paper. The comparative studies were made on their characteristics for concrete mix ratio of 1:1.80:3.38 with partial replacement of cement with Ceramic waste as 10%, 20%, 30%, 40% and 50%.

TABLE -7 COMPRESSIVE STRENGTH OF CUBES(150X150X150)FOR M25 MIX AT 7, 14, 28 DAYS

Concrete Type	Average Compressive Strength [N/mm²]							
	7 days 14 days 28 days							
В0	25.39	31.21	32.92					
B1	23.67	29.66	31.21					
B2	21.65	28.65	29.31					
В3	20.04	26.77	27.63					
B4	18.11	23.59	24.78					

B5 16.06 21.63 23.51	
----------------------	--

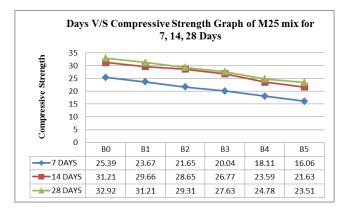


Figure: 3 Percentage Replacement of Ceramic waste V/S Compressive Strength (N/mm²) of Concrete for M25 mix at 7, 14 and 28 days

VI. ECONOMIC FEASABILITY TABLE- 8 COSTS OF MATERIALS

Sr. No.	Materials	Rate (Rs/Kg)
1	Cement	6.40
	(OPC 53 grade)	
2	Fine aggregate (Regional)	0.60
3	Coarse aggregate (Regional)	0.65
4	Ceramic waste	0.20

TABLE - 9
TOTAL COST OF MATERIALS FOR M25DESIGNE MIX CONCRETE (1:1.80:3.38) PER m³

C.T.	Consump	Consumption of Design Mix Proportions For M25 Concrete (1:1.80:3.38)					% Cost Saving
	C	F.A.	C.A.	C.W.	Admixture		
A0	364.30	696.90	1249.30	0.00	2.00	5690.97	-
A1	327.87	730.20	1249.30	36.43	2.00	5439.11	4.42
A2	291.44	730.20	1249.30	72.86	2.00	5187.28	8.85
A3	255.01	730.20	1249.30	109.29	2.00	4935.44	13.27
A4	218.58	730.20	1249.30	145.72	2.00	4683.60	17.70
A5	182.15	730.20	1249.30	182.15	2.00	4436.18	22.04

VII.CONCLUSION

Based on experimental investigations concerning the compressive strength of concrete, the following observations are made:

(a) The Compressive Strength of M25 grade concrete increases when the replacement of cement with ceramic waste up to 30% by weight of cement and

Retrieval Number: B0964073213/13©BEIESP

Journal Website: www.ijitee.org

further replacement of cement with ceramic powder decreases the compressive strength.

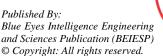
- (b) Concrete on 30% replacement of cement with ceramic waste, compressive strength obtained is 26.77 N/mm² and vice-versa the cost of the concrete is reduced up to 13.27% in M25 grade and hence it becomes more economical without compromising concrete strength than the standard concrete. It becomes technically and economically feasible and viable.
- (c) Utilization of ceramic waste and its application are used for the development of the construction industry, Material sciences.
- (d) It is the possible alternative solution of safe disposal of ceramic waste.

REFERENCES

- ASTM C 125, Standard Terminology Relating to Concrete and Concrete Aggregate, 1994 Annual Book of ASTM Standards
- A. Piccolroaz, D. Bigoni and A. Gajo, An elastoplastic framework for granular materials becoming cohesive through mechanical densification. Part I - small strain formulation. European Journal of Mechanics A: Solids, 2006, 25, 334-357.
- 3. Ceramic Manufacturing Industry, EUROPEAN COMMISSION, August 2007
- César Medinal, M.I.Sánchez de Rojas, Moisés Frías and Andrés Juan, "Using Ceramic Materials in Ecoefficient Concrete and Precast Concrete Products", Spain
- C. Medina Martínez, M.I.Guerra Romero, J. M. Morán del Pozo and A. Juan Valdés, "USE OF CERAMIC WASTES IN STRUCTURALS ONCRETES", 1st Spanish National Conference on Advances in Materials Recycling and Eco – Energy Madrid, 12-13 November 2009
- David Pearce and Giles Atkinson, "The concept of sustainable development: an evaluation of its usefulness ten years after brundtland", CSERGE Working Paper PA 98-02
- D. Bigoni, Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. 2012, Cambridge University Press.
- Gérard Valenduc, Patricia VendraminScience, "Technological Innovation and Sustainable Development", International Conference "Science for a Sustainable Society" Roskilde, 27-29/10/97
- Hasnat Dewan, "Re-Defining Sustainable Human Development to Integrate Sustainability and Human Development Goals" Thompson Rivers University, Canada.
- I.B.TOPÇU And M.CANBAZ, "Utilization of crushed tile as aggregate in concrete", Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 31, No. B5, pp. 561-565, 2007
- Philip J. Vergragt, "How Technology Could Contribute to a Sustainable World", GTI Paper Series, 2006
- P.K. Mehta, Puzzolanic and cementitious by products as mineral admixtures for concrete, fly ash, silica fuEme, slag and other mineral byproducts in concrete, ACI SP (79)(01)(1983)
- Sustainable Development: An Introduction, Internship Series, Volume-I, Centre for Environment Education, 2007
- "STRATEGYFOR SUSTAINABLE CONSTRUCTION" HM Government, JUNE 2008
- Plan Nacional de Residuos de la Construcción y Demolición 2001 -2006. Resolución de 14 de junio de 2001, de la Secretaría General deMedio Ambiente. BOE n. 166,25305-25313,12 julio (2001).
- J. Calleja: "Las puzolanas". Ion, Ns. 340,341,343 y 344, noviembre y diciembre (1969), febrero y marzo (1970), 623-63 8,700-713,81-90,154-160.
- Johansson, S; Andresen, P.J. (1990): "Pozzolanic activity of calcined moler clay". Cement and concrete research. V.20,447-452.
- Mielenz, R.C. (1983): "Mineral admixtures- History and background". Concrete International, 34-42.
- Sánchez de Rojas, M.I., Frías, M. Rivera, J. Escorihuela, M.J., Marín, P.P. (2001) "Investigaciones sobre la actividad puzolánica demateriales de desecho procedentes de arcilla cocida". Materiales de Construcción, 51, N° 261,45-52.
- Norma UNE 80301/1996: "Cementos. Definiciones, Clasificación y Especificaciones".
- Norma UNE EN 196-1/1994: "Métodos de ensayo de cementos. Parte 1 : Determinación de resistencias mecánicas".(8) Mehta, P.K; Manmohan, D. (1980): "Pore size distribution and permeability of hardened cement pastes". 7[^] Inter. Congress on the Chemistry of Cement. V. III. París. VII-1-5.

- Nyame, B.K., Illston, J.M. (1980): "Capillary pore structure and permeability of hardened cement paste". 7[^] Inter. Congress on the Chemistry of Cement. V. III. París. VM81-185.
- Norma UNE EN 490/1995: "Tejas y accesorios de hormigón. Especificaciones de producto".
- Norma UNE EN 491/1995: "Tejas y accesorios de hormigón. Métodos de ensayo".

AUTHOR PROFILE



AmitkumarDipakbhai Raval was born in 1990 in Anand District, Gujarat. He received his Bachelor of Engineering degree in Civil Engineering from the Birla Vishwakarma Mahavidyalaya, Sardar Patel in 2011. At present he is Final year student of Master's Degree in Construction Engineering and Management from Birla Vishwakarma Mahavidyalaya, Gujarat Technological University. He has a paper published in international journals.

Dr. I. N. Patel was born in 1964 in Anand city. He received his Bachelor of Engineering degree in Civil (Structural) Engineering from the Sardar Patel University in 1986. In 2007 he received his Master's Degree in M.E. Structural Engineering from the Sardar Patel University. In 2012 he received his PhD Civil Engineering, SVNIT, Surat, Gujarat. He joined B. & B. Institute of Technology as a faculty where he is Assistant Applied Mechanics Professor in Department with a total experience of 25 years in the field of Research, Designing and education. He has published 12 papers in National Journals /Conferences and 14 International Journals/Conferences.

Prof. Jayeshkumar R. Pitroda was born in 1977 in Vadodara City. He received his Bachelor of Engineering degree in Civil Engineering from the Birla Vishvakarma Mahavidyalaya, Sardar Patel University in 2000. In 2009 he received his Master's Degree in Construction Engineering and Management from Birla Vishvakarma Mahavidyalaya, Sardar Patel University. Birla Vishvakarma ioined Mahavidyalaya Engineering College as a faculty where he is Assistant Professor of Civil Engineering Department with a total experience of 12 years in the field of Research, Designing and education. He is guiding M.E. (Construction Engineering & Management) Thesis work in the field of Civil/ Construction Engineering. He has papers published in National Conferences and International Journals.

