
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-3 Issue-4, September 2013

33

Retrieval Number: D1172093413 /2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Abstract- Vertical fragmentation in databases is considered as a

difficult problem; it has attracted the interest of many researchers

and has been the subject of several studies. In the literature, these

studies suggest approaches to solving the problem of vertical

fragmentation, these approaches always provide a solution, but we

find no indication about the relevance of solutions, nor any clue

about their qualities.

In this study we propose an algorithm that seems be best suited

to the problem of vertical fragmentation and especially gives a best

solution. To validate our approach we compared our solution to

two existing algorithms based on two early studies (Genetic

algorithm & Apriori algorithm).

Index Terms: Genetic Algorithm, Data mining, Physical

Design, Vertical fragmentation.

I. INTRODUCTION

 The vertical fragmentation is a technique that allows the

users to change the physical design of database; it allows the

user to fragment a table in a database into a set of fragments

having for objective to improve the performances of

database. The primary key of the table T is replicated in every

fragment in order to reconstruct the original table using the

joint operation on different fragments. Vertical fragments are

obtained using the projection operation of relational algebra.

The vertical fragmentation is NP complete problem

(Hammer & Niamir [6]); this is due to the huge number of

possible alternatives to resolve the problem. For example

with a table composed of m attributes, the number of

alternatives obtained is calculated by the formula (1) (the Bell

number):

n

k

k

k

n BCB
0

 1m (1)

For large values of m the number is calculated by formula (2):

 mmm 0 (2)

The following values allow us to have an idea about the

vastness of the Bell number where:

m = 5 ; B(m) ≈ 52.

m = 10 ; B(m) ≈ 115 975.

m = 15 ; B(m) ≈ 1,38*109.

m = 22 ; B(m) ≈ 4,50*1015.

m = 50 ; B(m) ≈ 50*1048.

Our major contribution is summarized in the proposal of a

new developed approach for the purpose of providing not

only a solution but an optimized solution for the problem of

Manuscript received on September, 2013.
 Hichame Chaalel, Department of Computer Science, Laboratory

Systems Signals Data, Faculty of Science. University of Science and

Technology Mohamed Boudiaf-Oran, Algeria.
Pr.Hafida Belbachir, Department of Computer Science, Laboratory

Systems Signals Data, Faculty of Science. University of Science and

Technology Mohamed Boudiaf-Oran, Algeria.

vertical fragmentation, to validate this work we tested our

algorithm on TPCH benchmark comparing it to two other

variants Genetic algorithm and Apriori algorithm inspired by

previous work.

This paper is composed of three sections, in the first part,

previous works in the domain are exposed with a more

detailed explanation of the algorithms Genetic and Apriori, in

the second section we will explain and develop the algorithm

proposed in this study “Affiner”, and the last section is

devoted to present different results.

II. PREVIOUS WORK

Vertical fragmentation on databases has been the subject

of several studies; these studies converge towards a single

goal: Optimizing the performance of the database.

Approaches and orientations of researchers differ, and can be

classified into three categories:

Algorithms based on the affinity: This class of algorithms

calculates the affinity between attributes and regroups the

most affine attributes in the same fragment; several authors

have studied this approach Hoffer & al [7], Navathe et al [8],

Navathe et Ra [9].

Not that the approach “Affine” proposed in this study can

be classified in this category of algorithms.

Algorithms based on data mining: these are algorithms that

generate attribute groups based on the methods of data

mining; we can cite the work of Cheng & al [3], Gorla [4][4],

and Song & Gorla [10].

Algorithms based on the cost model: these algorithms

evaluate each fragmentation scheme with a cost model

formula that estimates the response time of queries and

applications running on the database. Genetic algorithms use

the cost model as a fitness function. Among the works based

on genetic algorithms: Hammer & Niamir [6], Song & Gorla

[10], Angel & Zevala [2].

A. Genetic Algorithm:

Genetic algorithms are meta-heuristic algorithms that

solve combinatorial problems. Many studies are based on GA

to optimize the physical design using the technique of vertical

fragmentation.

The basic principle of the algorithm is as follows:

 In the first step, algorithm begins randomly by

generating initial solutions (population); each element

(individual) in the population is subject to evaluation by the

fitness function to measure the quality of the solution

provided by the fitness function. In our case the fitness

function is the time estimated of execution of queries, in other

words, the cost of execution of the workload on database.

 After the operation of evaluation, comes the operation

of selection of individuals in

order to reproduce the

new population,

An Optimized Vertical Fragmentation Approach

Hichame Chaalel, Hafida Belbachir

An Optimized Vertical Fragmentation Approach

34
Retrieval Number: D1172093413 /2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Chromosome A

5 0 5 5 0 1 1 2 3

Chromosome B

3 1 1 0 0 2 5 5 4

Chromosome A’

3 1 1 0 0 1 1 2 3

Chromosome B’

5 0 5 5 0 2 5 5 4

Chromosome A’’

3 1 1 0 0 1 1 5 3

Chromosome B’’

5 0 2 0 0 2 5 5 4

Crossover

Mutation

Fig. 2. : Crossover and mutation

according to Mendel's survival rule, the fittest element

provides a strong offspring.

 Follows the reproduction operation on the basis of

pre-selected individuals using the operations of mutation and

crossover that allow us to obtain a new generation that will, in

principle, get a fitness score greater than or equal to the

fitness of the previous generation.

In general, at the end of the execution of the algorithm, we

obtain an improved or better suited solution to the problem

initially posed.

Adaptation of Genetic Algorithm to the Vertical

Fragmentation:

 In this section, we explain the adaptation of the genetic

algorithm for vertical fragmentation.

The encoding: The encoding used is fairly simple:

 Individual represents the way that the table will be

fragmented vertically, in other words, it is a digital

representation of the fragmentation.

 The chromosome represents an individual and is a

collection of integers. The length of the chromosome is

equal to the number of attributes in the table, each

integer expresses the partition to which the attribute will

be assigned, and a population is the set of individuals in a

generation.

Example: suppose that R is the table with 10 attributes where:

R = {A1, A2, A3 …, A10}, and the encoding according to the

table: R = {5, 0, 5, 5, 0, 1, 1, 2, 3, 4} schematized in figure 1,

it can be interpreted as follows:

 Partition_0 : {1, 4} ;

 Partition_1 : {5, 6} ;

 Partition_2 : {7} ;

 Partition_3 : {8} ;

 Partition_4 : {9} ;

 Partition_5 : {0, 2, 3}.

Population: The initialization of the population occurs in a

random way. Population size can be adjusted by the user, and

the number of generations can also be specified by the user

too.

Crossover: A point is randomly chosen in the first

chromosome, with a certain probability, it will be active for

crossing with a probability Pct (specified in advance by the

user). Another crossover point is randomly chosen on the

second chromosome using the same process.

Mutation: it performs a scan of each gene on chromosomes

candidate in the population selected by the method of

selection, and mutates it with a mutation probability

(specified in advance by the user); each gene of the

chromosome is a subject to a mutation probability Pm, if the

gene is selected, it will randomly change the value.

Selection: in the literature there are several algorithms

proposed for the selection of individuals which we cite:

roulette-wheel selection, elitist selection, etc..; we have opted

to use the standard selection mode that allows us to select

some of the chromosomes of the population to enable them to

continue surviving.

This selection should be guided by the values of fitness, but

the fitness function will be seen as a statistical probability of

survival, not as the only determining factor for survival. In

other words, the chromosomes with higher fitness values will

be more likely selected than those with low fitness values,

this rule is not always guaranteed, and individuals with low

fitness can be selected but with a low probability.

Illustration: Figure 3 schematizes the process of crossover

and mutation to both chromosomes A and B.

The fitness function: the fitness evaluation is based on the

cost model; the cost model is used to estimate the time

response of queries and applications that require interaction

with the database.

The cost (fitness) query being estimated is based on two

operations:

 The amount of data transferred between the processing

kernel (CPU) and the data storage place.

 Time of data processing in CPU, but in our case processing

time CPU is neglected compared to the time of data

transfer because it is quite low.

Inspired from the work of Gorla & al [5], in this study the

index access cost and the storage cost are not taken into

account, the blocks estimate used is given in Yao (1977)

[12]as the basis for cost of query processing. If there are n

records divided into m blocks and if k records satisfying a

query are distributed uniformly among the m blocks, then the

number of blocks accessed by the query are equal to:

 m (1 – (1 - 1/m)
k
) (Yao, 1977) [12].

In the partitioned database, we apply this formula for each

Segment i accessed by the query q. Thus, the cost of

processing a (retrieval) query q is estimated as shown in

formula 1, where the first part computes the total number of

blocks to be accessed from each of the Segment q_j

partitions. The second part indicates the overhead to

concatenate Segment q_j partitions in the memory. Where:

Freq_i = frequency of query q_i

Segment qj = Number of partition j required by the query q.

Bs
LT

M i
i

Kq : number of tuples satisfying a query q.

T : Total number of

tuples.

Chromosome

5 0 5 5 0 1 1 2 3 4

0 1 2 3 4 5 6 7 8 9

Fig. 1. : Individual Encoding.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-3 Issue-4, September 2013

35

Retrieval Number: D1172093413 /2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Li : size of partition.

Bs : block size .

 11.01

111freq =Cost_Query
1

q

qj

segment

i

Kq

i
i

segment

M
M

qj

 (3)

Apriori Algorithm:

Data mining is considered as a discipline related to the

domain of decision making, it is a process that allows us to

extract knowledge’s and valid and exploitable information’s

from divert data sources. Such information can be used as the

basis for decisions about marketing activities.

The following terminology will allow us to understand the

process of knowledge extraction:

The items describe all articles or components of the studied

subject, for example in the case of list shopping cart the items

means all items available in the store (bread, milk, coffee, and

bonbon).

The association rule is an association between several

articles to discover from a set of transactions, a set of rules that

expresses a possible association between different items,

meaning regularities between products, for example in

supermarket we can deduce that if a customer buys milk and

coffee together, he or she is likely to also buy sugar.

An association rule is a rule of the form: If conditions then

result, For example, a rule will be three items of the form:

 If X and Y then Z: (X and Y) Z; (4)

Rule expressing: If the Article X and Y appear

simultaneously in a purchase then Article Z will appear.

To select an association rule, we need to define the

numerical threshold that will be used to calculate the benefit

of such a rule.

The support of a rule indicate the rate of records that satisfy

the rule, it indicate the number of times, in rate terms, where

the rule is applicable.

Consider the set of shopping carts T, R is a group of

products and U is the set of shopping carts containing the

subgroup R, we have:

 100%
U

 upport(R)

T
S (5)

Not that |U| and |T| denote respectively the number of

elements of U and T.

Confidence is the ratio between the number of transactions

where all the items contained in the rule appear, and the

number of transactions in which items appear in the condition

part.

Consider the association rule 21 SSR , where S1 and

S2 represent a list of product.

100%
S1Support

S2 S1,Support
 1)onfiance(S C (6)

A rule is defined as solid if here support is greater than or

equal to a fixed support, and here minimal confidence is

greater than a predetermined confidence.

Apriori is a variant of the most interesting data mining

algorithms and has been the subject of our study is inspired

from the work of Gorla [4].

What interested us in this approach (Apriori) is the reduced

complexity of the operations achieving in general good

results.

Apriori is the result of work done by Agrawal & Srikant [1]

is an algorithm for finding and extracting the association

rules.

The Apriori algorithm is based on the principle that any set

of non-frequent subset is infrequent implying a reduction of

the search space.

The Apriori algorithm process:

Generate the itemsets,

1. Calculate the frequency of the itemsets,

2. Retain the frequent itemsets having a support greater

than or equal to the minimum support predefined.

3. Generate from frequent itemsets robust association

rules having sufficient confidence.

Adaptation of the Apriori Algorithm:

In summary, the work of Agrawal & Srikant [1] treat the

adaptation of algorithm Apriori to generate vertical

fragments follows this reasoning:

Let A and B be two attributes in a relation, we calculate the

confidence of the rule AB, if it is greater than the

predefined minimum (min_conf), we have a strong argument

to group A and B in the same partition.

We note that the order of tow attributes in the same partition

is not significant, to calculate the confidence between A and

B we calculate the values of confidences for AB and for

BA and the lowest value is chosen to represent the

association between attributes A and B, thus :

Confidence (A, B) = freq (A, B)/ max (freq (A), freq (B)). (7)

The proposed algorithm follows these steps:

• discover large itemsets: Large itemsets represent the

combinations of attributes, in this step we generate all

possible association rules and we calculate the corresponding

confidence that satisfy the condition support greater the

predefined minimum support.

• Filter large itemsets: we eliminate large itemsets having

value of confidence less than predetermined minimum

confidence (min_conf); this will significantly reduce the

search space.

• Finally, produce the partitions, and choose the best

fragmentation pattern, if we obtain several solution we

calculate the cost of itch model, by using the cost model

formula inspired from the last work (Genetic Algorithm),

then the best one is selected.

For more details you can refer to the work of Gorla [4].

III. AFFINER ALGORITHM:

The main idea of Affiner is based on the analysis and

evaluation of the affinity between each attribute and the

combination of high affinity attributes, thereby algorithm

Affiner can be classified in the algorithms based on affinity

class.

One of the major advantages of this algorithm is that it

performs a search on all attributes and deduces partitions

without using a cost model, this will reduce processing time,

and it is not easy to find the real estimating cost formula

cause of the large

difference between

An Optimized Vertical Fragmentation Approach

36
Retrieval Number: D1172093413 /2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

architecture of DBMS’s, from one version to another, and

from one architecture to another, this affect the formula of the

cost model.

In fact, after the analysis of each attribute separately, only

the most interesting partitions will be retained for the

composition of the final fragmentation pattern. Attributes

will be compared one by one, relative to all the other

attributes, taking into account the workload.

The affinity score calculation will be based relative to each

request. Attributes with higher affinity will be grouped in the

same set, each set will present a partition, this operation will

be repeated until all the attributes are evaluated. The retained

attributes will be removed from the set of potential solutions.

If an attribute has an acceptable affinity for all the attributes

composing a given partition, it will be merged with this

partition.

 Affiner progress: The Affiner algorithm is stated as

follows:

1. Generating the attribute usage matrix AUM,

2. Generating the attribute usage frequencies matrix,

3. calculation of the affinity matrix,

4. sorting the affinity matrix in descending order according

to their affinity values,

5. Deduce the fragmentation pattern starting from the

ordered set.

Generating the attribute usage matrix AUM:
For a given table, the attribute usage matrix AUM is a

matrix that maps the relationship between queries and

attributes in this matrix if the query requires the attribute, the

corresponding box will be assigned to "1", otherwise "0".

 .
otherwise. 0

A uses q if 1
,

ij

ij AqAUM (8)

Example: Let T1 a table composed of attributes {A1, A2, A3,

A4, A5, A6}, and this queries requests the following

attributes, and the frequencies of all queries equals to 1.

q1 = {A7}

q2 = {A1, A8}

q3 = {A2, A3, A4}

q4 = {A2}

q5 = {A1, A2, A3}

q6 = {A2, A3, A6, A8}

The attribute usage matrix is presented in Table 1.

Generating the attribute usage frequency matrix:

 It is a simple step where we calculate a new matrix AUFM

based on the AUM, each element of the AUM is multiplied

by the frequency of concerned request.
ijAA iij freq '

Where:

 Aij: element line i , column j, in AUM;

 A’ij: element line i, column j, in AUFM;

 ferq_i: frequencies of the query i.

We suppose that for the previous example the frequencies of

all queries are equal to 1, therefore the AUM will be similar

to the AUFM.

Affinity Calculating: In our study we have observed that

the affinity between attributes is mainly governed by the

number of queries using the attributes. If two attributes are

invoked by the same queries it would be beneficial to put

them in the same partition, otherwise it is more interesting to

put them in separate partitions.

Based on these assumptions, we propose the following

formula to calculate the affinity between two attributes:

Ai: column number i of the AUFM (attribute usage

matrix), representing an attribute,

Aik: element of the AUFM, column number (i) and line

number (k).

t: total number of queries.

j

j

A

A of invocation totalofnbr A of invocation totalofnbr

 A & A of invocationcommun ofnbr

)A,ffinity(A

i

i

ji

t

k

t

k

t

k

jk

0

ik

0

jkik

AA

AA2

 (9)

The affinity formula reveals the following properties:

- The formula is symmetric :

Affinity (Ai ; Aj) = Affinity(Aj ; Ai)

- 1,0 ji AAAffinity ;

- 1, ji AAAffinityif then all queries that invoke Ai

are the same with all the queries that invoke Aj; we deduce

that each attribute is completely affine with himself, as

follows: 1, ii AAAffinity ;

- 5.0, ji AAAffinityif then half of queries that

invoke Ai also invokes half of queries that invoke Aj;

- 0, ji AAAffinityif All queries that invoke Ai do

not make any appeal to Aj.

Table 2 shows an example of affinity matrix calculated on the

basis of the AUFM in Table 1.

 A1 A2 A3 A4 A5 A6 A7 A8

q1 0 0 0 0 0 0 1 0

q2 1 0 0 0 0 0 0 1

q3 0 1 1 1 0 0 0 0

q4 0 1 0 0 0 0 0 0

q5 1 1 0 1 0 0 0 0

q6 0 1 1 0 0 1 0 1

Table 1 : Attribute Usage Matrix

 A1 A2 A3 A4 A5 A6 A7 A8

A1 1 2/6 0 2/4 0 0 0 2/4

A2 1 4/6 4/6 0 2/5 0 2/6

A3 1 2/4 0 2/3 0 2/4

A4 1 0 0 0 0

A5 1 0 0 0

A6 1 0 2/3

A7 1 0

A8 1

Table 2 : Affinity Matrix

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-3 Issue-4, September 2013

37

Retrieval Number: D1172093413 /2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Example:

 010100100100

01101100002
, 43

AAAffinity

 2

1

22

12
, 43

AAAffinity

 100100111100

11011100002
, 32

AAAffinity

 3

2

24

22
, 43

AAAffinity

We also calculate the affinity matrix, given the symmetry

character of the affinity formula affinity; we obtain a

symmetric matrix of values between 1 and 0.

Sorting the affinity matrix:
the step of sorting the matrix consists in sorting pairs of

attributes affinities in descending order according to their

affinity, we named this list Ordre_Affinity, sorting will help

us for generating partitions based on the most affine

attributes.

From the whole list Ordre_Affinity it will be retained

attributes with affinities greater than or equal to 0.5 (Table 2,

the gray box’s), which means that the value attributes are

referenced by at least half of the same applications, the reason

we choose to wear this condition (affinity ≥ 0.5), is the need

to find a compromise between too many partitions so many

joins between partitions (for rebuilding the table) which is

quite expensive, and the scan of all attributes that a majority

can be useless for the query, which will unnecessarily occupy

resources, and we note that a partition schema that satisfies

few queries can degrade performance for other queries.

For the classification of attributes with a same affinity we

calculate the number of calls in the attribute usage matrix

AUFM , so we obtain an ordered set of affinities

which will allow us the classification of attributes and the

generation of partitions.

 Illustration: Continuing with the same example we obtain

the following set Ordre_Affinity:

Ordre_Affinity = {(A3; A2), (A2; A4), (A3; A6), (A6 ;A8),

(A3; A4), (A3; A8), (A1; A4), (A1; A8)}.

Partition Generation: the process of generating partitions

(set of attributes) is formulated as follows, the algorithm

performs an analysis of each element (Ai, Aj) across

Ordre_Affinity starting with descending for each element

Ordre_Affinity (Ai, Aj) algorithm consider one of the

following three cases:

If both attributes do not belong to any partition (set of

attributes), then the new partition will be generated

combining the two attributes:

Px = {Ai, Aj};

a) If an attribute does not belong to any partition and the

other belongs to a partition then let: yji PAA &

where Py denotes a partition; then we explore the possibility

of assigning Ai at Py, in this case, Ai must satisfy an

acceptable affinity (≥0.5) with all the elements of Py. The

formula: 5.0, xizi AAAffinityPA , otherwise

Ai will not be assigned to any partition;

b) Finally If both attributes belong to two distinct

partitions: for example for the element (Ai, Aj) if xi PA)

and
yj PA and (Px ≠ Py) we investigate the possibility of

merging the two partition Px and Py, to do, affinity between

the whole elements of the two partitions must be (≥0.5), else

the two partitions Px and Py will stay disjointed.

The algorithm:

- P0 :initial Table without partition;

- Pk: Partition number k;

- Ai : Attribute number i ;

- Affinity (Ax, Ay) : affinity value between Ax and Ay;

Begin:

- Var k = 0 ;

- For each element(Ax,Ay)
 doAffinityOrdreAA yx _,

 thenPAandPAif yx 00

 ; 1

 ; ,

partition new ; ,

00

KK

AAPP

AAP

yx

yxk

 thenPAandPAifelse zyx 0

;

;

5.0,

00 i

izz

xizi

APP

APP
then

AAAffinityPAif

 thenPPandPAandPAifelse tztyzx

. delete ;

;

5.0, &

 5.0,

yy

yxx

yztz

xizi

PP

PPP
then

AAAffinityPA

AAAffinityPA
if

End.

IV. IMPLMENTATION AND RESULTS:

The algorithms implemented in the developed tool that we

named FRAGMAN are based on a theoretical estimation and

provides the ability for fragmenting a virtual schema based

on the real database scheme. To validate this study, we

perform tests that we will present the different results, the

results reflects the real vertical fragmentation of the database

(benchmark) based on the recommendations of the

algorithms.

Between several different existing benchmarks, we have

opted to choose the TPCH benchmark [11], a benchmark

with the ability to create database schemas and tables large

enough that allow us to carry out our research. TPCH [11] is

also very easy to implement, and to generate the database and

the script does not require very much knowledge in the field

of databases, in addition, we have noted that the TPCH

benchmark [11] is a reference for testing different DBMS

(Oracle, IBM,…).

For our application we generated the TPCH schema, and we

chose to fragment the fact table called LineItem composed of

16 attributes containing 6,001,215 records with a database

size around 1GB:

The attributes composing the LineItem table are:

{L_ORDERKEY, l_partkey, l_suppkey, l_linenumber,

l_quantity,

l_extendedprice,

l_discount, l_tax,

An Optimized Vertical Fragmentation Approach

38
Retrieval Number: D1172093413 /2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Table 3: Workload time execution
l_returnflag, l_linestatus, l_shipdate, l_commitdate,

l_receiptdate, l_shipinstruct, l_shipmode, l_comment}.

The DBMS engine chosen to perform our tests is Oracle

11G Release2, a very stable version of DBMS, widely used in

modeling OLAP business databases (On-Line Analytical

Processing), the computer in which we have done tests was a

Sony Vaio computer, dotted with Intel Core i5 processor and

4 GB of RAM, and hard disk of 500GB, the system is

windows 7- 64 bits.

Knowing that the Oracle DBMS does not support vertical

fragmentation, several choices were presented to us to

simulate the vertical fragmentation: “materialized view”,

“composed index’s”, or “sub tables”; in our case we opted for

“sub tables” which appears the most stable choice, and one

that consumes fewer resources.

To maximize storage space, we were forced to create a new

primary key based on the primary key of the initial table

LineItem, and duplicate it on the generated fragments, so to

allow us to reconstruct the LineItem table from different

generated fragments.

Once we obtain the recommendations from the simulation

using the tool developed, we proceed to the generation of sub

tables representing recommendations, and then we have to

rewrite all queries composing the workload so that they can

be executed according to the generated fragments based on

the new schema.

We have chosen 5 queries from the queries proposed in the

TPCH benchmark: (Q3, Q5, Q6, Q12, Q14), with frequencies

of 1 occurrence for each query (refer to the Table 5 in the

appendix).

Table 3 presents the results of the query execution on a real

database, based on the TPCH benchmark. The query

execution time is estimated in seconds; see more details in

table 5 in the appendix.

Ranked in descending order, in the Table 3, the values

obtained represent respectively the execution cost which:

- The LineItem table is not partitioned,

- LineItem partitioned according to the Apriori

recommendations,

- LineItem partitioned according to the Genetics

recommendations,

- LineItem partitioned according to the

recommendations of the Affiner Algorithm.

Based on actual results we note that the algorithm Affiner

presents the best results compared with Genetic and Apriori

algorithm’s, the performance gain in execution time

workload decreased significantly with a rate of 70 %, which

is considerable.

We emphasize that the results are based on the work load

aroused, which means that the test results can vary depending

on the workload.

V. CONCLUSION

In this paper we have focused our study to test the vertical

fragmentation on the centralized row-oriented DBMS, our

choice was to test two approaches which are Genetic and

Apriori algorithms and as contribution we proposed a third

algorithm named Affiner.

This study has allowed us to simulate the application of the

vertical fragmentation on the row-oriented databases and data

warehouses.

The Affiner algorithm seems well respond to the resolution

of the problem of Vertical Fragmentation.

As perspective this algorithm can be compared with other

algorithms based on affinities and tested on distributed

databases or even adapted on other models of physical design

techniques, such as horizontal fragmentation.

Although the results appear to be convincing from an

experimental point of view, but in practice it not the case,

because the most common form known to implement vertical

fragmentation on row-oriented databases is to create

materialized views or sub tables representing the fragments.

But this form does not meet the expectations of managers and

users of databases; the reason is that the performance of a

fragmented schema falls when queries are of a complex type

or requires a lot of operations of joins and aggregations.

The vertical fragmentation will only have sense if we find

the right and easy solution to apply on the row-oriented

databases, and obtain good results on all different types of

queries, as is the case for horizontal fragmentation. This has

motivated us to continue in this way and contribute to provide

a suitable architecture for the Vertical Fragmentation on

row-oriented databases, a solution for both OLTP model

(On-line Transaction Processing) and OLAP model (On-line

Analytical Processing).

VI. BIBLIOGRAPHIE :

[1] Agrawal, R and Srikant, R. “Fast algorithms for mining association

rules in large databases”. in 20th International VLDB, pages 487-499,

Santiago, Chile, September 1994.
[2] Angel, F. & al. Taddei-Zavala “Simultaneous Vertical Fragmentation

and Segment Assignment in Distributed Data Bases using Genetic

Algorithms”.
[3] Cheng. C.H; & Lee, W-K; Wong, K-F, “A Genetic Algorithm-Based

Clustering Approach for Database Partitioning” IEEE Transactions on

Systems, Man, and Cybernetics, 32(3), 2002, 215-230. 33.
[4] Gorla, N. & Pang Wing “vertical fragmentation in Databases Using

Data-Mining technique”, IGI Global Vol.4, Issue 3. 2008.

[5] Gorla, N. “A Methodology for Vertically Partitioning in a
Multi-Relation Database Environment”, JCS&T Vol.7 No. 3 October 2007.

[6] Hammer, M. & Niamir, B. “A heuristic approach to attribute

partitioning. In Proceedings ACM SIGMOD Int. Conf. on Management of
Data”, (Boston, Mass., 1979), ACM, New York.

[7] Hoffer, J. & Severance,D. “The Uses of Cluster Analysis in Physical

Database Design”, Proc in 1st International Conference on VLDB,
Framingham, MA, 1975.

[8] Navathe, S. & Ceri,S. & Weiderhold,G. and Dou,J. “Vertical

Partitioning Algorithms for Database Design” ACM Transactions on
Database Systems, Vol. 9, No. 4, 1984.

[9] Navathe, S. & Ra, M. “Vertical Partitioning for Database Design: A

Graphical Algorithm”. ACM SIGMOD, Portland, Juin 1989.
[10] Song, S.K. & Gorla, N., “A genetic Algorithm for Vertical

Fragmentation and Access Path Selection,” The Computer Journal, vol. 45,

no. 1, 2000, pp 81-93.
[11] TPCH: ad-hoc, decision

support benchmark. ”

Transaction Processing

Database schema
Workload time

time (Second’s)

Reduction

rate

Initial table (LineItem) 76,190 -

Fragmented table by

Apriori Algorithm
65,870 13.54%

Fragmented table by

Genetic Algorithm
52,581 30.99%

Fragmented table by

Affiner Algorithm
29,702 70.298%

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-3 Issue-4, September 2013

39

Retrieval Number: D1172093413 /2013©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Performance Council (TPC)” http://www.tpc.org/tpch. [12] Yao, S. B. (1977). “Approximating block access in data-base

organization. Communications of the ACM“, 20(4), 260-261.

APPENDIX

Table 4: Workload time execution details.

Queries SQL core

Q3

Select l_orderkey, sum(l_extendedprice * (1 - l_discount)) as revenue, o_orderdate, o_shippriority
from customer, orders, lineitem

where c_mktsegment = ':1' and c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate < date ':2'

 and l_shipdate > date ':2' group by l_orderkey, o_orderdate, o_shippriority order by revenue desc, o_orderdate;

Q5

select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue

from customer, orders, lineitem, supplier, nation, region
where c_custkey = o_custkey and l_orderkey = o_orderkey and l_suppkey = s_suppkey and c_nationkey = s_nationkey

 and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = ':1' and o_orderdate >= date ':2'

 and o_orderdate < date ':2' + interval '1' year
group by n_name order by revenue desc;

Q6

select sum(l_extendedprice * l_discount) as revenue

from lineitem

where l_shipdate >= date ':1' and l_shipdate < date ':1' + interval '1' year and l_discount between :2 - 0.01 and :2 + 0.01
 and l_quantity < :3;

Q12

Select l_shipmode, sum(case when o_orderpriority = '1-URGENT' or o_orderpriority = '2-HIGH' then 1 else 0 end) as

high_line_count, sum(case when o_orderpriority <> '1-URGENT' and o_orderpriority <> '2-HIGH' then 1 else 0 end) as

low_line_count

from orders, lineitem

where o_orderkey = l_orderkey and l_shipmode in (':1', ':2') and l_commitdate < l_receiptdate and l_shipdate < l_commitdate

 and l_receiptdate >= date ':3' and l_receiptdate < date ':3' + interval '1' year
group by l_shipmode order by l_shipmode;

Q14

select 100.00 * sum(case when p_type like 'PROMO%' then

l_extendedprice * (1 - l_discount) else 0 end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue

from lineitem, part
 where l_partkey = p_partkey and l_shipdate >= date ':1' and l_shipdate < date ':1' + interval '1' month;

Table 5: the workload detail.

Table

Lineitem
Q3 Q5 Q6 Q12 Q14

Workload

time (Scd)

Reduction

rate

Initial table 14,086 17,144 13,810 16,870 14,280 76,190 -

Fragmented

by Apriori
2,565 17,725 6,970 15,845 29,735 65,870 13.54%

Fragmented

by Genetic
5,741 8,807 14,605 17,595 14,640 52,581 30.99%

Fragmented

by Affiner
0.593 7,191 2,184 12,558 7,176 29,702 70.298%

http://www.tpc.org/tpch

