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Abstract- Vertical fragmentation in databases is considered as a 

difficult problem; it has attracted the interest of many researchers 

and has been the subject of several studies. In the literature, these 

studies suggest approaches to solving the problem of vertical 

fragmentation, these approaches always provide a solution, but we 

find no indication about the relevance of solutions, nor any clue 

about their qualities. 

In this study we propose an algorithm that seems be best suited 

to the problem of vertical fragmentation and especially gives a best 

solution. To validate our approach we compared our solution to 

two existing algorithms based on two early studies (Genetic 

algorithm & Apriori algorithm). 

Index Terms: Genetic Algorithm, Data mining, Physical 

Design, Vertical fragmentation.  

I. INTRODUCTION 

  The vertical fragmentation is a technique that allows the 

users to change the physical design of database; it allows the 

user to fragment a table in a database into a set of fragments 

having for objective to improve the performances of 

database. The primary key of the table T is replicated in every 

fragment in order to reconstruct the original table using the 

joint operation on different fragments. Vertical fragments are 

obtained using the projection operation of relational algebra. 

The vertical fragmentation is NP complete problem 

(Hammer & Niamir [6]); this is due to the huge number of 

possible alternatives to resolve the problem. For example 

with a table composed of m attributes, the number of 

alternatives obtained is calculated by the formula (1) (the Bell 

number): 
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For large values of m the number is calculated by formula (2):  

                                 mmm   0                                      (2) 

The following values allow us to have an idea about the 

vastness of the Bell number where: 

m = 5 ;  B(m)  ≈   52. 

m = 10 ;  B(m)  ≈  115 975. 

m = 15 ;  B(m)  ≈  1,38*109. 

m = 22 ;  B(m)  ≈  4,50*1015. 

m = 50 ;  B(m)  ≈  50*1048. 

Our major contribution is summarized in the proposal of a 

new developed approach for the purpose of providing not 

only a solution but an optimized solution for the problem of 
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vertical fragmentation, to validate this work we tested our 

algorithm on TPCH benchmark comparing it to two other 

variants Genetic algorithm and Apriori algorithm inspired by 

previous work. 

This paper is composed of three sections, in the first part, 

previous works in the domain are exposed with a more 

detailed explanation of the algorithms Genetic and Apriori, in 

the second section we will explain and develop the algorithm 

proposed in this study “Affiner”, and the last section is 

devoted to present different results. 

II. PREVIOUS WORK 

Vertical fragmentation on databases has been the subject 

of several studies; these studies converge towards a single 

goal: Optimizing the performance of the database. 

Approaches and orientations of researchers differ, and can be 

classified into three categories: 

Algorithms based on the affinity: This class of algorithms 

calculates the affinity between attributes and regroups the 

most affine attributes in the same fragment; several authors 

have studied this approach Hoffer & al [7], Navathe et al [8], 

Navathe et Ra [9]. 

Not that the approach “Affine” proposed in this study can 

be classified in this category of algorithms. 

Algorithms based on data mining: these are algorithms that 

generate attribute groups based on the methods of data 

mining; we can cite the work of Cheng & al [3], Gorla [4][4], 

and Song & Gorla [10]. 

Algorithms based on the cost model: these algorithms 

evaluate each fragmentation scheme with a cost model 

formula that estimates the response time of queries and 

applications running on the database. Genetic algorithms use 

the cost model as a fitness function. Among the works based 

on genetic algorithms: Hammer & Niamir [6], Song & Gorla 

[10], Angel & Zevala [2]. 

A. Genetic Algorithm:  

Genetic algorithms are meta-heuristic algorithms that 

solve combinatorial problems. Many studies are based on GA 

to optimize the physical design using the technique of vertical 

fragmentation. 

The basic principle of the algorithm is as follows: 

 In the first step, algorithm begins randomly by 

generating initial solutions (population); each element 

(individual) in the population is subject to evaluation by the 

fitness function to measure the quality of the solution 

provided by the fitness function. In our case the fitness 

function is the time estimated of execution of queries, in other 

words, the cost of execution of the workload on database. 

 After the operation of evaluation, comes the operation 

of selection of individuals in 

order to reproduce the 

new population, 
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Fig. 2. : Crossover and mutation 

according to Mendel's survival rule, the fittest element 

provides a strong offspring. 

 Follows the reproduction operation on the basis of 

pre-selected individuals using the operations of mutation and 

crossover that allow us to obtain a new generation that will, in 

principle, get a fitness score greater than or equal to the 

fitness of the previous generation. 

In general, at the end of the execution of the algorithm, we 

obtain an improved or better suited solution to the problem 

initially posed. 

Adaptation of Genetic Algorithm to the Vertical 

Fragmentation: 

 In this section, we explain the adaptation of the genetic 

algorithm for vertical fragmentation. 

The encoding: The encoding used is fairly simple:  

 Individual represents the way that the table will be 

fragmented vertically, in other words, it is a digital 

representation of the fragmentation.  

 The chromosome represents an individual and is a 

collection of integers. The length of the chromosome is 

equal to the number of attributes in the table, each 

integer expresses the partition to which the attribute will 

be assigned, and a population is the set of individuals in a 

generation. 

Example: suppose that R is the table with 10 attributes where: 

R = {A1, A2, A3 …, A10}, and the encoding according to the 

table: R = {5, 0, 5, 5, 0, 1, 1, 2, 3, 4} schematized in figure 1, 

it can be interpreted as follows: 

 Partition_0 : {1, 4} ;  

 Partition_1 : {5, 6} ; 

 Partition_2 : {7} ; 

 Partition_3 : {8} ;   

 Partition_4 : {9} ; 

 Partition_5 : {0, 2, 3}. 

Population: The initialization of the population occurs in a 

random way. Population size can be adjusted by the user, and 

the number of generations can also be specified by the user 

too. 

Crossover: A point is randomly chosen in the first 

chromosome, with a certain probability, it will be active for 

crossing with a probability Pct (specified in advance by the 

user). Another crossover point is randomly chosen on the 

second chromosome using the same process. 

Mutation: it performs a scan of each gene on chromosomes 

candidate in the population selected by the method of 

selection, and mutates it with a mutation probability 

(specified in advance by the user); each gene of the 

chromosome is a subject to a mutation probability Pm, if the 

gene is selected, it will randomly change the value. 

Selection: in the literature there are several algorithms 

proposed for the selection of individuals which we cite: 

roulette-wheel selection, elitist selection, etc..; we have opted 

to use the standard selection mode that allows us to select 

some of the chromosomes of the population to enable them to 

continue surviving. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This selection should be guided by the values of fitness, but 

the fitness function will be seen as a statistical probability of 

survival, not as the only determining factor for survival. In 

other words, the chromosomes with higher fitness values will 

be more likely selected than those with low fitness values, 

this rule is not always guaranteed, and individuals with low 

fitness can be selected but with a low probability. 

Illustration: Figure 3 schematizes the process of crossover 

and mutation to both chromosomes A and B. 

The fitness function: the fitness evaluation is based on the 

cost model; the cost model is used to estimate the time 

response of queries and applications that require interaction 

with the database. 

The cost (fitness) query being estimated is based on two 

operations:  

 The amount of data transferred between the processing 

kernel (CPU) and the data storage place. 

 Time of data processing in CPU, but in our case processing 

time CPU is neglected compared to the time of data 

transfer because it is quite low. 

Inspired from the work of Gorla & al [5], in this study the 

index access cost and the storage cost are not taken into 

account, the blocks estimate used is given in Yao (1977) 

[12]as the basis for cost of query processing. If there are n 

records divided into m blocks and if k records satisfying a 

query are distributed uniformly among the m blocks, then the 

number of blocks accessed by the query are equal to: 

 m (1 – (1 - 1/m)
k
 ) (Yao, 1977) [12]. 

In the partitioned database, we apply this formula for each 

Segment i accessed by the query q. Thus, the cost of 

processing a (retrieval) query q is estimated as shown in 

formula 1, where the first part computes the total number of 

blocks to be accessed from each of the Segment q_j 

partitions. The second part indicates the overhead to 

concatenate Segment q_j partitions in the memory. Where: 

Freq_i = frequency of query q_i 

Segment qj = Number of partition j required by the query q. 
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Kq : number of tuples satisfying a query q. 

T : Total number of 

tuples. 
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Fig. 1. : Individual Encoding. 
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Li : size of partition. 

Bs : block size . 
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Apriori Algorithm:  

Data mining is considered as a discipline related to the 

domain of decision making, it is a process that allows us to 

extract knowledge’s and valid and exploitable information’s 

from divert data sources. Such information can be used as the 

basis for decisions about marketing activities. 

The following terminology will allow us to understand the 

process of knowledge extraction: 

The items describe all articles or components of the studied 

subject, for example in the case of list shopping cart the items 

means all items available in the store (bread, milk, coffee, and 

bonbon). 

The association rule is an association between several 

articles to discover from a set of transactions, a set of rules that 

expresses a possible association between different items, 

meaning regularities between products, for example in 

supermarket we can deduce that if a customer buys milk and 

coffee together, he or she is likely to also buy sugar.  

An association rule is a rule of the form: If conditions then 

result, For example, a rule will be three items of the form:  

                If X and Y then Z:  (X and Y)  Z;                  (4) 

Rule expressing: If the Article X and Y appear 

simultaneously in a purchase then Article Z will appear. 

To select an association rule, we need to define the 

numerical threshold that will be used to calculate the benefit 

of such a rule. 

The support of a rule indicate the rate of records that satisfy 

the rule, it indicate the number of times, in rate terms, where 

the rule is applicable. 

Consider the set of shopping carts T, R is a group of 

products and U is the set of shopping carts containing the 

subgroup R, we have:  

                 100%
U

  upport(R) 









T
S                           (5)  

Not that |U| and |T| denote respectively the number of 

elements of U and T. 

Confidence is the ratio between the number of transactions 

where all the items contained in the rule appear, and the 

number of transactions in which items appear in the condition 

part. 

Consider the association rule 21 SSR  , where S1 and 

S2 represent a list of product. 

 
 

100%
S1Support

S2 S1,Support
  1)onfiance(S C                       (6) 

A rule is defined as solid if here support is greater than or 

equal to a fixed support, and here minimal confidence is 

greater than a predetermined confidence. 

Apriori is a variant of the most interesting data mining 

algorithms and has been the subject of our study is inspired 

from the work of Gorla [4]. 

What interested us in this approach (Apriori) is the reduced 

complexity of the operations achieving in general good 

results. 

Apriori is the result of work done by Agrawal & Srikant [1] 

is an algorithm for finding and extracting the association 

rules. 

The Apriori algorithm is based on the principle that any set 

of non-frequent subset is infrequent implying a reduction of 

the search space.  

The Apriori algorithm process: 

Generate the itemsets, 

1. Calculate the frequency of the itemsets, 

2. Retain the frequent itemsets having a support greater 

than or equal to the minimum support predefined. 

3. Generate from frequent itemsets robust association 

rules having sufficient confidence. 

Adaptation of the Apriori Algorithm: 

In summary, the work of Agrawal & Srikant [1] treat the 

adaptation of algorithm Apriori to generate vertical 

fragments follows this reasoning: 

Let A and B be two attributes in a relation, we calculate the 

confidence of the rule AB, if it is greater than the 

predefined minimum (min_conf), we have a strong argument 

to group A and B in the same partition.  

We note that the order of tow attributes in the same partition 

is not significant, to calculate the confidence between A and 

B we calculate the values of confidences for AB and for 

BA and the lowest value is chosen to represent the 

association between attributes A and B, thus : 

Confidence (A, B) = freq (A, B)/ max (freq (A), freq (B)).   (7)  

The proposed algorithm follows these steps: 

• discover large itemsets: Large itemsets represent the 

combinations of attributes, in this step we generate all 

possible association rules and we calculate the corresponding 

confidence that satisfy the condition support greater the 

predefined minimum support.  

• Filter large itemsets: we eliminate large itemsets having 

value of confidence less than predetermined minimum 

confidence (min_conf); this will significantly reduce the 

search space. 

• Finally, produce the partitions, and choose the best 

fragmentation pattern, if we obtain several solution we 

calculate the cost of itch model, by using the cost model 

formula inspired from the last work (Genetic Algorithm), 

then the best one is selected. 

For more details you can refer to the work of Gorla [4]. 

III. AFFINER ALGORITHM: 

The main idea of Affiner is based on the analysis and 

evaluation of the affinity between each attribute and the 

combination of high affinity attributes, thereby algorithm 

Affiner can be classified in the algorithms based on affinity 

class. 

One of the major advantages of this algorithm is that it 

performs a search on all attributes and deduces partitions 

without using a cost model, this will reduce processing time, 

and it is not easy to find the real estimating cost formula 

cause of the large 

difference between 
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architecture of DBMS’s, from one version to another, and 

from one architecture to another, this affect the formula of the 

cost model. 

In fact, after the analysis of each attribute separately, only 

the most interesting partitions will be retained for the 

composition of the final fragmentation pattern. Attributes 

will be compared one by one, relative to all the other 

attributes, taking into account the workload. 

The affinity score calculation will be based relative to each 

request. Attributes with higher affinity will be grouped in the 

same set, each set will present a partition, this operation will 

be repeated until all the attributes are evaluated. The retained 

attributes will be removed from the set of potential solutions. 

If an attribute has an acceptable affinity for all the attributes 

composing a given partition, it will be merged with this 

partition. 

 Affiner progress: The Affiner algorithm is stated as 

follows: 

1. Generating the attribute usage matrix AUM, 

2. Generating the attribute usage frequencies matrix, 

3. calculation of the affinity matrix, 

4. sorting the affinity matrix in descending order according 

to their affinity values, 

5. Deduce the fragmentation pattern starting from the 

ordered set. 

Generating the attribute usage matrix AUM:  
For a given table, the attribute usage matrix AUM is a 

matrix that maps the relationship between queries and 

attributes in this matrix if the query requires the attribute, the 

corresponding box will be assigned to "1", otherwise "0". 

  .
otherwise.      0

A uses q if   1
,

ij





ij AqAUM                                        (8) 

Example: Let T1 a table composed of attributes {A1, A2, A3, 

A4, A5, A6}, and this queries requests the following 

attributes, and the frequencies of all queries equals to 1. 

q1 = {A7}  

q2 = {A1, A8} 

q3 = {A2, A3, A4} 

q4 = {A2} 

q5 = {A1, A2, A3} 

q6 = {A2, A3, A6, A8} 

The attribute usage matrix is presented in Table 1. 

Generating the attribute usage frequency matrix: 

 It is a simple step where we calculate a new matrix AUFM 

based on the AUM, each element of the AUM is multiplied 

by the frequency of concerned request. 
ijAA  iij freq  '  

Where:  

 Aij: element line i , column j, in AUM; 

 A’ij: element line i, column j, in AUFM; 

 ferq_i:  frequencies of the query i. 

We suppose that for the previous example the frequencies of 

all queries are equal to 1, therefore the AUM will be similar 

to the AUFM. 

Affinity Calculating: In our study we have observed that 

the affinity between attributes is mainly governed by the 

number of queries using the attributes. If two attributes are 

invoked by the same queries it would be beneficial to put 

them in the same partition, otherwise it is more interesting to 

put them in separate partitions. 

Based on these assumptions, we propose the following 

formula to calculate the affinity between two attributes: 

Ai: column number i of the AUFM (attribute usage 

matrix), representing an attribute, 

Aik: element of the AUFM, column number (i) and line 

number (k). 

t: total number of queries. 

j

j
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                              (9) 

The affinity formula reveals the following properties: 

- The formula is symmetric : 

Affinity (Ai ; Aj) = Affinity(Aj ; Ai) 

-   1,0  ji AAAffinity  ; 

-   1, ji AAAffinityif then all queries that invoke Ai 

are the same with all the queries that invoke Aj; we deduce 

that each attribute is completely affine with himself, as 

follows:    1, ii AAAffinity ; 

-       5.0, ji AAAffinityif then half of queries that 

invoke Ai also invokes half of queries that invoke Aj; 

-        0, ji AAAffinityif All queries that invoke Ai do 

not make any appeal to Aj. 

Table 2 shows an example of affinity matrix calculated on the 

basis of the AUFM in Table 1. 

 

 

 

 

 A1 A2 A3 A4 A5 A6 A7 A8 

q1 0 0 0 0 0 0 1 0 

q2 1 0 0 0 0 0 0 1 

q3 0 1 1 1 0 0 0 0 

q4 0 1 0 0 0 0 0 0 

q5 1 1 0 1 0 0 0 0 

q6 0 1 1 0 0 1 0 1 

Table 1 : Attribute Usage Matrix 

 A1 A2 A3 A4 A5 A6 A7 A8 

A1 1 2/6 0 2/4 0 0 0 2/4 

A2   1 4/6 4/6 0 2/5 0 2/6 

A3    1 2/4 0 2/3 0 2/4 

A4     1 0 0 0 0 

A5      1 0 0 0 

A6       1 0 2/3 

A7        1 0 

A8         1 

Table 2 : Affinity Matrix 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-3 Issue-4, September 2013 

37 

 

Retrieval Number: D1172093413 /2013©BEIESP 

 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

 

 

Example:                            

 
          

    010100100100

01101100002
, 43




AAAffinity

   
  2

1

22

12
, 43 




AAAffinity  

 
          

    100100111100

11011100002
, 32




AAAffinity

   
  3

2

24

22
, 43 




AAAffinity  

We also calculate the affinity matrix, given the symmetry 

character of the affinity formula affinity; we obtain a 

symmetric matrix of values between 1 and 0. 

Sorting the affinity matrix:  
the step of sorting the matrix consists in sorting pairs of 

attributes affinities in descending order according to their 

affinity, we named this list  Ordre_Affinity, sorting will help 

us for generating partitions based on the most affine 

attributes. 

From the whole list Ordre_Affinity it will be retained 

attributes with affinities greater than or equal to 0.5 (Table 2, 

the gray box’s), which means that the value attributes are 

referenced by at least half of the same applications, the reason 

we choose to wear this condition (affinity ≥ 0.5), is the need 

to find a compromise between too many partitions so many 

joins between partitions (for rebuilding the table) which is 

quite expensive, and the scan of all attributes that a majority 

can be useless for the query, which will unnecessarily occupy 

resources, and we note that a partition schema that satisfies 

few queries can degrade performance for other queries. 

For the classification of attributes with a same affinity we 

calculate the number of calls in the attribute usage matrix 

AUFM , so we obtain an ordered set of affinities 

which will allow us the classification of attributes and the 

generation of partitions. 

 Illustration: Continuing with the same example we obtain 

the following set Ordre_Affinity: 

Ordre_Affinity = {(A3; A2), (A2; A4), (A3; A6), (A6 ;A8), 

(A3; A4), (A3; A8), (A1; A4), (A1; A8)}. 

Partition Generation: the process of generating partitions 

(set of attributes) is formulated as follows, the algorithm 

performs an analysis of each element (Ai, Aj) across 

Ordre_Affinity starting with descending for each element 

Ordre_Affinity (Ai, Aj) algorithm consider one of the 

following three cases: 

If both attributes do not belong to any partition (set of 

attributes), then the new partition will be generated 

combining the two attributes: 

Px = {Ai, Aj}; 

a) If an attribute does not belong to any partition and the 

other belongs to a partition then let:  yji PAA   &       

where Py denotes a partition; then we explore the possibility 

of assigning Ai at Py, in this case, Ai must satisfy an 

acceptable affinity (≥0.5) with all the elements of Py. The 

formula:   5.0,  xizi AAAffinityPA , otherwise 

Ai will not be assigned to any partition;  

b) Finally If both attributes belong to two distinct 

partitions: for example for the element (Ai, Aj) if  xi PA   ) 

and  
yj PA   and (Px ≠ Py) we investigate the possibility of 

merging the two partition Px and Py, to do, affinity between 

the whole elements of the two partitions must be (≥0.5), else 

the two partitions Px and Py will stay disjointed.  

The algorithm: 

- P0 :initial Table without partition; 

- Pk: Partition number k;  

- Ai : Attribute  number i ; 

- Affinity (Ax, Ay) : affinity value between Ax and  Ay; 

Begin: 

- Var k = 0 ; 

- For each element(Ax,Ay) 
    doAffinityOrdreAA yx   _,    

     thenPAandPAif yx      00   
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. delete ;

;
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then

AAAffinityPA

AAAffinityPA
if



  

 

End.  

IV. IMPLMENTATION AND RESULTS: 

The algorithms implemented in the developed tool that we 

named FRAGMAN are based on a theoretical estimation and 

provides the ability for fragmenting a virtual schema based 

on the real database scheme. To validate this study, we 

perform tests that we will present the different results, the 

results reflects the real vertical fragmentation of the database 

(benchmark) based on the recommendations of the 

algorithms. 

Between several different existing benchmarks, we have 

opted to choose the TPCH benchmark [11], a benchmark 

with the ability to create database schemas and tables large 

enough that allow us to carry out our research. TPCH [11] is 

also very easy to implement, and to generate the database and 

the script does not require very much knowledge in the field 

of databases, in addition, we have noted that the TPCH 

benchmark [11] is a reference for testing different DBMS 

(Oracle, IBM,…). 

For our application we generated the TPCH schema, and we 

chose to fragment the fact table called LineItem composed of 

16 attributes containing 6,001,215 records with a database 

size around 1GB: 

The attributes composing the LineItem table are: 

{L_ORDERKEY, l_partkey, l_suppkey, l_linenumber, 

l_quantity, 

l_extendedprice, 

l_discount, l_tax, 
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Table 3: Workload time execution  
l_returnflag, l_linestatus, l_shipdate, l_commitdate, 

l_receiptdate, l_shipinstruct, l_shipmode, l_comment}. 

The DBMS engine chosen to perform our tests is Oracle 

11G Release2, a very stable version of DBMS, widely used in 

modeling OLAP business databases (On-Line Analytical 

Processing), the computer in which we have done tests was a 

Sony Vaio computer, dotted with Intel Core i5 processor and 

4 GB of RAM, and hard disk of 500GB, the system is 

windows 7- 64 bits. 

Knowing that the Oracle DBMS does not support vertical 

fragmentation, several choices were presented to us to 

simulate the vertical fragmentation: “materialized view”, 

“composed index’s”, or “sub tables”; in our case we opted for 

“sub tables” which appears the most stable choice, and one 

that consumes fewer resources. 

To maximize storage space, we were forced to create a new 

primary key based on the primary key of the initial table 

LineItem, and duplicate it on the generated fragments, so to 

allow us to reconstruct the LineItem table from different 

generated fragments. 

Once we obtain the recommendations from the simulation 

using the tool developed, we proceed to the generation of sub 

tables representing recommendations, and then we have to 

rewrite all queries composing the workload so that they can 

be executed according to the generated fragments based on 

the new schema. 

We have chosen 5 queries from the queries proposed in the 

TPCH benchmark: (Q3, Q5, Q6, Q12, Q14), with frequencies 

of 1 occurrence for each query (refer to the Table 5 in the 

appendix). 

Table 3 presents the results of the query execution on a real 

database, based on the TPCH benchmark. The query 

execution time is estimated in seconds; see more details in 

table 5 in the appendix. 

Ranked in descending order, in the Table 3, the values 

obtained represent respectively the execution cost which: 

- The LineItem table is not partitioned, 

- LineItem partitioned according to the Apriori 

recommendations, 

- LineItem partitioned according to the Genetics 

recommendations, 

- LineItem partitioned according to the 

recommendations of the Affiner Algorithm. 

Based on actual results we note that the algorithm Affiner 

presents the best results compared with Genetic and Apriori 

algorithm’s, the performance gain in execution time 

workload decreased significantly with a rate of 70 %, which 

is considerable. 

We emphasize that the results are based on the work load 

aroused, which means that the test results can vary depending 

on the workload. 

 

 

 

V. CONCLUSION  

In this paper we have focused our study to test the vertical 

fragmentation on the centralized row-oriented DBMS, our 

choice was to test two approaches which are Genetic and 

Apriori algorithms and as contribution we proposed a third 

algorithm named Affiner. 

This study has allowed us to simulate the application of the 

vertical fragmentation on the row-oriented databases and data 

warehouses. 

The Affiner algorithm seems well respond to the resolution 

of the problem of Vertical Fragmentation.  

As perspective this algorithm can be compared with other 

algorithms based on affinities and tested on distributed 

databases or even adapted on other models of physical design 

techniques, such as horizontal fragmentation. 

Although the results appear to be convincing from an 

experimental point of view, but in practice it not the case, 

because the most common form known to implement vertical 

fragmentation on row-oriented databases is to create 

materialized views or sub tables representing the fragments. 

But this form does not meet the expectations of managers and 

users of databases; the reason is that the performance of a 

fragmented schema falls when queries are of a complex type 

or requires a lot of operations of joins and aggregations. 

The vertical fragmentation will only have sense if we find 

the right and easy solution to apply on the row-oriented 

databases, and obtain good results on all different types of 

queries, as is the case for horizontal fragmentation. This has 

motivated us to continue in this way and contribute to provide 

a suitable architecture for the Vertical Fragmentation on 

row-oriented databases, a solution for both OLTP model 

(On-line Transaction Processing) and OLAP model (On-line 

Analytical Processing). 

VI. BIBLIOGRAPHIE : 

[1] Agrawal, R and Srikant, R. “Fast algorithms for mining association 

rules in large databases”. in 20th International VLDB, pages 487-499, 

Santiago, Chile, September 1994. 
[2] Angel, F. & al. Taddei-Zavala “Simultaneous Vertical Fragmentation 

and Segment Assignment in Distributed Data Bases using Genetic 

Algorithms”. 
[3] Cheng. C.H; & Lee, W-K; Wong, K-F, “A Genetic Algorithm-Based 

Clustering Approach for Database Partitioning” IEEE Transactions on 

Systems, Man, and Cybernetics, 32(3), 2002, 215-230. 33.  
[4] Gorla, N. & Pang Wing “vertical fragmentation in Databases Using 

Data-Mining technique”, IGI Global Vol.4, Issue 3. 2008. 

[5] Gorla, N. “A Methodology for Vertically Partitioning in a 
Multi-Relation Database Environment”, JCS&T Vol.7 No. 3 October 2007. 

[6] Hammer, M. & Niamir, B. “A heuristic approach to attribute 

partitioning. In Proceedings ACM SIGMOD Int. Conf. on Management of 
Data”, (Boston, Mass., 1979), ACM, New York.  

[7] Hoffer, J. & Severance,D. “The Uses of Cluster Analysis in Physical 

Database Design”,  Proc in 1st International Conference on VLDB, 
Framingham, MA, 1975.  

[8] Navathe, S. & Ceri,S. & Weiderhold,G. and Dou,J. “Vertical 

Partitioning Algorithms for Database Design” ACM Transactions on 
Database Systems, Vol. 9, No. 4, 1984.  

[9] Navathe, S. & Ra, M. “Vertical Partitioning for Database Design: A 

Graphical Algorithm”. ACM SIGMOD, Portland, Juin 1989. 
[10] Song, S.K. & Gorla, N., “A genetic Algorithm for Vertical 

Fragmentation and Access Path Selection,” The Computer Journal, vol. 45, 

no. 1, 2000, pp 81-93. 
[11] TPCH: ad-hoc, decision 

support benchmark. ” 

Transaction Processing 

Database schema 
Workload time 

time (Second’s) 

Reduction 

rate 

Initial table (LineItem) 76,190 - 

Fragmented  table by 

Apriori Algorithm 
65,870 13.54% 

Fragmented  table by 

Genetic  Algorithm 
52,581 30.99% 

Fragmented  table by 

Affiner Algorithm 
29,702 70.298% 
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APPENDIX 

 

Table 4: Workload time execution details. 

 

 

Queries SQL core 

Q3 

Select  l_orderkey, sum(l_extendedprice * (1 - l_discount)) as revenue, o_orderdate, o_shippriority  
from  customer, orders, lineitem  

where  c_mktsegment = ':1' and c_custkey = o_custkey and l_orderkey = o_orderkey  and o_orderdate < date ':2'  

     and  l_shipdate > date ':2'  group by  l_orderkey, o_orderdate, o_shippriority order by  revenue desc, o_orderdate; 

Q5 

select  n_name, sum(l_extendedprice * (1 - l_discount)) as revenue 

from customer, orders, lineitem, supplier, nation, region 
where  c_custkey = o_custkey  and l_orderkey = o_orderkey and l_suppkey = s_suppkey  and c_nationkey = s_nationkey 

   and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = ':1' and o_orderdate >= date ':2' 

  and  o_orderdate < date ':2' + interval '1' year 
group by n_name order by revenue desc; 

Q6 

select sum(l_extendedprice * l_discount) as revenue 

from lineitem 

where l_shipdate >= date ':1' and l_shipdate < date ':1' + interval '1' year and l_discount between :2 - 0.01 and :2 + 0.01 
  and l_quantity < :3; 

Q12 

Select l_shipmode, sum(case when o_orderpriority = '1-URGENT' or o_orderpriority = '2-HIGH' then 1 else 0 end) as 

high_line_count, sum(case when o_orderpriority <> '1-URGENT' and o_orderpriority <> '2-HIGH' then 1 else 0 end) as 

low_line_count 

from orders, lineitem 

where o_orderkey = l_orderkey and l_shipmode in (':1', ':2') and l_commitdate < l_receiptdate and l_shipdate < l_commitdate 

 and  l_receiptdate >= date ':3' and  l_receiptdate < date ':3' + interval '1' year 
group by l_shipmode order by l_shipmode; 

Q14 

select 100.00 * sum(case when p_type like 'PROMO%' then  

l_extendedprice * (1 - l_discount) else 0 end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue 

from lineitem, part 
 where l_partkey = p_partkey and l_shipdate >= date ':1' and l_shipdate < date ':1' + interval '1' month; 

Table 5: the workload detail. 

 

 

Table 

Lineitem 
Q3 Q5 Q6 Q12 Q14 

Workload 

time (Scd) 

Reduction 

rate 

Initial table 14,086 17,144 13,810 16,870 14,280 76,190 - 

Fragmented   

by Apriori 
2,565 17,725 6,970 15,845 29,735 65,870 13.54% 

Fragmented  

by Genetic 
5,741 8,807 14,605 17,595 14,640 52,581 30.99% 

Fragmented  

by Affiner 
0.593 7,191 2,184 12,558 7,176 29,702 70.298% 

http://www.tpc.org/tpch

