
International Journal of Innovative Technology and Exploring Engineering (IJITEE) 
ISSN: 2278-3075, Volume-4 Issue-5, October 2014 

  

29 

 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

BIST based can Bus Control System Implemented 
into FPGA 

Amit Kumar Bhadrawat, Sourabh Sharma  

Abstract— Electronics components in many application required 
maximum level of fault tolerance and high   reliability . 
Application like   avionic, railway ,deep space mission can serve as 
an example of these applications. In these applications, 
electronics components are exhibited to the environment 
conditions, from among them especially cosmic radiation can 
have an undesired and destructive effect. In this paper,the design 
and implementation of BIST  based CAN bus control system into 
FPGA  is described. The bus control system uses CAN Aerospace 
application protocol .the fault tolerant features of the developed 
system are improved by BIST architecture. Then, experiments 
With SEU injection into the FPGA configuration memory with 
both non-TMR and BIST architectures are described, the results 
presented and evaluated.         

Keywords- CAN bus, BIST, fault, fault tolerant, FPGA, TMR.  

I.  INTRODUCTION 

This paper is about fault tolerant CAN bus control system. we 
are using FPGA as a platform for implementation. We have 
used BIST method to reduce complexity of system. The 
complexity of digital systems have a significant impact on 
reliability and diagnostic features of these systems. 
FPGA-based systems are becoming increasingly popular for 
space-based applications due to their high-throughput 
capabilities and relatively low cost. When faults are detected 
in any part of the system implemented into FPGA then a 
possibility to reconfigure it and extend its lifetime exists. 
SRAM-based FPGAs are susceptible to radiation-induced 
Single Event Upsets. SEU causes the change in the state of a 
digital memory element caused by an ionizing particle. As the 
ionizing particle passes through the device, charge can be 
transferred from one node to another. This charge transfer can 
lower the voltage of a memory cell and change its internal 
state. SEU occurrence in FPGA memory can be seen as a big 
problem for many digital systems. Therefore, many FT 
techniques have been proposed and tested for mitigating 
SEUs in systems implemented into FPGAs. 

II.  FPGA  

A Field-Programmable Gate Array is an FPD featuring a 
general structure that allows very high logic capacity. 
Whereas CPLDs feature logic resources with a wide number 
of inputs (AND planes), FPGAs offer more narrow logic 
resources. FPGAs also offer a higher ratio of flip-flops to 
logic resources than do CPLDs.  
 
 
 
Manuscript Received on October 2014. 

Amit Kumar Bhadrawat , M.Tech Student Trinity Institute of 
Technology and Research, Bhopal, India. 

Sourabh Sharma, Asst. Prof., (EC) Department, Trinity Institute of 
Technology and Research, Bhopal, India. 

Multiple methods of FPGA programming have been devised, 
including antifuses, SRAM, and EEPROM/FLASH. 
Currently, SRAM-based FPGAs are the most popular, due to 
the high number of reconfiguration cycles they support and 
the relative ease of programming. An illustration of a basic 
FPGA architecture is given in Figure.1. Switch boxes at wires 
segment intersections provide routability through the use of 
programmable interconnect points (PIPs), which are 
programmable connections between wires. The switch boxes 
and wire segments form an interconnect matrix. Logic blocks 
tap into this matrix using connector blocks (also known as 
input/output multiplexers).The logic blocks are multi-input, 
multi-output digital circuits capable of implementing both 
combinational and sequential designs. They are usually made 
up of lookup tables (small ROMs), multiplexers, and 
flip-flops, although alternative architectures have been 
devised. Multiple blocks are connected together through the 
programmable routing matrix to form complex designs, such 
as high-resolution multipliers and state machines .Specific 
FPGA architectures(i.e., Xilinx Virtex, Altera Apex) have 
additional features such as direct PLB to-PLB connections 
(not part of global routing matrix), carry logic (so that PLBs 
may be chained into adders), and multi-row and column 
length wires. These features fit within the framework given in 
Figure.1 by simply passing through connector and/or 
switchboxes. 

 
Fig. 1: Generic FPGA Architecture 

III.  FAULT  

A. CAUSES OF DEGRADATION 

There are two types of faults which can affect FPGAs. These 
are highly relevant as some of the techniques which have been 
developed in response to them can also be applied to faults 
caused by degradation. The first of these is manufacturing 
defects. Manufacturing defects can be exhibited as circuit 
nodes which are stuck-at 0 or 1 or switch too slowly to meet 
the timing specification. Defects also affect the interconnect 
network and can cause short or open circuits and stuck open 



BIST based can Bus Control System Implemented into FPGA 

30 
Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

or closed pass transistors. The second type of fault which is 
widely discussed in relation to FPGAs comprises of Single 
Event Upsets (SEUs) and Single Event Transients (SETs) 
caused by certain types of radiation. This is of particular 
concern to aviation, nuclear research and space applications 
where devices are exposed to higher levels of radiation. The 
most commonly considered failure mode is the flipping of an 
SRAM cell in the configuration memory. This causes an error 
in the logic function which persists until the configuration 
memory is refreshed in a process known as scrubbing. this 
recovery method is not applicable to permanent faults caused 
by degradation, ways of detecting SEU faults are relevant. 
Figure 2. shows  the failure rate after the chip has left the 
factory and before the end of its life is typically constant and 
is due to environmental stresses. The time axis may be 
compressed, possibly significantly, if the device is used in a 
harsh environment 

 

IV.  LEVEL OF FAULT TOLERANCE  

FPGA fault tolerance methods can be divided into two 
groups, based on the level of abstraction at which faults are 
tolerated. The first group attempts to deal with faults at the 
level of the FPGA hardware. The second group of methods 
takes a higher-level approach, tolerating faults at the level of 
the FPGA configuration 

A. Device Level 

Attempt to construct a fault-free array from a larger array 
containing faulty resources. When faults are discovered, 
permanent routing and/or logic changes are made within the 
FPGA, selecting redundant hardware resources to replace the 
faulty ones. Because alterations must be made at the hardware 
level, DL methods are generally only used for yield 
enhancement. However, the fact that modifications are made 
at the hardware level means that the tolerated faults are 
transparent to the end-user tools 

B. Configuration Level 

Methods treat the FPGA as a set of abstract resources, often 
represented as a graph structure, without considering the 
actual physical structure of the device. When a circuit is 
placed-and-routed, fault-free resources are selected from the 
set of available resources. The status of resources as faulty vs. 
fault-free is considered each time a circuit is 
placed-and-routed, so CL methods are able to tolerate new 
faults in the field. Obviously CL methods are not transparent 
to the tools, so tolerance of new faults requires additional 
configuration time. 

V. METHODS  FOR FAULT TOLERANT  

Device-level fault tolerance was initially conceived as a 
method for yield enhancement .The first configurable VLSI 
arrays were not reconfigurable, so faults could not be 
tolerated dynamically. However, it was perfectly feasible to 
create a fault-free array out of a larger array containing faulty 
processing elements by making permanent configuration 
changes during manufacture. Configuration-level fault 
tolerance attempts to map a system function to a set of 
fault-free resources. Taking the system function into account 
allows methods to make more informed decisions about how 
faults should be dealt with. A device-level method must 
consider any resource that is faulty to be unusable .A 
configuration-level method, however, may decide that a given 
fault does not affect the system, and that the resource is still 
usable. For instance, if a LUT bit is stuck at ‘1’, and the 
system function calls for that particular bit to have a value of 
‘1’, then the fault does not affect the system and can be 
ignored. This reasoning also holds true for interconnect 
.Configuration-level FT does have drawbacks, the most 
notable being that an external processor is generally required 
to analyze and reconfigure the system. 

A. Fault Detection  

The first step of a fault-tolerant scheme is fault detection.   
Fault detection has two purposes; firstly, it alerts the 
supervising process that action needs to be taken for the 
system to remain operational and, secondly, it identifies 
which components of the device are defective so that a 
solution can be determined. These two functions may be 
covered simultaneously, or it may be a multi-stage process 
comprising of different strategies. Fault detection methods 
can be categorized into three broad types: 
1. Redundant/concurrent error detection uses addit- ional  
logic as a means of detecting when a logic function is not 
generating the correct output. 
2. Off-line test methods cover any testing which is carried out 
when the FPGA is not performing its operational function. 
3. Roving test methods perform a progressive scan of the 
FPGA structure by swapping blocks of functionality with a 
block carrying out a test function. 

B. Fault Tolerance 

Hardware level repair has the advantage of being transparent 
to the configuration. This makes repair a simple process, as 
the repair controller does not need any knowledge of the 
placement and routing of the design. Another benefit is that 
the timing performance of the repaired FPGA can be 
guaranteed, as any faulty element will be replaced by a 
pre-determined alternative.Hardware level fault tolerance has 
a drawback in that it can tolerate just a low number of faults 
for a given overhead and there are likely to be certain patterns 
of faults which cannot be tolerated. Fault tolerant 
methodologies will focus on area overhead, system 
performance impact, reconfiguration complexity, and 
tolerable fault patterns. Reconfiguration complexity will only 
be used to compare configuration-level methodologies since 
DL methodologies do not involve any explicit reconfiguration 
of the circuit. 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 
ISSN: 2278-3075, Volume-4 Issue-5, October 2014 

  

31 

 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

VI.  CONTROLLER AREA NETWORK (CAN) 

CAN is a serial communications protocol which efficiently 
supports distributed real time control with a very high level of 
security. Its domain of application ranges from high speed 
networks to low cost multiplex wiring. In automotive 
electronics, engine control units, sensors, anti-skid systems, 
etc. are connected using CAN with bitrates up to 1 Mbit/s. At 
the same time it is cost effective to build into vehicle body 
electronics, e.g. lamp clusters, electric windows etc. To 
achieve design transparency and implementation flexibility 
CAN has been subdivided into different layers. 
• the (CAN-) object layer 
• the (CAN-) transfer layer 
• the physical layer 
CAN has the following properties: 
• prioritization of messages 
• guarantee of latency times 
• configuration flexibility 
• multicast reception with time synchronization 
• system wide data consistency 
• multimaster 
• error detection and signalling 
• automatic retransmission of corrupted messages as soon as 
the bus is idle again 
• distinction between temporary errors and permanent failures 
of nodes and autonomous switching off of defect nodes 
Message transfer is manifested and controlled by four 
different frame types: 
A DATA FRAME carries data from a transmitter to the 
receivers. 
A REMOTE FRAME is transmitted by a bus unit to request 
the transmission of the DATA FRAME with the same 
IDENTIFIER. 
An ERROR FRAME is transmitted by any unit on detecting a 
bus error. 
An OVERLOAD FRAME is used to provide for an extra 
delay between the preceding and the succeeding DATA or 
REMOTE FRAMEs. 
DATA FRAMEs and REMOTE FRAMEs are separated from 
preceding frames by an INTERFRAME SPACE. 
Flow of architecture is shown in fig.3. 

 

               Fig. 3: Flow of Architecture of CAN 

Input is taken from any sensor placed in the car (eg: engine) 
and provided to ADC, at the output of ADC we get a 8 bit 
digital value which is fed to the CAN host (CAN controller). 
The CAN host decodes the output obtained from the ADC and 
forms a particular message using CAN format and transmits it 
using CAN protocol. 

VII.  BUILT -IN-SELF TEST 

On-line testing is fast becoming a basic feature of digital 
systems, not only for critical applications, but also for 
highly-available applications. To achieve the goals of high 
error coverage and low error latency, advanced hardware 
features for testing and monitoring must be included. One 
such hardware feature is built-in self-test (BIST), a technique 
widely applied in manufacturing testing BIST is a 
design-for-testability technique that places the testing 
functions physically with the CUT, as illustrated in Figure .4. 
In normal operating mode, the CUT receives its inputs X from 
other modules and perform the function for which it was 
designed. In test mode, a test pattern generator circuit TPG 
applies a sequence of test patterns  to the CUT, and the test 
responses are evaluated by a response monitor (RM). In the 
most common type of BIST, test responses are compacted in 
RM to form (fault) signatures. The response signatures are 
compared with reference signatures generated or store on 
chip, and the error signal indicates any discrepancies detected 
.Four primary parameters must be considered in develop in  
BIST methodology for digital systems. 

 
                      Fig. 4: Generic Flow of BIST 

Fault coverage: This is the fraction of faults of interest that 
can be exposed by the test patterns produced by TG and 
detected by RM. 
Test set size: This is the number of test patterns produced by 
the TG, and is closely linked to fault coverage. Generally, 
large test sets imply high fault coverage. However, for on-line 
testing, test set size must be kept small to reduce FL and EL. 
Hardware overhead: The extra hardware needed for BIST is 
considered to be overhead. In most digital systems, high 
hardware overhead is not acceptable, as discussed earlier. 
Performance penalty: This refers to the impact of BIST 
hardware on normal circuit performance such as its 
worst-case (critical) path delays. Overhead of this type is 
sometimes more important than hardware overhead. 

VIII.  MOTIVATION  AND GOALS OF THE  

RESEARCH 

With  growing interest in the use of SRAM based FPGAs in 
space and other radition environments , there is a greater need 



BIST based can Bus Control System Implemented into FPGA 

32 
Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

for efficient and effective fault tolerant design techniques 
specific to FPGAs. Triple modular redundancy  is common 
fault mitigation technique for FPGAs and has been 
successfully  demonstrated  by several organizations. 
Although TMR has been shown to significantly improve 
design reliability ,it carries a high overhead cost .At a 
minimum ,full TMR of a design requires three times the 
hardware to implement three identical copies of a given 
circuit .in addition additional logic is required to implement 
the majority logic voters .In the worst case , TMR can require 
up to six times the area of the original circuit .the additional 
hardwar resources required to triplicate the original circuit 
result in other secondary problems such as increased power 
and slower timing.  TMR  is a static hardware redundancy 
scheme for masking single faults in a digital circuit .Fig.5 . 

 
            Fig. 5: Generic Flow of TMR 

 Depicts the traditional method for TMR. A failure in any one 
of the three circuits copies will be masked by the majority 
voter output. In order for TMR to work properly in an FPGA  
there should be  no more than one upset in the configuration 
memory at any given time. More than one upset could defeat 
completely  the majority voters and result in a functional 
error.Two reasons exist why the TMR based design can be 
possibly attacked more often: 1) TMR based designs need a 
greater area than the non-TMR design; 2) TMR based design 
contain voter which is not in our experiments protected 
against defects in any way. As soon as the voter is attacked, 
the design is completely corrupted and does not work.  We 
worked with two versions of the design, non-TMR based 
design and BIST based  under the assumption that we have no 
clear information about the relation between the position of 
particular bit in the bitstream and the function implemented in 
FPGA.The goal of the research was to verify how successful 
the injection into both versions of the implementations is the 
goal is to verify this hypothesis and gain precise data. The 
results of our targeted activities in the area of CAN bus 
control system design and the verification of its resilience 
against SEU attacks will show in next research paper. 

IX.  CAN BUS CONTROL  SYSTEM DESIGN 

The implemented CAN Bus Control System allows to connect 
FPGA-based systems through CAN bus which is interfaced 
on the small PCB (Printed Circuit Board) module by the SPI 
interface. This module consists mainly of CAN Bus 
transceiver and CAN controller MCP2515  with integrated 
SPI interface. It implements CAN protocol version 2.0B  with 
maximal communication speed 1MB/s. MCP2515 contains 2 
buffers for received frames and 3 buffers for transmitted 
frames. It also contains several filters and masks for control of 
receiving process. The MCP2515 circuit is controlled via the 

SPI interface, several instructions can be used for reading or 
writing from/to registers and buffers. The SPI interface 
supports 0/0 and 1/1 modes, it is able to communicate with 
maximal clock 10 MHz. Asynchronous events on the CAN 
bus are handled by interrupt system. Our CAN control system 
supports standard 11-bit ID of transmitted CAN frames. The 
CAN ID value is also used to define priorities. The frames 
with lower ID have higher priority and are transferred 
preferentially. CAN frame contains 8B data field without any 
information about its meaning. To increase information value 
and the usability of CAN frame, CANAerospace application 
protocol was used . Protocol definition is widely open to user 
defined message types and protocol implementations. 
CANAerospace message extends data field in the CAN frame. 
Message is dived into header and data part, its specific 
structure is shown in Fig. 6. Message header contains Node 
ID for identification of transmitting or addressed station, Data 
type for the definition of message data format and size, 
Service ID for specification of used node service and Message 
code for order identification during sequential transfer of 
messages. CANAerospace protocol uses CAN ID for the 
identification of 7 basic types of messages and their priority. 
Each type of message has allocated specific channel defined 
by the range of IDs.   

Fig. 6: Format of CAN Aerospace Message 

The architecture of the control system is composed of 
application and communication part. In the communication 
part, CAN bus is controlled by CAN CTRL unit which uses 
the MCP2515 driver and SPI Master unit for communicating 
with the CAN module and controlling the MCP2515 circuit 
by SPI instructions. The main function of the CAN CTRL unit 
is to read and write CAN frames, to interrupt handling and 
provide configuration sequence for the MCP2515 circuit. The 
application part is formed by the CANAerospace calc. It 
provides basic mathematical functions for distributed 
computing via the CAN bus. Each function is operating as 
CANAerospace service in one defined channel. Except of 
mathematical functions, the calc implements basic IDS 
service for its identification as is required by the 
CANAerospace protocol for each such application. 

A.  BIST Implementation of CAN Bus Control 

For the experiments, the CAN bus control system was 
implemented as BIST  system to increase fault tolerant 
parameters, the architecture is shown in Fig 2. The control 
system is included into CAN host   unit. The unit can be 
replicated and all its inputs can be interconnected. The units 
have the following input signals: ADC_in, inject_fault, 
frame_tx tx_ctrl,clk, and rst asynchronous reset. All the 
outputs of CAN host units are connected to the inputs of 
comparator  which identifies the correct inputs and 
propagates them to its outputs. If, the output of comparator is 
“0” i.e. system_ok =”0”, then out will take out from second 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 
ISSN: 2278-3075, Volume-4 Issue-5, October 2014 

  

33 

 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

alternate path and if , here again system_ok =”0” then actuator 
transfer system control to the manual mode.  Flow diagram 
shown in fig.7. 

 
Fig. 7: Flow of BIST implementation of CAN Bus Control 

X. CONCLUSION  

In this research  paper , we are analyzing  fault tolerant 
properties of BIST based CAN control system design . We 
have Compare result of our analysis with TMR-based design 
and non-TMR based design  and also compare with 
Evaluation factors, like area ,cost, speed , complexity of 
system ,power consumption. We are expecting as our 
theoretical analysis this  design reduce system complexity 
,And  our proposed method will  provide online fault 
detection using BIST technique and improve  fault tolerant 
properties by providing alternate path when faulty value 
comes out. 

REFERENCES 
[1]  Microchip Technology Inc, “MCP2515 - Stand-Alone CAN Controller 

with SPI Interface,” November 2005. 
[2]  Robert Bosch GmbH, “CAN Specification 2.0,” BOSCH, Stuttgart, 

Technical specification, 1991. 
[3]  Michael Stock, “CANAerospace - Interface specification for airborne 

CAN applications V 1.7,” Stock Flight Systems, 82335 Berg/Farchach, 
[4]  G. Asadi, S. G. Miremadi, H. R. Zarandi, and A. Ejlali, “Evaluation of 

fault-tolerant designs implemented on sram-based fpgas,” in 
Proceedings of the 10th IEEE Pacific Rim International Symposium 
on Dependable Computing (PRDC’04). Washington, DC, USA: IEEE 
Computer Society, 2004, pp. 327–332. 

[5]  J. A. Cheatham, J. M. Emmert, and S. Baumgart, “A survey of fault 
tolerant methodologies for fpgas,” ACM Trans. Des. Autom. Electron. 
Syst., vol. 11, no. 2, pp. 501–533, 2006. 

[6]  Emmert j. and Bhatia D.K. 1997 “Partial reconfiguration of FPGA 
mapped design with application for fault tolerance and yield 
enhancement.in proceedings of the 7th international workshop on field 
prommeble logic and application 141-150. 

[7]  Fussele D.and vaema p. 1982.fault tolerance wafer scale architector 
for FPGA.in proceeding of the 9th annual symposium on computer 
architecture 190-198. 

[8] Green J.W. and gamal A.E. 1984 configuration of FPGA arrays in the 
presence of defect 4(oct) 697-717.  

 

 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 


