
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-4 Issue-5, October 2014

29

Retrieval Number: E1821104514 /2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

BIST based can Bus Control System Implemented

into FPGA
Amit Kumar Bhadrawat, Sourabh Sharma

Abstract— Electronics components in many application

required maximum level of fault tolerance and high reliability .

Application like avionic, railway ,deep space mission can serve

as an example of these applications. In these applications,

electronics components are exhibited to the environment

conditions, from among them especially cosmic radiation can

have an undesired and destructive effect. In this paper,the design

and implementation of BIST based CAN bus control system into

FPGA is described. The bus control system uses CAN Aerospace

application protocol .the fault tolerant features of the developed

system are improved by BIST architecture. Then, experiments

With SEU injection into the FPGA configuration memory with

both non-TMR and BIST architectures are described, the results

presented and evaluated.

Keywords- CAN bus, BIST, fault, fault tolerant, FPGA,

TMR.

I. INTRODUCTION

This paper is about fault tolerant CAN bus control system. we

are using FPGA as a platform for implementation. We have

used BIST method to reduce complexity of system. The

complexity of digital systems have a significant impact on

reliability and diagnostic features of these systems.

FPGA-based systems are becoming increasingly popular for

space-based applications due to their high-throughput

capabilities and relatively low cost. When faults are detected

in any part of the system implemented into FPGA then a

possibility to reconfigure it and extend its lifetime exists.

SRAM-based FPGAs are susceptible to radiation-induced

Single Event Upsets. SEU causes the change in the state of a

digital memory element caused by an ionizing particle. As

the ionizing particle passes through the device, charge can be

transferred from one node to another. This charge transfer

can lower the voltage of a memory cell and change its

internal state. SEU occurrence in FPGA memory can be seen

as a big problem for many digital systems. Therefore, many

FT techniques have been proposed and tested for mitigating

SEUs in systems implemented into FPGAs.

II. FPGA

A Field-Programmable Gate Array is an FPD featuring a

general structure that allows very high logic capacity.

Whereas CPLDs feature logic resources with a wide number

of inputs (AND planes), FPGAs offer more narrow logic

resources. FPGAs also offer a higher ratio of flip-flops to

logic resources than do CPLDs.

Manuscript Received on October 2014.

Amit Kumar Bhadrawat, M.Tech Student Trinity Institute of Technology

and Research, Bhopal, India.

Sourabh Sharma, Asst. Prof., (EC) Department, Trinity Institute of

Technology and Research, Bhopal, India.

Multiple methods of FPGA programming have been devised,

including antifuses, SRAM, and EEPROM/FLASH.

Currently, SRAM-based FPGAs are the most popular, due to

the high number of reconfiguration cycles they support and

the relative ease of programming. An illustration of a basic

FPGA architecture is given in Figure.1. Switch boxes at

wires segment intersections provide routability through the

use of programmable interconnect points (PIPs), which are

programmable connections between wires. The switch boxes

and wire segments form an interconnect matrix. Logic blocks

tap into this matrix using connector blocks (also known as

input/output multiplexers).The logic blocks are multi-input,

multi-output digital circuits capable of implementing both

combinational and sequential designs. They are usually made

up of lookup tables (small ROMs), multiplexers, and

flip-flops, although alternative architectures have been

devised. Multiple blocks are connected together through the

programmable routing matrix to form complex designs, such

as high-resolution multipliers and state machines .Specific

FPGA architectures(i.e., Xilinx Virtex, Altera Apex) have

additional features such as direct PLB to-PLB connections

(not part of global routing matrix), carry logic (so that PLBs

may be chained into adders), and multi-row and column

length wires. These features fit within the framework given

in Figure.1 by simply passing through connector and/or

switchboxes.

Fig. 1: Generic FPGA Architecture

III. FAULT

A. Causes Of Degradation

There are two types of faults which can affect FPGAs. These

are highly relevant as some of the techniques which have

been developed in response to them can also be applied to

faults caused by degradation. The first of these is

manufacturing defects. Manufacturing defects can be

exhibited as circuit nodes which are stuck-at 0 or 1 or switch

too slowly to meet the timing

specification. Defects also

BIST based can Bus Control System Implemented into FPGA

30

Retrieval Number: E1821104514 /2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

affect the interconnect network and can cause short or open

circuits and stuck open or closed pass transistors. The second

type of fault which is widely discussed in relation to FPGAs

comprises of Single Event Upsets (SEUs) and Single Event

Transients (SETs) caused by certain types of radiation. This

is of particular concern to aviation, nuclear research and

space applications where devices are exposed to higher levels

of radiation. The most commonly considered failure mode is

the flipping of an SRAM cell in the configuration memory.

This causes an error in the logic function which persists until

the configuration memory is refreshed in a process known as

scrubbing. this recovery method is not applicable to

permanent faults caused by degradation, ways of detecting

SEU faults are relevant. Figure 2. shows the failure rate after

the chip has left the factory and before the end of its life is

typically constant and is due to environmental stresses. The

time axis may be compressed, possibly significantly, if the

device is used in a harsh environment

IV. LEVEL OF FAULT TOLERANCE

FPGA fault tolerance methods can be divided into two

groups, based on the level of abstraction at which faults are

tolerated. The first group attempts to deal with faults at the

level of the FPGA hardware. The second group of methods

takes a higher-level approach, tolerating faults at the level of

the FPGA configuration

A. Device Level

Attempt to construct a fault-free array from a larger array

containing faulty resources. When faults are discovered,

permanent routing and/or logic changes are made within the

FPGA, selecting redundant hardware resources to replace the

faulty ones. Because alterations must be made at the

hardware level, DL methods are generally only used for yield

enhancement. However, the fact that modifications are made

at the hardware level means that the tolerated faults are

transparent to the end-user tools

B. Configuration Level

Methods treat the FPGA as a set of abstract resources, often

represented as a graph structure, without considering the

actual physical structure of the device. When a circuit is

placed-and-routed, fault-free resources are selected from the

set of available resources. The status of resources as faulty vs.

fault-free is considered each time a circuit is

placed-and-routed, so CL methods are able to tolerate new

faults in the field. Obviously CL methods are not transparent

to the tools, so tolerance of new faults requires additional

configuration time.

V. METHODS FOR FAULT TOLERANT

Device-level fault tolerance was initially conceived as a

method for yield enhancement .The first configurable VLSI

arrays were not reconfigurable, so faults could not be

tolerated dynamically. However, it was perfectly feasible to

create a fault-free array out of a larger array containing faulty

processing elements by making permanent configuration

changes during manufacture. Configuration-level fault

tolerance attempts to map a system function to a set of

fault-free resources. Taking the system function into account

allows methods to make more informed decisions about how

faults should be dealt with. A device-level method must

consider any resource that is faulty to be unusable .A

configuration-level method, however, may decide that a

given fault does not affect the system, and that the resource is

still usable. For instance, if a LUT bit is stuck at „1‟, and the

system function calls for that particular bit to have a value of

„1‟, then the fault does not affect the system and can be

ignored. This reasoning also holds true for interconnect

.Configuration-level FT does have drawbacks, the most

notable being that an external processor is generally required

to analyze and reconfigure the system.

A. Fault Detection

The first step of a fault-tolerant scheme is fault detection.

Fault detection has two purposes; firstly, it alerts the

supervising process that action needs to be taken for the

system to remain operational and, secondly, it identifies

which components of the device are defective so that a

solution can be determined. These two functions may be

covered simultaneously, or it may be a multi-stage process

comprising of different strategies. Fault detection methods

can be categorized into three broad types:

1. Redundant/concurrent error detection uses addit- ional

logic as a means of detecting when a logic function is not

generating the correct output.

2. Off-line test methods cover any testing which is carried out

when the FPGA is not performing its operational function.

3. Roving test methods perform a progressive scan of the

FPGA structure by swapping blocks of functionality with a

block carrying out a test function.

B. Fault Tolerance

Hardware level repair has the advantage of being transparent

to the configuration. This makes repair a simple process, as

the repair controller does not need any knowledge of the

placement and routing of the design. Another benefit is that

the timing performance of the repaired FPGA can be

guaranteed, as any faulty element will be replaced by a

pre-determined alternative.Hardware level fault tolerance

has a drawback in that it can tolerate just a low number of

faults for a given overhead and there are likely to be certain

patterns of faults which cannot be tolerated. Fault tolerant

methodologies will focus on area overhead, system

performance impact,

reconfiguration complexity,

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-4 Issue-5, October 2014

31

Retrieval Number: E1821104514 /2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

and tolerable fault patterns. Reconfiguration complexity will

only be used to compare configuration-level methodologies

since DL methodologies do not involve any explicit

reconfiguration of the circuit.

VI. CONTROLLER AREA NETWORK (CAN)

CAN is a serial communications protocol which efficiently

supports distributed real time control with a very high level

of security. Its domain of application ranges from high speed

networks to low cost multiplex wiring. In automotive

electronics, engine control units, sensors, anti-skid systems,

etc. are connected using CAN with bitrates up to 1 Mbit/s. At

the same time it is cost effective to build into vehicle body

electronics, e.g. lamp clusters, electric windows etc. To

achieve design transparency and implementation flexibility

CAN has been subdivided into different layers.

• the (CAN-) object layer

• the (CAN-) transfer layer

• the physical layer

CAN has the following properties:

• prioritization of messages

• guarantee of latency times

• configuration flexibility

• multicast reception with time synchronization

• system wide data consistency

• multimaster

• error detection and signalling

• automatic retransmission of corrupted messages as soon as

the bus is idle again

• distinction between temporary errors and permanent

failures of nodes and autonomous switching off of defect

nodes Message transfer is manifested and controlled by four

different frame types:

A DATA FRAME carries data from a transmitter to the

receivers.

A REMOTE FRAME is transmitted by a bus unit to request

the transmission of the DATA FRAME with the same

IDENTIFIER.

An ERROR FRAME is transmitted by any unit on detecting a

bus error.

An OVERLOAD FRAME is used to provide for an extra

delay between the preceding and the succeeding DATA or

REMOTE FRAMEs.

DATA FRAMEs and REMOTE FRAMEs are separated

from preceding frames by an INTERFRAME SPACE.

Flow of architecture is shown in fig.3.

 Fig. 3: Flow of Architecture of CAN

Input is taken from any sensor placed in the car (eg: engine)

and provided to ADC, at the output of ADC we get a 8 bit

digital value which is fed to the CAN host (CAN controller).

The CAN host decodes the output obtained from the ADC

and forms a particular message using CAN format and

transmits it using CAN protocol.

VII. BUILT-IN-SELF TEST

On-line testing is fast becoming a basic feature of digital

systems, not only for critical applications, but also for

highly-available applications. To achieve the goals of high

error coverage and low error latency, advanced hardware

features for testing and monitoring must be included. One

such hardware feature is built-in self-test (BIST), a technique

widely applied in manufacturing testing BIST is a

design-for-testability technique that places the testing

functions physically with the CUT, as illustrated in Figure

.4. In normal operating mode, the CUT receives its inputs X

from other modules and perform the function for which it

was designed. In test mode, a test pattern generator circuit

TPG applies a sequence of test patterns to the CUT, and the

test responses are evaluated by a response monitor (RM). In

the most common type of BIST, test responses are compacted

in RM to form (fault) signatures. The response signatures are

compared with reference signatures generated or store on

chip, and the error signal indicates any discrepancies

detected .Four primary parameters must be considered in

develop in BIST methodology for digital systems.

 Fig. 4: Generic Flow of BIST

Fault coverage: This is the fraction of faults of interest that

can be exposed by the test patterns produced by TG and

detected by RM.

Test set size: This is the number of test patterns produced by

the TG, and is closely linked to fault coverage. Generally,

large test sets imply high fault coverage. However, for

on-line testing, test set size must be kept small to reduce FL

and EL. Hardware overhead: The extra hardware needed for

BIST is considered to be

overhead. In most digital

systems, high hardware

BIST based can Bus Control System Implemented into FPGA

32

Retrieval Number: E1821104514 /2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

overhead is not acceptable, as discussed earlier.

Performance penalty: This refers to the impact of BIST

hardware on normal circuit performance such as its

worst-case (critical) path delays. Overhead of this type is

sometimes more important than hardware overhead.

VIII. MOTIVATION AND GOALS OF THE

RESEARCH

With growing interest in the use of SRAM based FPGAs in

space and other radition environments , there is a greater

need for efficient and effective fault tolerant design

techniques specific to FPGAs. Triple modular redundancy is

common fault mitigation technique for FPGAs and has been

successfully demonstrated by several organizations.

Although TMR has been shown to significantly improve

design reliability ,it carries a high overhead cost .At a

minimum ,full TMR of a design requires three times the

hardware to implement three identical copies of a given

circuit .in addition additional logic is required to implement

the majority logic voters .In the worst case , TMR can require

up to six times the area of the original circuit .the additional

hardwar resources required to triplicate the original circuit

result in other secondary problems such as increased power

and slower timing. TMR is a static hardware redundancy

scheme for masking single faults in a digital circuit .Fig.5 .

 Fig. 5: Generic Flow of TMR

 Depicts the traditional method for TMR. A failure in any one

of the three circuits copies will be masked by the majority

voter output. In order for TMR to work properly in an FPGA

there should be no more than one upset in the configuration

memory at any given time. More than one upset could defeat

completely the majority voters and result in a functional

error.Two reasons exist why the TMR based design can be

possibly attacked more often: 1) TMR based designs need a

greater area than the non-TMR design; 2) TMR based design

contain voter which is not in our experiments protected

against defects in any way. As soon as the voter is attacked,

the design is completely corrupted and does not work. We

worked with two versions of the design, non-TMR based

design and BIST based under the assumption that we have

no clear information about the relation between the position

of particular bit in the bitstream and the function

implemented in FPGA.The goal of the research was to verify

how successful the injection into both versions of the

implementations is the goal is to verify this hypothesis and

gain precise data. The results of our targeted activities in the

area of CAN bus control system design and the verification of

its resilience against SEU attacks will show in next research

paper.

IX. CAN BUS CONTROL SYSTEM DESIGN

The implemented CAN Bus Control System allows to

connect FPGA-based systems through CAN bus which is

interfaced on the small PCB (Printed Circuit Board) module

by the SPI interface. This module consists mainly of CAN

Bus transceiver and CAN controller MCP2515 with

integrated SPI interface. It implements CAN protocol

version 2.0B with maximal communication speed 1MB/s.

MCP2515 contains 2 buffers for received frames and 3

buffers for transmitted frames. It also contains several filters

and masks for control of receiving process. The MCP2515

circuit is controlled via the SPI interface, several instructions

can be used for reading or writing from/to registers and

buffers. The SPI interface supports 0/0 and 1/1 modes, it is

able to communicate with maximal clock 10 MHz.

Asynchronous events on the CAN bus are handled by

interrupt system. Our CAN control system supports standard

11-bit ID of transmitted CAN frames. The CAN ID value is

also used to define priorities. The frames with lower ID have

higher priority and are transferred preferentially. CAN frame

contains 8B data field without any information about its

meaning. To increase information value and the usability of

CAN frame, CANAerospace application protocol was used .

Protocol definition is widely open to user defined message

types and protocol implementations. CANAerospace

message extends data field in the CAN frame. Message is

dived into header and data part, its specific structure is shown

in Fig. 6. Message header contains Node ID for identification

of transmitting or addressed station, Data type for the

definition of message data format and size, Service ID for

specification of used node service and Message code for order

identification during sequential transfer of messages.

CANAerospace protocol uses CAN ID for the identification

of 7 basic types of messages and their priority. Each type of

message has allocated specific channel defined by the range

of IDs.

Fig. 6: Format of CAN Aerospace Message

The architecture of the control system is composed of

application and communication part. In the communication

part, CAN bus is controlled by CAN CTRL unit which uses

the MCP2515 driver and SPI Master unit for communicating

with the CAN module and controlling the MCP2515 circuit

by SPI instructions. The main function of the CAN CTRL

unit is to read and write CAN frames, to interrupt handling

and provide configuration sequence for the MCP2515 circuit.

The application part is formed by the CANAerospace calc. It

provides basic mathematical functions for distributed

computing via the CAN bus. Each function is operating as

CANAerospace service in one

defined channel. Except of

mathematical functions, the

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-4 Issue-5, October 2014

33

Retrieval Number: E1821104514 /2014©BEIESP

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

calc implements basic IDS service for its identification as is

required by the CANAerospace protocol for each such

application.

A. BIST Implementation of CAN Bus Control

For the experiments, the CAN bus control system was

implemented as BIST system to increase fault tolerant

parameters, the architecture is shown in Fig 2. The control

system is included into CAN host unit. The unit can be

replicated and all its inputs can be interconnected. The units

have the following input signals: ADC_in, inject_fault,

frame_tx tx_ctrl,clk, and rst asynchronous reset. All the

outputs of CAN host units are connected to the inputs of

comparator which identifies the correct inputs and

propagates them to its outputs. If, the output of comparator is

“0” i.e. system_ok =”0”, then out will take out from second

alternate path and if , here again system_ok =”0” then

actuator transfer system control to the manual mode. Flow

diagram shown in fig.7.

Fig. 7: Flow of BIST implementation of CAN Bus Control

X. CONCLUSION

In this research paper , we are analyzing fault tolerant

properties of BIST based CAN control system design . We

have Compare result of our analysis with TMR-based design

and non-TMR based design and also compare with

Evaluation factors, like area ,cost, speed , complexity of

system ,power consumption. We are expecting as our

theoretical analysis this design reduce system complexity

,And our proposed method will provide online fault

detection using BIST technique and improve fault tolerant

properties by providing alternate path when faulty value

comes out.

REFERENCES

1. Microchip Technology Inc, “MCP2515 - Stand-Alone CAN Controller

with SPI Interface,” November 2005.

2. Robert Bosch GmbH, “CAN Specification 2.0,” BOSCH, Stuttgart,

Technical specification, 1991.

3. Michael Stock, “CANAerospace - Interface specification for airborne

CAN applications V 1.7,” Stock Flight Systems, 82335 Berg/Farchach,

4. G. Asadi, S. G. Miremadi, H. R. Zarandi, and A. Ejlali, “Evaluation of

fault-tolerant designs implemented on sram-based fpgas,” in

Proceedings of the 10th IEEE Pacific Rim International Symposium on

Dependable Computing (PRDC‟04). Washington, DC, USA: IEEE

Computer Society, 2004, pp. 327–332.

5. J. A. Cheatham, J. M. Emmert, and S. Baumgart, “A survey of fault

tolerant methodologies for fpgas,” ACM Trans. Des. Autom. Electron.

Syst., vol. 11, no. 2, pp. 501–533, 2006.

6. Emmert j. and Bhatia D.K. 1997 “Partial reconfiguration of FPGA

mapped design with application for fault tolerance and yield

enhancement.in proceedings of the 7
th
 international workshop on field

prommeble logic and application 141-150.

7. Fussele D.and vaema p. 1982.fault tolerance wafer scale architector for

FPGA.in proceeding of the 9
th
 annual symposium on computer

architecture 190-198.

8. Green J.W. and gamal A.E. 1984 configuration of FPGA arrays in the

presence of defect 4(oct) 697-717.

