
 International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-4 Issue-7, December 2014

Retrieval Number: G1873124714/2014©BEIESP

1

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract—Pairwise sequence alignment is often used to reveal

similarities between sequences, locate patterns of conservation,

study gene regulation, and infer evolutionary relationships [1].

Although the Smith–Waterman is the only algorithm guaranteed

to find the optimal local alignment, it is also the slowest one as it

costs O(mn) for computation & space. Also the volume of

biological data is doubling about every six months so the total cost

is O(kmn) where k is the size of the database [2, 3]. By using

parallel hardware and software architecture accurate results can

be achieved in reasonable time. In this paper we show a

comparative study for parallelizing smith-waterman algorithm

using different parallel models, pure MPI, pure OpenMP and

hybrid MPI/OpenMP model. Based on the results it will be proved

that hybrid programming which employ the coarse grain and fine

grain parallelization, is more efficient compared with pure MPI

and pure OpenMP.

Index Terms - Smith-Waterman algorithm; MPI; OpenMP;

Hybrid MPI/OpenMP; bio-informatics; parallel programming.

I. INTRODUCTION

Database searches using the optimal algorithm are

unfortunately quite slow on ordinary computers; so many

heuristic alternatives have been developed, such as FASTA

and BLAST. These methods have reduced the running time

by a factor of up to 40 compared with the best-known

Smith-Waterman implementation, however, at the expense of

sensitivity. As a result, a distantly related sequence may not be

found in a search using these heuristic algorithms. The use of

parallel computers has brought some hope on improving the

performance of the pairwise sequence comparison operation

when using the Smith-Waterman algorithm. Parallel

computers can be broadly divided according to the memory

architecture as multicomputer systems with distributed

memory and multiprocessor systems with shared memory.

The coding of a parallel program for a given algorithm is

strongly influenced by the parallel computing system to be

used [6].In 2009, dual-core and quad-core processors become

standard for normal desktop computers, and chip

manufacturers have already announced the introduction of

oct-core processors for 2010. It can be predicted from

Moore’s law that the number of cores per processor chip wills

Manuscript Received on December 2014.

Dr. Zeiad El-Saghir, Department of Computer Science and Information,

Majmaah University/ College of Science at Zolfi/ Saudi Arabia.

Eng. Sayed Elnazly, Department of Computer Science and Engineering,

Menoufia University/ Faculty of Electronic Engineering/ Egypt.

Assistant Prof. Hamdy Kelash, Department of Computer Science and

Engineering, Menoufia University/ Faculty of Electronic Engineering/

Egypt.

Prof. Hossam Faheem, Department of Computer Systems, Ain Shams

University/ Faculty of Computers and Information. Egypt.

double every 18–24 months [6]. These advances make it

available to construct clusters using low priced multicore

commodity computers, the architecture chosen in this paper.

In this paper we will compare the application of various

parallel programming models on the smith-waterman

algorithm on a cluster of shared memory computers,

including MPI, Open Mp and Hybrid MPI/Open MP in terms

of the execution time.

The remainder of the paper is organized as follows: section

II presents the parallel programming models used in this

paper. In section III, the smith-waterman algorithm is

discussed. In section IV, our parallel approach and

methodology is discussed. In section V results are presented

and analyzed and the paper is concluded in section VI.

II. PARALLEL PROGRAMMING MODELS

As mentioned in the previous section query sequence is

compared separately with each sequence in the database

which can be implemented using message passing paradigm

and as we will show in the following section the independency

in calculating the anti-diagonal cells in the similarity matrix

make it appropriate for implementation using threading

paradigm . Whilst mixed mode codes may involve other

programming languages such as High Performance Fortran

(HPF) and POSIX threads, MPI and OpenMP represent

industry standards for distributed and shared memory systems

respectively [7]. In the following subsections each of these

models is discussed.

A. MPI

The Message-Passing Interface (MPI) is a standardization of

a message-passing library interface specification. MPI

defines the syntax and semantics of library routines for

standard communication patterns. Language bindings for C,

C++, Fortran-77, and Fortran-95 are supported. Freely

available MPI libraries are MPICH, LAM/MPI and OpenMPI

[8, 9, 10]. An MPI program consists of a collection of

processes that can exchange messages. Normally, each

processor of a parallel system executes one MPI process, and

the number of MPI processes started should be adapted to the

number of processors that are available. Typically, all MPI

processes execute the same program in an SPMD style [11].

B. OpenMP

Shared memory opens the possibility to have immediate

access to all data from all processors without explicit

communication. a joint effort was made by compiler vendors

to establish a standard in this

field, called OpenMP [12].

Parallel Implementation of Smith-Waterman

Algorithm using MPI, OpenMP and Hybrid

Model

Zeiad El-Saghir, Hamdy Kelash, Sayed Elnazly, Hossam Faheem

Parallel Implementation of Smith-Waterman Algorithm using MPI, OpenMP and Hybrid Model

Retrieval Number: G1873124714/2014©BEIESP

2

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

OpenMP is a set of compiler directives that a

non-OpenMP-capable compiler would just regard as

comments and ignore. Hence, a well-written parallel OpenMP

program is also a valid serial program [13]. The specification

consists also of library routines and environment variables

which control the runtime characteristics of the program.

C. Hybrid MPI/OpenMP

By utilizing a mixed mode programming model we should

be able to take advantage of the benefits of both models. For

example a mixed mode program may allow us to make use of

the explicit control data placement policies of MPI with the

finer grain parallelism of OpenMP [7]. In mixed mode model

two level of communication pattern are used, inter-node &

intra-node communication. intra-node communication is

implemented through common access to each node’s shared

memory and inter-node communication is achieved through

message passing between different nodes [14].

Figure 1 shows a hybrid program consist of two MPI

processes communicate through the interconnection network,

each fork four OpenMP threads which communicate through

the shared memory inside each node.

III. SMITH-WATERMAN ALGORITHM

The Smith-Waterman algorithm is a dynamic programming

method for determining similarity between nucleotide or

protein sequences. The algorithm was first proposed in 1981

by Smith and Waterman and is identifying homologous

regions between sequences by searching for optimal local

alignments. To find the optimal local alignment, a scoring

system including a set of specified gap penalties is used

[Smith and Waterman, 1981].

 Homology identified by sequence database searches

often implies shared functionality between sequences and

further research and development might depend on the

accuracy of the search results. The Smith-Waterman

algorithm is build on the idea of comparing segments of all

possible lengths between two sequences to identify the best

local alignment. This means that the Smith-Waterman search

is very sensitive and ensures an optimal alignment of the

sequences. Unfortunately, this also has the effect that the

method is both time and CPU intensive [15].

 When obtaining the local alignment, a matrix is used

to keep track of the degree of similarity between the two

sequences to be aligned (and). Each element of the

matrix is calculated as in (1):

Figure 1. MPI/OpenMP program execution on two nodes.



Where is the similarity score of comparing sequence

 to sequence and is the penalty for a mismatch. The

whole algorithm is divided into three steps:

1. Initialization step

2. Matrix fill step

3. Trace back step

The matrix is first initialized with = 0 and = 0,

for all i and j. This is referred to as the initialization step. After

the initialization, a matrix fill step is carried out using

Equation 1, which fills out all entries in the matrix. The final

step is the trace back step, where the scores in the matrix are

traced back to inspect for optimal local alignment. The trace

back starts at the cell with the highest score in the matrix and

continues up to the cell, where the score falls down to a

predefined minimum threshold. In order to start the trace

back, the algorithm requires finding the cell with the

maximum value, which is done by traversing the entire

matrix.

As an example, the S-W algorithm, is used to compute

the optimal local alignment of two sequences (i.e., A = G A A

T T C A G T T A and B = G G A T C G A). Assume that:

Table I illustrates the calculation of the DP matrix H and

the trace back path (shown in bold red digits). The best score

found in the matrix is 14, and the corresponding optimal local

alignment is
G A A T T C – A

| | | | |

G G A T – C G A

IV. APPROACH & METHODOLOGY

As stated in [16], one of the fundamental steps that we need to

undertake to solve a problem in parallel is to split the

computations to be performed into a set of tasks for

concurrent execution. Decomposition techniques are broadly

classified as recursive decomposition, data-decomposition,

exploratory decomposition, and speculative decomposition.

In most cases the problem on hand would determine which

type of decomposition technique has to take place.

mpiexec MPI_Send/MPI_Recv

Rank 0

Rank 1

F

o

r

k

J

o

i

n

F

o

r

k

J

o

i

n

Parallel

Section

Parallel

Section

4 threads 4 threads

F

o

r

k

J

o

i

n

F

o

r

k

J

o

i

n

Parallel

Section

Parallel

Section

4 threads 4 threads

http://www.clcbio.com/index.php?id=478#Smith81JmolBiol

 International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-4 Issue-7, December 2014

Retrieval Number: G1873124714/2014©BEIESP

3

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

TABLE I. THE DP MATRIX AND THE TRACE BACK PATH

In sequence homologous search data-decomposition is used at

two levels

1. Inter-process level: database is partitioned and

distributed to different processes. This level uses

MPI.

2. Intra-process level: the similarity matrix is partitioned

and distributed among a set of threads. This level

uses OpenMP.

Here we assume that each node will run only one process and

one thread per core.

A. Coarse Grain Parallelism Using MPI

Pseudo code for the master node is shown in Figure 2. The

master node has two tasks to handle. In the initial stage it will

partition and distribute the database. This step will be

performed using MPI. Afterword the master node will receive

the optimal score from the worker nodes. At that stage the

master node will start comparing results and then output the

optimal result.

As aforementioned the master node is responsible for the

data-decomposition process. In our approach the database

sequences have approximately the same length of about 2000

characters. So we have chosen to statically partitioning the

database sequences among the worker nodes.

Due to the static partitioning of the database the

communication between the master node and worker nodes

occurs only in two points at the start when the master node

send the chunks to worker nodes and at the end when the

worker nodes send the optimal score to the master node which

in turn minimizes the communication overhead.

Figure 3 illustrates the communication between the master

node and worker node. Only one message sent contains the

database partition and one message received contains the

optimal score.

Master Node

1. Read query sequence & scoring matrix.

2. Broadcast query sequence & scoring matrix to all

workers.

3. Get database size

4. Statically partitioning database sequences in

chunks = number of workers

5. For(i=1 to number of workers)

Send chunk[i] to worker[i]

6. For(i=1 to number of workers)

Receive optimal score from any worker

7. Combine and output the final result

Figure 2. Master Node Algorithm.

Figure 3. Master-Worker communication overhead.

B. Fine Grain Parallelism Using OpenMP

The challenge in implementing parallelism at the

similarity matrix is data dependency. After the first row and

first column has been initialized, the calculation of all other

cells in the similarity matrix is dependent on the previous

three cells. The previous three cell are one from the cell above

(same column but previous row) one from cell on the left

(same row but previous column) and one from the diagonal

cell (previous row and previous column) as shown in Figure 4.

Given the data dependency similarity matrix can be calculated

anti-diagonal by anti-diagonal.

To calculate any anti-diagonal we need only the two previous

anti-diagonals so we can calculate the similarity matrix in

parallel and linear space, an

approach we chosen in our

solution.

 Master Node

Worker Node

…………..
Other work

…………..

…………..
Other work
…………..

MPI_Init

MPI_Finalize

Recv(chunk[i],master)

Send(result,master)

…………..
Other work
…………..

…………..

Other work
…………..

…………..
Other work
…………..

MPI_Init

MPI_Finalize

Send(chunk[i],worker[i])

Recv(result,worker[i])

Parallel Implementation of Smith-Waterman Algorithm using MPI, OpenMP and Hybrid Model

Retrieval Number: G1873124714/2014©BEIESP

4

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

As MPI used at the cluster level to send data to each

worker, another level of parallelism is performed by the aid of

OpenMP technology, where set of threads are forked to

calculate the anti-diagonals. Main responsibilities of worker

node are shown in Figure 5.

Figure 4. Data dependency in similarity matrix.

Worker Node

1. Receive query sequence & scoring matrix

2. Receive chunk[i]

3. For each target sequence in chunk[i]

 smith-waterman(query, target)

 Update optimal score

END For

4. Send optimal score to master node

Figure 5. Worker Node Algorithm.

V. EXPERIMENTATION

The results introduced in this section are based upon the

methodology discussed in the previous section. The

smith-waterman algorithm has been implemented using MPI,

OpenMP and Hybrid paradigm.

A. Experimentation Environment

The experiments were executed on a cluster consisting of

five machines where one machine is the master node

responsible for distributing data and four machines as worker

nodes responsible of applying smith-waterman algorithm

upon received data. All machines are of the same

configuration, 2.2 GHz Intel core 2 Duo processor and 3 GB

of RAM running ubuntu 10.04 (lucid) 32-bit operating system

except the master node which is 2.2 GHz Intel quad core

processor. The cluster is interconnected using Ethernet.

The MPI implementation used during experiments is

MPICH2 which is prominent freely available portable MPI

implementation. GNU GCC compiler implementation of

OpenMP is used [17, 18].

The databases used during the experiments are a set of

randomly generated DNA sequences from [19]. The size of

the databases ranging from 500 kB up to 75 MB. The

sequences’ length ranging from 2000 to 2500 characters.

B. Experimentation Results

The main performance measure in our experiments is the

relative speed up. Given two algorithms, where and are

the execution times of the serial and parallel algorithms

respectively. T2 varies according to the deployed parallel

paradigm. MPI, OpenMP, and hybrid models are deployed

such that the relative speed up S is calculated according to (2).



Figure 6 illustrates the execution time elapsed by the three

parallel programming models, serial, MPI and hybrid model.

Hybrid model which combines the MPI and OpenMP models

gives better performance in terms of the execution time than

the pure MPI model and obviously than the serial time. In this

experiment 4 core 2 Duo CPUs are used as workers.

Figure 6. Execution time for three models on different database

sizes with 4 CPU.

Figure 7 illustrates the speed up comparison between pure

MPI and hybrid model. It is clear from the figure that the

hybrid model provides better performance than the pure MPI

model. From the experimental results we had noticed that the

hybrid model can achieve a speed up of 7.497 on a cluster

consisting of four dual core processors compared with only

3.84 speed up on the pure MPI implementation achieved at

32768 sequences. It is also clear that, the hybrid model

performs better as compared to the pure MPI implementation

as the sequence number increases.

Figure 8 illustrates the speed up comparison between the

pure MPI model and the Hybrid model with different number

of CPUs on the same database size of 32768 sequences. When

running the experiment using only one worker, on pure MPI

model the speed up was 0.8 which is obviously worse than the

serial model. On hybrid model the speed up is raised to 1.52.

It is clear that the speed up increases linearly as the number of

CPU and cores increase.

Figure 7. Speed up with 4 CPU.

 International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-4 Issue-7, December 2014

Retrieval Number: G1873124714/2014©BEIESP

5

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

On our final experiment we compare the speed up of an

MPI implementation with 4 worker nodes and an OpenMP

implementation on one Node with 4 cores. Figure 9 illustrates

the result. As mentioned previously, the communication

between the master and workers occurs on two points only

which decreases the communication overhead. The results

indicate that the pure MPI is better than the pure OpenMP

model in this case. This indicates that MPI is more scalable

than OpenMP when applied to homology search problem

even though combining OpenMP with MPI will increase the

performance.

Figure 8. Speed up for different number of CPU on database of

32768 sequences

Figure 9. Comparison of 4 Cores and 4 CPU

REFERENCES

1. Kun-Mao Chao and Louxin Zhang, Sequence Comparison: Theory

and Methods, Springer, 2012 pp. 35.

2. Michael Farrar, “Striped Smith--Waterman speeds database searches

six times over other SIMD implementations,” Bioinformatics, 2007,

pp. 156-161, doi: 10.1093/bioinformatics/btl582.

3. VIPIN CHAUDHARY, FENG LIU, VIJAY MATTA, and

LAURENCE T. YANG, “Parallel implementations of local Sequence

alignment: hardware and software,” Parallel Computing for

Bioinformatics and Computational Biology: Models, Enabling

Technologies, and Case Studies, Wiley Series on Parallel and

Distributed Computing , 2006, pp. 234.

4. Hsien-Yu, L., Meng-Lai, Y., and Yi, C. “A parallel implementation of

the Smith-Waterman algorithm for massive sequences searching,”

Engineering in Medicine and Biology Society, 2004. IEMBS apos;04.

26th Annual International Conference of the IEEE, pp. 2817-2820, San

Francisco, CA, USA.

5. T. Smith and M. Waterman., “Identification of common molecular

subsequences,” Journal of Molecular Biology, 1981, pp. 195–197.

6. Thomas Rauber and Gudula Rünger, Parallel Programming: for

Multicore and Cluster Systems, springer, 2011, pp. 93.

7. L.A. Smith. “Mixed mode MPI / OpenMP programming,” UK

High-End Computing Technology Report, 2000.

8. www-unix.mcs.anl.gov/mpi/mpich2.

9. www.lam-mpi.org.

10. www.open-mpi.org.

11. Thomas Rauber and Gudula Rünger, Parallel Programming: for

Multicore and Cluster Systems, springer, 2010, pp. 197.

12. The OpenMP API specification for parallel programming.

http://openmp.org/wp/openmp-specifications/.

13. Georg Hager, Gerhard Wellein. Introduction to High Performance

Computing for Scientists and Engineers, CRC Press, 2011, pp.143.

14. Drosinos, N., and Koziris, N. “Performance comparison of pure MPI vs

hybrid MPI-OpenMP parallelization models on SMP clusters,” 18th

Int. Parallel & Distributed Symposium, 2004, pp.15.

15. http://www.clcbio.com/index.php?id=1046.

16. Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta,

“Introduction to Parallel Computing, 2nd ed. Addison Wesley, 2003,

pp.95.

17. http://www.mcs.anl.gov/research/projects/mpich2/.

18. http://gcc.gnu.org/.

19. http://www.bioinformatics.org/sms2/random_dna.html.

