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Abstract—Pairwise sequence alignment is often used to reveal 

similarities between sequences, locate patterns of conservation, 

study gene regulation, and infer evolutionary relationships [1]. 

Although the Smith–Waterman is the only algorithm guaranteed 

to find the optimal local alignment, it is also the slowest one as it 

costs O(mn) for computation & space. Also the volume of 

biological data is doubling about every six months so the total cost 

is O(kmn) where k is the size of the database [2, 3]. By using 

parallel hardware and software architecture accurate results can 

be achieved in reasonable time. In this paper we show a 

comparative study for parallelizing smith-waterman algorithm 

using different parallel models, pure MPI, pure OpenMP and 

hybrid MPI/OpenMP model. Based on the results it will be proved 

that hybrid programming which employ the coarse grain and fine 

grain parallelization, is more efficient compared with pure MPI 

and pure OpenMP. 

 
Index Terms - Smith-Waterman algorithm; MPI; OpenMP; 

Hybrid MPI/OpenMP; bio-informatics; parallel programming. 

I. INTRODUCTION 

Database searches using the optimal algorithm are 

unfortunately quite slow on ordinary computers; so many 

heuristic alternatives have been developed, such as FASTA 

and BLAST. These methods have reduced the running time 

by a factor of up to 40 compared with the best-known 

Smith-Waterman implementation, however, at the expense of 

sensitivity. As a result, a distantly related sequence may not be 

found in a search using these heuristic algorithms. The use of 

parallel computers has brought some hope on improving the 

performance of the pairwise sequence comparison operation 

when using the Smith-Waterman algorithm. Parallel 

computers can be broadly divided according to the memory 

architecture as multicomputer systems with distributed 

memory and multiprocessor systems with shared memory. 

The coding of a parallel program for a given algorithm is 

strongly influenced by the parallel computing system to be 

used [6].In 2009, dual-core and quad-core processors become 

standard for normal desktop computers, and chip 

manufacturers have already announced the introduction of 

oct-core processors for 2010. It can be predicted from 

Moore’s law that the number of cores per processor chip wills 
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double every 18–24 months [6]. These advances make it 

available to construct clusters using low priced multicore 

commodity computers, the architecture chosen in this paper. 

In this paper we will compare the application of various 

parallel programming models on the smith-waterman 

algorithm on a cluster of shared memory computers, 

including MPI, Open Mp and Hybrid MPI/Open MP in terms 

of the execution time. 

The remainder of the paper is organized as follows: section 

II presents the parallel programming models used in this 

paper. In section III, the smith-waterman algorithm is 

discussed. In section IV, our parallel approach and 

methodology is discussed. In section V results are presented 

and analyzed and the paper is concluded in section VI.  

II. PARALLEL PROGRAMMING MODELS 

As mentioned in the previous section query sequence is 

compared separately with each sequence in the database 

which can be implemented using message passing paradigm  

and as we will show in the following section the independency 

in calculating the anti-diagonal cells in the similarity matrix 

make it appropriate for implementation using  threading 

paradigm . Whilst mixed mode codes may involve other 

programming languages such as High Performance Fortran 

(HPF) and POSIX threads, MPI and OpenMP represent 

industry standards for distributed and shared memory systems 

respectively [7]. In the following subsections each of these 

models is discussed. 

A.  MPI 

The Message-Passing Interface (MPI) is a standardization of 

a message-passing library interface specification. MPI 

defines the syntax and semantics of library routines for 

standard communication patterns. Language bindings for C, 

C++, Fortran-77, and Fortran-95 are supported. Freely 

available MPI libraries are MPICH, LAM/MPI and OpenMPI 

[8, 9, 10]. An MPI program consists of a collection of 

processes that can exchange messages. Normally, each 

processor of a parallel system executes one MPI process, and 

the number of MPI processes started should be adapted to the 

number of processors that are available. Typically, all MPI 

processes execute the same program in an SPMD style [11]. 

B.  OpenMP 

Shared memory opens the possibility to have immediate 

access to all data from all processors without explicit 

communication. a joint effort was made by compiler vendors 

to establish a standard in this 

field, called OpenMP [12].  
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OpenMP is a set of compiler directives that a 

non-OpenMP-capable compiler would just regard as 

comments and ignore. Hence, a well-written parallel OpenMP 

program is also a valid serial program [13]. The specification 

consists also of library routines and environment variables 

which control the runtime characteristics of the program. 

C.  Hybrid MPI/OpenMP 

By utilizing a mixed mode programming model we should 

be able to take advantage of the benefits of both models. For 

example a mixed mode program may allow us to make use of 

the explicit control data placement policies of MPI with the 

finer grain parallelism of OpenMP [7]. In mixed mode model 

two level of communication pattern are used, inter-node & 

intra-node communication. intra-node communication is 

implemented through common access to each node’s shared 

memory and inter-node communication is achieved through 

message passing between different nodes [14]. 

Figure 1 shows a hybrid program consist of two MPI 

processes communicate through the interconnection network, 

each fork four OpenMP threads which communicate through 

the shared memory inside each node. 

III. SMITH-WATERMAN ALGORITHM 

The Smith-Waterman algorithm is a dynamic programming 

method for determining similarity between nucleotide or 

protein sequences. The algorithm was first proposed in 1981 

by Smith and Waterman and is identifying homologous 

regions between sequences by searching for optimal local 

alignments. To find the optimal local alignment, a scoring 

system including a set of specified gap penalties is used 

[Smith and Waterman, 1981].  

    Homology identified by sequence database searches 

often implies shared functionality between sequences and 

further research and development might depend on the 

accuracy of the search results. The Smith-Waterman 

algorithm is build on the idea of comparing segments of all 

possible lengths between two sequences to identify the best 

local alignment. This means that the Smith-Waterman search 

is very sensitive and ensures an optimal alignment of the 

sequences. Unfortunately, this also has the effect that the 

method is both time and CPU intensive [15]. 

  When obtaining the local alignment, a matrix  is used 

to keep track of the degree of similarity between the two 

sequences to be aligned (  and ). Each element of the 

matrix  is calculated as in (1): 

 

 

 

 

 

 

 

 

 

Figure 1.  MPI/OpenMP program execution on two nodes. 



 

Where  is the similarity score of comparing sequence 

 to sequence  and is the penalty for a mismatch. The 

whole algorithm is divided into three steps: 

 

1. Initialization step 

2. Matrix fill step 

3. Trace back step 

 

The matrix is first initialized with  = 0 and  = 0, 

for all i and j. This is referred to as the initialization step. After 

the initialization, a matrix fill step is carried out using 

Equation 1, which fills out all entries in the matrix. The final 

step is the trace back step, where the scores in the matrix are 

traced back to inspect for optimal local alignment. The trace 

back starts at the cell with the highest score in the matrix and 

continues up to the cell, where the score falls down to a 

predefined minimum threshold. In order to start the trace 

back, the algorithm requires finding the cell with the 

maximum value, which is done by traversing the entire 

matrix. 

As an example, the S-W algorithm, is used to compute 

the optimal local alignment of two sequences (i.e., A = G A A 

T T C A G T T A and B = G G A T C G A). Assume that: 

 

 
 

 
Table I illustrates the calculation of the DP matrix H and 

the trace back path (shown in bold red digits). The best score 

found in the matrix is 14, and the corresponding optimal local 

alignment is 
G A A T T C – A 

|       |   |      |       | 

G G A T – C G A 

IV. APPROACH & METHODOLOGY 

As stated in [16], one of the fundamental steps that we need to 

undertake to solve a problem in parallel is to split the 

computations to be performed into a set of tasks for 

concurrent execution. Decomposition techniques are broadly 

classified as recursive decomposition, data-decomposition, 

exploratory decomposition, and speculative decomposition. 

In most cases the problem on hand would determine which 

type of decomposition technique has to take place.  
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http://www.clcbio.com/index.php?id=478#Smith81JmolBiol
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TABLE I.  THE DP MATRIX AND THE TRACE BACK PATH 

 

In sequence homologous search data-decomposition is used at 

two levels 

1. Inter-process level: database is partitioned and 

distributed to different processes. This level uses 

MPI.   

2. Intra-process level: the similarity matrix is partitioned 

and distributed among a set of threads. This level 

uses OpenMP. 

Here we assume that each node will run only one process and 

one thread per core. 

A.  Coarse Grain Parallelism Using MPI 

Pseudo code for the master node is shown in Figure 2. The 

master node has two tasks to handle. In the initial stage it will 

partition and distribute the database. This step will be 

performed using MPI. Afterword the master node will receive 

the optimal score from the worker nodes. At that stage the 

master node will start comparing results and then output the 

optimal result. 

As aforementioned the master node is responsible for the 

data-decomposition process. In our approach the database 

sequences have approximately the same length of about 2000 

characters. So we have chosen to statically partitioning the 

database sequences among the worker nodes. 

Due to the static partitioning of the database the 

communication between the master node and worker nodes 

occurs only in two points at the start when the master node 

send the chunks to worker nodes and at the end when the 

worker nodes send the optimal score to the master node which 

in turn minimizes the communication overhead.  

Figure 3 illustrates the communication between the master 

node and worker node. Only one message sent contains the 

database partition and one message received contains the 

optimal score. 
 

Master Node 

1. Read query sequence & scoring matrix. 

2. Broadcast query sequence & scoring matrix to all 

workers. 

3. Get database size 

4. Statically partitioning database sequences in 

chunks = number of workers 

5. For(i=1 to number of workers)  

Send chunk[i] to worker[i] 

6. For(i=1 to number of workers) 

Receive optimal score from any worker 

7. Combine and output the final result 

Figure 2.  Master Node Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Master-Worker communication overhead. 

B.  Fine Grain Parallelism Using OpenMP 

The challenge in implementing parallelism at the 

similarity matrix is data dependency. After the first row and 

first column has been initialized, the calculation of all other 

cells in the similarity matrix is dependent on the previous 

three cells. The previous three cell are one from the cell above 

(same column but previous row) one from cell on the left 

(same row but previous column) and one from the diagonal 

cell (previous row and previous column) as shown in Figure 4.  

Given the data dependency similarity matrix can be calculated 

anti-diagonal by anti-diagonal.  

To calculate any anti-diagonal we need only the two previous 

anti-diagonals so we can calculate the similarity matrix in 

parallel and linear space, an 

approach we chosen in our 

solution. 
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As MPI used at the cluster level to send data to each 

worker, another level of parallelism is performed by the aid of 

OpenMP technology, where set of threads are forked to 

calculate the anti-diagonals. Main responsibilities of worker 

node are shown in Figure 5. 

 

Figure 4.  Data dependency in similarity matrix. 

 
Worker Node 

1. Receive query sequence & scoring matrix 

2. Receive chunk[i] 

3. For each target sequence in chunk[i] 

               smith-waterman(query,  target) 

              Update optimal score 

END For 

4. Send optimal score to master node 

 

Figure 5.   Worker Node Algorithm. 

V.  EXPERIMENTATION 

The results introduced in this section are based upon the 

methodology discussed in the previous section. The 

smith-waterman algorithm has been implemented using MPI, 

OpenMP and Hybrid paradigm. 

A.  Experimentation Environment 

The experiments were executed on a cluster consisting of 

five machines where one machine is the master node 

responsible for distributing data and four machines as worker 

nodes responsible of applying smith-waterman algorithm 

upon received data. All machines are of the same 

configuration, 2.2 GHz Intel core 2 Duo processor and 3 GB 

of RAM running ubuntu 10.04 (lucid) 32-bit operating system 

except the master node which is 2.2 GHz Intel quad core 

processor. The cluster is interconnected using Ethernet. 

The MPI implementation used during experiments is 

MPICH2 which is prominent freely available portable MPI 

implementation. GNU GCC compiler implementation of 

OpenMP is used [17, 18]. 

The databases used during the experiments are a set of 

randomly generated DNA sequences from [19]. The size of 

the databases ranging from 500 kB up to 75 MB. The 

sequences’ length ranging from 2000 to 2500 characters. 

B.  Experimentation Results 

The main performance measure in our experiments is the 

relative speed up. Given two algorithms, where  and  are 

the execution times of the serial and parallel algorithms 

respectively. T2 varies according to the deployed parallel 

paradigm. MPI, OpenMP, and hybrid models are deployed 

such that the relative speed up S is calculated according to (2). 

  



Figure 6 illustrates the execution time elapsed by the three 

parallel programming models, serial, MPI and hybrid model. 

Hybrid model which combines the MPI and OpenMP models 

gives better performance in terms of the execution time than 

the pure MPI model and obviously than the serial time. In this 

experiment 4 core 2 Duo CPUs are used as workers. 

 

Figure 6.  Execution time for three models on different database 

sizes with 4 CPU. 

Figure 7 illustrates the speed up comparison between pure 

MPI and hybrid model. It is clear from the figure that the 

hybrid model provides better performance than the pure MPI 

model. From the experimental results we had noticed that the 

hybrid model can achieve a speed up of 7.497 on a cluster 

consisting of four dual core processors compared with only 

3.84 speed up on the pure MPI implementation achieved at 

32768 sequences. It is also clear that, the hybrid model 

performs better as compared to the pure MPI implementation 

as the sequence number increases. 

Figure 8 illustrates the speed up comparison between the 

pure MPI model and the Hybrid model with different number 

of CPUs on the same database size of 32768 sequences. When 

running the experiment using only one worker, on pure MPI 

model the speed up was 0.8 which is obviously worse than the 

serial model. On hybrid model the speed up is raised to 1.52.  

It is clear that the speed up increases linearly as the number of 

CPU and cores increase. 

 

Figure 7.  Speed up with 4 CPU. 
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On our final experiment we compare the speed up of an 

MPI implementation with 4 worker nodes and an OpenMP 

implementation on one Node with 4 cores. Figure 9 illustrates 

the result. As mentioned previously, the communication 

between the master and workers occurs on two points only 

which decreases the communication overhead. The results 

indicate that the pure MPI is better than the pure OpenMP 

model in this case. This indicates that MPI is more scalable 

than OpenMP when applied to homology search problem 

even though combining OpenMP with MPI will increase the 

performance. 

 

Figure 8.  Speed up for different number of CPU on database of 

32768 sequences 

 
Figure 9.  Comparison of 4 Cores and 4 CPU 
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