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MHD Flow and Heat Transfer through a Circular
Cylinder Partially Filled with notbarcy Porous
Media

M. K. Sharma, Kuldip Singh, Ashok Kumar

Abstract Steady incompressible axisymmetric flow in a /7
circular cylinder partially filled with concentric cylinder non-
Darcy porous medium is studied in the influence of a transverseqp Non-dimensional fluid temperature in porous region
static magnetic field. The Joule heating effect produced by the
magnetic field is also included to analyze effect of magnetic fieldd Non Dimensional fluid temperature in clear region.
and fluid flow field on heat convection process. Thewgrning
equations of flow and heat transfer are neimear coupled
differential equations, are solved with Quasumerical methodi l INTRODUCTION
the Differential Transform method. The velocity and temperature The flow through a semi porous medium is of great interest
profiles for the fluid saturated porous region and clearuitt  in oil refineries, chemical sciences, life sciences and medical
annulus region are derived and computed with the use of Matlabsciences. In agriculture sector, the proper distribution of
at various physical parameters and there effects are discussefértilizers and pesticides is insured using the cylindrical
through graphs. The skidfriction coefficient and Nusselt number semi porous medium. The flow through semi porous
at the wall of the outer cylinder and at the surface of thecy|indrica| type configurations are encountered in many
concentric inner porous Cylinder are Computed and discussed. industries in one or other ways for Coo”ng purposes or for

Keywords: MHD, norDarcy, Partial filled circular pipe, Joule Neat connection processesogandhan et al. [7] studied

Viscosity of the fluid

heating. MHD effects on free convective flow over moving semi
Nomenclature: infinite vertical cylinder with temperature oscillatioBiya
uddin et al. [12] studied heat and mass transfer
K  Permeability characteristics and the flow behavior on MHD flow near the
d  Radius of the cylinder lower stgnation point of a porous isothermal horizontal
dL Radius of porous cylindrical region circular cylinder. Chamkha A.J [4] investigated steady,
d  vVelocity of flui laminar, hydromagnetic flow and heat and mass transfer
y of fluid flow . . - . o
u over a permeable cylinder moving with a linear velocity in
J Magnetic current density the presence of heat generation/abSonp chemical
Y reaction, suction /injection effects developing a uniform
B Applied magnetic field transverse magnetic fieldbbas et al. [1] dealt with laminar
p  Pressure flow and heat transfer of an electrically conducting viscous

G Constant pressure gradient fluid over a stretching cylinder in the presence of thermal

radiations through a porous mediuidagaraju et al. [8]
investigated the steady flow of an electrically conducting,
incompressible micropolar fluid in a narrow gap between

T
" Fluid temperature in clear region

P Fluid temperature in porous region

Da Darcy number

M Hartmann number
Re Reynolds number

F Forchheimer number

u
" Fluid velocity in clear region

u
P Fluid velocity in Porous region

W Wall temperature

PW Temperature at surface of the porous cylinder

Greek symbols:
| Density of t
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two concentric rotating vertical cylinders with porous lining
on inside of outer dinder under an imposed axial magnetic
field. Yadav et al. [11] found out numerical solution of
MHD fluid flow and heat transfer characteristics of a
viscous incompressible fluid along a continuously stretching
horizontal cylinder embedded in a porous mediin
presence of internal heat generation or absorp#daoss

[2] studied the MHD mixed convection flow about a vertical
cylinder embedded in a ndbarcian porous medium with
variable heat transfer boundanbuneetha et al. [10]
analyzedthe interactionof free convection with thermal
radiation of a viscous incompressible unsteady MHD flow
past a moving vertical cylinder with heat and mass transfer
in a porous mediumShihhao et al. [9] derived analytical
solution for MHD flow of a magnetic fluid withim thick
porous annulus. In present study, the effect of magnetic field
and Joule heating in the flow and heat transfer in a circular
tube having a concentric circular porous cylinder of-non
li:)arcy behavior are

Published By:
Blue Eyes Intelligence Engineerin
& Sciences Publication



MHD Flow and Heat Transfer through a Circular Cylinder Partially Filled with non-Darcy Porous Media

I. FORMULATION OF THE PROBLEM (ci Tood) . In the cylindrical c
Steady incompressible noarcy, axisymmetric flow of cylinder coincides with the-axis. A static magnetic field of
electrically conducting fluid through a partially filled strength (BO, 0, 0) is applied on the dgder. Thus the flow

circular cylinder is considered. The pasomaterial cylinder ; o i & non- Garcy flow and in the regionic O r O d
of radius ¢is concentric withfte outer cylinder of radius d f4\ of the fluid with annulus.
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Figure 1 Physical model of the problem
The equation of continuity is defined as The equation of motion and en

rO di are given by

Ul
b.g=0 I
u, 1 m  mc
) p+——‘)8-@-5802u Y - ——2yu’=0

The equations of motion are ... (6)

d 14T
r(g.ag)éj:-ammg-—d \/”E*ﬂ 558 ff rw"f+sB u,2=0

(2 .- (7)

The equation of energy The corresponding boundary conditions are

d L r=0: " g LI
rcp(q.Dg):D T+ b u
S r=d: us 0, T %
-.(3) é (8)
Under the above assumptions the equations of motion afid= d; : Us =y, Ti EEp

energy for the annulus fludregiordi O r O d ar.e@gi ven by

HM luuf — 0 E_ SBOZUf =0

w2 1o 9 x

Where K permeability,u; and T, the velocity and
temperature of the fluid in the annulus regiamp and Tp
(4) the velocity and temperature of the fluid in the porous

region, T, temperature of the wall of cyIindeerW

1T temperature at the surface of porous cylinder, p viscosity of
aél_f +__fO+ sB, uf =0 the flud S electrical

r .
G W W - conductivity, C, dragforce
- (5) constant.
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II. METHOD OF SOLUTION

ISSN: 22783075,Volume-4 Issue7, December 2014

To make the differential equations (4) to (7) dimensionless,
introducing the following nomimensional quantities

*x r s X * d u * '\ Ay d
r=—, x =, d <=, u 2. G upi—o 0=
d d d \p ux d m
2 ;2 i Where
sBy d _d Gd Ti - Ty Tp -Tw szl4
M=, |——,Da F gy —, —_——\,Br —————
m K K n m TpW - TW TpW -TW m /(TW _ pr)
G the constant dimensionless pressure gradient, Da the pu ug
Darcy number, Re the Reynolds number, M the Hartmanh =0 —r= —P =
number, F the Forchheimer number, Br the Brinkman K pr

number.There is no loss of generality if the asterisks ar¢ =1 :

u, =0 g, =0

dropped from the dimensionless form of the equations (4) to . (14)

(7) the respective equations areem by

At the interface
r=di: Ug =g, qr 4
. (15)

Solutionof the coupled momentum and energy equations,
are obtained by the Differential Transform Method
(DTM).The efficiency of method can be seen in literature

d’u, 1du,
—+-——=ReG+M?u,
dr r dr
¢ (10)
d? d
Zf 159 M2Bru,” =0
dr r dr
. (12)
d?u 1du, a1
P+ =ReG+%— +M?
dr® r dr QBa
e (12)
d? d
zp+lﬂ+|\/| Bru,>=0
dr r dr
e (13)

The corresponding boundary conditions are

[3] .[3], [6].

The differential transform U(k) of the derivative

d*u(y)

K
dY"  is definedby U (k) = = & :
is definedby () k!gTkay:

1 ed*u(y)e

Yo

The inverse differential transform of U(k) is defined by

()= & V(K(y -8)

Tablel: The fundamental mathematical operations under DTM

uly)= f(y)° aly) U(k)=F(k)° Glk)
u(y)=/g(y) U(k)=/6lk)
uly)= Hg(y) U(k)=(k+1)G(k +1)
by
uy) = u"g(y) U (k)= (k +1)..(k + m)G(k + m)
"
uly)=y" UK)=a(k- m)=f- 8t k=m

i O

otherwise
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uy)= 6WLO-0) | G4 g_Fl(kl)Fz(kz k) F (k- Ky

3.1 Calculation for the velocity profiles
3.1.1Velocity profile in annulus region

Applying DTM on (10) we will get the following recurrence relation

éd(h-l)(k -h Bk 2y (k h g (+k J+y(« 3 GCReq k ) i

h=0
k
+M? 3 d(h 4)u; (k H)
h=0
..(16)
Where U (k) is differential transform ofi ; (r) . Since the alue of U; (r) at r=0 is not known explicitly, therefore

assumingU (O)= a (constant) which will be determined later with the prescribed boundary conditions.

For k=0, 1, 2, 3, 4, 5in (16) we get

u, (=0, uf(z):%(GRaM %a) | u,(3=0,
20
Ui ()= fore M . e)=o. 01 (6)= gygafl Re °a

Using the above values in the inverse differentialsfam of U (k) the velocity profile is given by

o 2 4
uf(r):a %%GRe a § 4M— Gé%e M%*a r“O?+—62 GRéieM ar
2 - 2 4 - 4

. (17)

Using the boundary conditicat F =1 t he ar bia & abtaiyed and givertbg nt 6

~

alr M?* M*a@
+ +—

éﬁ 64 2304:=

a=-
a M2 M* M®§
2+ + + 8
& 4 64 23047

Usi ng vaadhteeequatibn (17), we get the velocity profile of the fluid in the annulus region.

3.1.2 Velocity profile in porous region

Applying DTM on (12), we get the recurrence relation
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faln-gcn Jc mdu(con g pedy(cd
=GRed/(k -] Z;ng—a vs géo gn Ju,(x N %hé ihi (@ Ju,(h Ju,(k 1

6(18)

where,U | (k) is differential transform off , (r) . Since value ol (r) is not known at F0 explicitly therefore assuming

U, (O)= b (constant), which will be determined later with the aid of interface conditions.

Corresponding to k=0, 1, 2, 3, 8 the recurrence relation (18) gives

184 a1 5 F . L0 _

u,@=o, Up(2)—?égze(3+g%—a+M2§3+R—eb2§, U,(@3)=0,

1 41 , - F &3 a1 .4 F .,0
u_(4)= M2 + 2 hEaReG M b U (5)=0
»(4) 24 3ba" " “Re ig'@ " %a’ §D+ 8 )

1 31 , - F g4a a1 .6 F  ,0
U (6)= ——— 2 b3 &R M b
p() 22426288D_a+ + Re 9? +aeD—a+ §3+ Q

2

1 é é.l 2~ F 20
+ a6+ +M 83+—b
4262&g (;Ea Re Q

Using these values in theviersion olJ | (k) , we have

1 @ &1 .0 F -0
U, (r|=b +—aRReG M —+b
p( ) 22 2 Eg%a ? Re 8
141 - _F_8& a8 ., & , 0
+ WM A2—Db 2] M+ b b ...(19
s T - RALE T
é 2 2 ~ @
1 &1 _, _F oA o, F
M 2—b FReG M~ b §+b 9
6922 42 62 *Da R ~ae @ e 0
a ¢ N Oy ®
% 3 % o 0
. + 1 ARG al M 2 8 _E__ b2 o 0
& 426° & c a -~ Re 0 o]
¢ ¢ - +
Now the interface condition provides that
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a 2 4 0 < a a 5 0
ar®@l g + Mg + M Gi® S5Re MPa §b=1are aeDi"' M2 &
&2 2 4 FLe 0 * Z®  ¢ha - Re ™ 0
181 -, _F_ & 4 ., & ,0,
+ M> M3

24 ba e & MR

é o 2 ~ 5 O

1 alil 2 F 2@ a 2 oF .0

e +M° 2—b e M b g+b @9

@24262958. Re ?’éR -’@ 3:\7-’6- 00

+& ¢ &°

= +1§@engeD—él Mzgibzzg 5

& 426239 c a -~ Re 0 o]

¢ ¢ i *

.. .(20)

Now (20) is a polynomial of @ degree in b. A Matlab code has been generated for the computation of unknown constant b
and using this value, the velocity profile in the porous region is known, computed and presenigl ghaphs.

3.2 Calculation for Temperature profiles
3.2.1Temperature profile in annulus region

Applying DTM on (11), we get recurrence relation

Sofn-g(ic-h §(c )+ (0nd (ke (kio + =

-MZBrhsEOi%a’(i Qu(h Juy(k h)

...(21)

Where Q¢ (k) is differential transform oty (r)

1
o

Let Qq (0)= C (constant) will be determined with the aid Q, (7)

of boundary condition o ; (r)

_ M?Br ( )
Corresponding to k=01, 2, 3, 4, 56,7 the recurrencle(8)_' 32 an(6)+Uf(2)Uf(4)
relation (21) gives

Using these values in the inversion of differential transform

2
Qf(l)=0, Qf(Z):_ M4Bra2, Ofo(k)Wehave
Q:(3)=o0, q; (r) =Cc+Q; (Z)rz +Qq (4)r4 +Qq (6)r6 +Qq (8)r8

M ?Br
Q; (4) =" 8 Uy (2) With the use of boundary conditigh (1)= 0, the constant
Q, (5) =0 c is determined and given by
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=-Q.(2)- Q. (4)- 0.(6)- Q. (8 2Bra’ ?
C Qf( ) Qf( ) Qf( ) Qf( ) qf(r): M i’ra (1_ r2)+M Br(GRe+aM2)(1- |’4)
M ?Br daM? 0
Furthermore, the temperature profile in the annulus region is ¥ 36 ¢ 32 (G RetaM )+_ GRetaM g
given by 2nc & & M4 5
BT G Jererm a)8+—(GRe+M 2g)20r°
32 e 304 9

3.2.2 Temperature profile for porousregion:
Applying DTM on (13), we get recurrence relation
k

g dh-1(k- h+1)k- h+2)Q, (k- h+2)+(k+1)Q,(k+1)

h=o0

= M2Br3 & di-)U,(h- i, k- h)

h=0 i=0
. .(23)
Where Q _ (K) is differential transf ig (r) . Si M?B
-er-e. p( ) is di ere-n ial transform oqp( ) mce- Qp(4):' rUp(Z)
the initial vaIuer(O) is not known, therefore assuming 8
its differential transform Qp(0)=a(constant) will be Qp(5):O
determined from interface condition.
Corresponding t&=0, 1, 2, 3, 4, 5 the recurrence relatlonQ ( ) _M “Br (2aUp(4)+U p2(2))
(23) gives 36
— 2
Q=0 Q,(8)=- 2" bu, (4)+u, (2, 4)
M ?Br
2)=- ?
Qpl2)=- = 9,(r)=a +Q,(2)r* +Q, (4 +Q, (6)* +Q, (B)°
e (24)
Q,(3)=0

On applying the interface condition the equation (24), gives
the value of unknown constadt.

a=c+(Q,(2)- Q,(2))di*+(Q, (4)- Q,(4))di* +(Q, (6)- Q,(6))di® +(Q, (8)- Q,(8))di®

é (25)
Invoking ve_xlue-of c in (25), the tempe-rature profiles for 4 Wo
porous region is computed from (24) with help of Matlab aEmLL
programming and presented through graphs. C, 6e_|£0
EGTV O
V. SKIN FRICTION COEFFICIENT C} +r:d

The nondimensional shearing stress at the wall of the
circular pipe and at the surface of porous cylinder in termg&he skin frction at the wall of the pipe
of the local skinfriction coefficient is derived as follows
and computed values are given in table 2 & 3.
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18 .0 Reynolds number. The Forchheimemmber also controlling
(= —%ig significantly the velocity gradient in the core region of nhon
Reg M= Darcy porous media as observed from figure 4. The increase
in Forchheimer number supports in the increase of the
The skin friction at the surface of the porous cylinder velocity of fluid in forward direction in the core regiamd

reduces the velocity gradient in the vicinity of the

1 &WU_ 5 circumference of this cylinder. The figure 5 demonstrates
;= _éﬁ that the increase of Darcy number support in advancing the
Reg W= fluid velocity in the core region and reduces the velocity
gradient in the periphal region of the porous cylinder.
V. NUSSELT NUMBER Figure 6 depicts that the increase in pressure gradient in the

Th di ional ffici h ¢ h IL'OW direction enhances the fluid velocity in the flow
e nondimensional coefficient of heat transfer at the waly;rection in both, the core as well as in the annulus region.

of the circular pipe and at the surface interface of the porog$,e mathematical results also endorsepthgsical concept
cylinder is derived as follows and computed values afg|ated to flow and pressure gradient. The temperature of the

givenin table 4 & 5. fluid in the saturated porous medium in the core region and
_ also the temperature of the fluid in annulus region increases
Nusselt number at the wall of the pipe at small values of Hartmann number up to 2 as obsernved

the figure 7. The increase in Reynolds number, pressure

apg, o gradient and the Brinkman number increases the
Nu=- 8 temperature of the fluid in the saturated porous medium in
¢ W=, the core region and also the temperature of the fluid in
annulus region are shown in thgure 8, figurell and figure
Nusselt number at the surface of the porous cylinder 12, respectively . The temperature of the fluid in core region
decreases with the increase in Forchheimer number while
a q,0 increases with the increase in Darcy number are shown in
Nu =- %8 the figure 9 and figure 10, respectively. Tableardd 3
C - depicts that the shear stress increases at the wall of cylinder
but decreases at surface of porous cylinder with increase in
VI, RESULTS AND DISCUSSION Hartmann number while The Darcy number and pressure

) o gradient have converse effect on skin effect to Hartmann

The flow profiles in figure 2 explore the effect of b mper In table and 5, heat convection increases for small
magnetic field on fluid velocity. It is depicted that flow,ges of Hartmann number up to 2 and then decreases both

velocity retarded due to Lorenzian force in both the region, porous cylinder and wall of the annulus. Increase in

in the core porous region and in the annulus region. Thg,ynoids number and Brinkman enhances the heat
presence of fluid in the annuluggion surrounding the .o ection both at annulus wall and porous serfac
porous cylinder dragging the fluid flowing in the core

pylinder in the \_/icinity gf the surface, results of which there VI CONCLUSIONS

is a large velocity gradient at the surface of the core cylinder

and hence the shear stress. When strength ofgheverse 1 The magnetic field is acting as shear controlling device
magnetic field is increased the velocity gradient at the as with the increase in Hartmann number the shear
interface has been diminishes, consequently the shear stressstress at the surface of the core cylinder is reduced.

at the surface. The effect of Reynolds number is shown fh The Forchheimer number also significantly controlling
the figure 3. Which demonstrates that the increase in the velocity gradient ithe core region

Reynolds numbeenhance the fluid velocity in core region] The heat convection enhanced with the increase in
of nonDarcy porous media and also in the annulus region of Brinkman number and Reynolds number.

the clear fluid. Furthermore it is plausible that the velocitffi The heat convection decrease with the increase in Darcy
gradient at the interface increases with the increase of number at the surface of porous cylinder.

Table 2. Skin friction at the wall of outer cylinder

M Re F Da G Ct

1 10 5 0.1 -10 -4.46349
15 10 5 0.1 -10 -3.97079

2 10 5 0.1 -10 -3.47561

3 10 5 0.1 -10 -2.635408
3 20 5 0.1 -10 -2.6354085
3 30 5 0.1 -10 -2.63540833
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3 40 5 0.1 -10 -2.63540825
3 10 1 0.1 -10 -2.635408
3 10 10 0.1 -10 -2.635408
3 10 15 0.1 -10 -2.635408
3 10 5 1 -10 -2.635408
3 10 5 0.01 -10 -2.635408
3 10 5 0.1 -1 -0.263541
3 10 5 0.1 -15 -3.953112
3 10 5 0.1 -20 -5.270817

Table 3. Skin friction at the surface of porous cylinder

M Re F Da G Ci
1 10 5 0.1 -10 2.660946

15 10 5 0.1 -10 2.016756
2 10 5 0.1 -10 1.465833
3 10 5 0.1 -10 0.780006
3 20 5 0.1 -10 0.7800055
3 30 5 0.1 -10 0.78000567
3 40 5 0.1 -10 0.78000575
3 10 1 0.1 -10 0.633271
3 10 10 0.1 -10 0.974529
3 10 15 0.1 -10 1.155216
3 10 5 1 -10 0.98547
3 10 5 0.01 -10 2.91818
3 10 5 0.1 -1 0.061627
3 10 5 0.1 -15 1.31669
3 10 5 0.1 -20 1.949058

Table 4. Nusselt number at wall of the outer cylinder

M Re F Da G Br Nu
1 10 5 0.1 -10 0.01 0.69669

15 10 5 0.1 -10 0.01 1.03043
2 10 5 0.1 -10 0.01 1.14515
3 10 5 0.1 -10 0.01 1.07469
5 10 5 0.1 -10 0.01 0.85407
8 10 5 0.1 -10 0.01 0.5409
3 20 5 0.1 -10 0.01 4.29874
3 30 5 0.1 -10 0.01 9.67217
3 40 5 0.1 -10 0.01 17.19496
3 10 1 0.1 -10 0.01 1.07469
3 10 10 0.1 -10 0.01 1.07469
3 10 15 0.1 -10 0.01 1.07469
3 10 5 1 -10 0.01 1.07469
3 10 5 0.01 -10 0.01 1.07469
3 10 5 0.1 -15 0.01 2.41804
3 10 5 0.1 -20 0.01 4.29874
3 10 5 0.1 -10 0.05 5.37343
3 10 5 0.1 -10 0.1 10.74685
3 10 5 0.1 -10 0.2 21.4937

Table 5. Nusselt number at the surfacef porous cylinder

M Re F Da G Br Nu

1 10 5 0.1 -10 0.01 0.24738
15 10 5 0.1 -10 0.01 0.45732
2 10 5 0.1 -10 0.01 1.64674
3 10 5 0.1 -10 0.01 0.80107
5 10 5 0.1 -10 0.01 0.66965
8 10 5 0.1 -10 0.01 0.38641
3 20 5 0.1 -10 0.01 3.20427
3 30 5 0.1 -10 0.01 7.20961
3 40 5 0.1 -10 0.01 12.81709
3 10 1 0.1 -10 0.01 0.88753
3 10 10 0.1 -10 0.01 0.7094
3 10 15 0.1 -10 0.01 0.63506
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3 10 5 1 -10 0.01 0.9844
3 10 5 0.01 -10 0.01 0.10759
3 10 5 0.1 -15 0.01 1.69417
3 10 5 0.1 -20 0.01 2.83758
3 10 5 0.1 -10 0.05 4.00534
3 10 5 0.1 -10 0.1 8.01068
3 10 5 0.1 -10 0.2 16.02136

=
o
=
[=E3
>
=
=
[
T T T T T
Qajo 0.2 0.4 0.6 0.8 1.0
Radial axis r
-2
Figure 2. The effect of Hartmann number on fluid flow profile
at Re=10, F=5, Da=0.1, G=-10
25 4
—m— Re=10 3 :
4 e Re=20 i Clear fluid region
20 —— Re=30
—w— Re=40
e : v \\v\ Porous region
= V\
< -
8 N—H\*\ \
L 10 =
= > T
i B .'\‘\.\‘ -
\\.\ P
5+ g ey
- > o ©
T
i - - o
o
T T T T
0_0 o= 04 98 Raodlsai axis r

Figure 3. Effect of Reynolds number on fluid flow profile
at M=3, F=5, Da=0.1, G=-10

6 — P . Clear fluid region
orous region

. -
Qo 0.2 0.4 0.6 0.8 1
Radial axis r

= -2

S

38 J

L 44 | —m— F=1

-‘% 2 — ®— F=5

o g —— F=10

4 —w— F=15

-8 -

Figure 4. Effect of Forchheimer number on fluid flow profile
at M=3, Re=10, Da=0.1, G=-10
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Clear fluid region

—m— Da=1
—e— Da=0.1
] —a&— Da=0.01

T
0.8

Radial axis r

Figure 5. Effect of Darcy number on fluid flow profile
at M=3, Re=10, F=5, G=-10

—-— G=-

Fluid velocity

Clear fluid region

Porous region

0.4 0.6

T
0.8 1.0

Radial axis r

Figure 6. Effect of pressure gradient on fluid velocity profile
at M=3, Re=10, F=5, Da=0.1

1.0
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Figure 7. The effect of Hartmann number on fluid temperature
at Re=10, F=5, Da=0.01, G=-10, Br=0.01
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MHD Flow and Heat Transfer through a Circular Cylinder Partially Filled with non-Darcy Porous Media
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Figure 8. The effect of Reynolds number on fluid temperature
at M=3, F=5, Da=0.01, G=-10, Br=0.01
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