Experimental Research on Abaca/Agave/
Fly ash Nano Powder
Reinforced Hybrid Composites

T. Naresh Kumar, D. David and S. Shankaranarayanan

Abstract: Regular grit are those which are made normally, for example, Abaca, Jute, Hemp, cotton, hair, fleece coir and etc. Because of numerous points of interest Ordinary grit are supplanting glass grit and carbon grit, for example, its biodegradable nature so it dumps it beyond all detectable inhibitions space after it takes retirement, and its simplicity of accessibility, low weight, and better quality in multi hub support with including Nano powder particles with it. In this examination work motorized conduct of Flyash Nano powder/Abaca/Agave grit strengthened epoxy based half and half compounds and its creation has been considered. Work has been done to examine the flexural properties, tensile property, hardness, and effect quality of the compounds. It has been seen that effect quality is improved with the expansion in the weight portion of normal strands to certain degree. The morphology of compounds is contemplated by utilizing Scanning Electron Microscope (SEM).

Key words: Abaca, Agave, Flyash nanopowder, Scanning Electron Microscope.

I. INTRODUCTION

Regular grit fortified compounds are elective ingredients for some building applications, for example, aviation applications, little wind turbine edges, and vehicle applications [1-3]. Characteristic grit show indicates prevalent properties, for example, ductile, fk=flexural and sway at that point glass grit [3-5]. The primary points of interest of common strands are of ease, light weight, simple generation and amicable to condition [6]. Then again, there are a few downsides, for example, their poor mechanical properties and high dampness assimilation [32-34]. The fortification can be manufactured (for example glass, carbon, boron and aramid) or of regular sources [35-37]. By the by, some composite segments recently fabricated with glass strands are presently created with characteristic filaments [7-9]. Applications including entryway boards, trunk liners, instrument boards, inside rooftops, bundle racks, among other inside segments, are as of now being used in European autos because of the more positive financial, natural and social parts of the vegetable filaments [10-12]. Low degree of volume part of filaments gave not just higher modulus of versatility and mechanical quality under elastic and flexural loadings yet in addition have estimations of obvious thickness, evident porosity and water ingestion [13]. The expansion of Flyash can improve the firmness by keeping up its low thickness [14-16]. The quality of short grit compounds relies upon the sort of grit network, grit length, grit direction, grit focus and the holding between the grit and grid matrix [17].

II. EXPERIMENTAL

A. Ingredients
The fundamental points of interest of normal filaments are their accessibility, biodegradable, sustainable, natural cordial, minimal effort, low thickness, high explicit properties, great warm properties and improved the vitality recuperation, low vitality utilization, nonabrasive nature and ease [18]. These strands are ease filaments with low thickness and high explicit properties which are similar to manufactured filaments. The crude ingredients utilized in this work are, Abaca grit, Agave grit, Flyash grit, Flyash Nano powder, Epoxy, Hardener.

B. Methodology
Strands in this exploration it compounds are manufactured by hand layup process. Abaca and Agave were cut into the components of length and broadness of 300x200mm was utilized to set up the example. The composite example comprises of absolutely 6 woven layers. A measure amount of gum and Flyash are taken and which is get blended with hardener in the proportion of 1:1 [19]. The layers of strands were manufactured by including the required measure of epoxy tar, 17% of Abaca ,17% of Agave and 6% of Flyash Nano powder is utilized. The six 6 layers of various strands (Abaca and Agave) are created utilizing hand layup process. The epoxy pitch connected is conveyed to the whole surface by methods for roller [20-24]. The air holes framed between the layers during the preparing were delicately crushed out, the handled wet composite were then squeezed hard and abundance sap is evacuated. At that point it is dried by keeping it in environmental conditions for 1 day to get the ideal examples as appeared in figure 1.
Experimental Research on Abaca/Agave/Fly ash Nano Powder Reinforced Hybrid Composites

Figure 1 Multiaxial layers of Abaca and Agave

After composite ingredients dried totally, undesirable surfaces are to be evacuated utilizing optional tasks and furthermore cut the ingredients according to the required ASTM models [25-27].

C. Characterization

Malleable example

Elasticity of the example is dictated via conveying tractable test on UTM pursued by ASTM Standards. The standard utilized for elasticity id ASTM D3039. It has been manufactured by the ASTM Standards [28-29].

Sort of test: Tensile quality

Standard: ASTM D3039

Figure 2: Specimens for Tensile Test

Flexural specimen

Flexural quality of the example is dictated via conveying elastic test on UTM pursued by ASTM Standards. Three point twisting trial of composite example is done in ASTM D 790 test standard. A uniaxial burden was connected through both the end [30]. Sort of test: 3-point Flexural Test

Standard: ASTM D 790

Figure 3: Specimens for Flexural Test

Effect example

The vitality consumed by the material is found by charpy testing pursued by ASTM Standard of ASTM E23-15b [31] as appeared in figure.

III. RESULTS AND DISCUSSION

Pliable test

It is discovered that rigidity of woven Abaca/Agave fortified with Epoxy/Flyash Resin are given horrible outcomes.

Fig 5: Stress Vs strain diagrams for Tensile test (Specimen 1)

Fig 6: Stress Vs strain diagrams for Tensile test (Specimen 2)

Fig 7: Stress Vs strain diagrams for Tensile test (Specimen 3)
Flexural test
Figure demonstrates the subtleties of flexural results for three number of examples. From the beneath diagram of pressure versus strain it is seen that normal flexural worry of material is 64 N/mm².

![Stress Vs strain diagrams for Flexural test (Specimen 1)](image)

![Stress Vs strain diagrams for Flexural test (Specimen 2)](image)

![Stress Vs strain diagrams for Flexural test (Specimen 3)](image)

Effect test
Effect test is led to investigations the vitality consumed by the example for unexpected connected burden. The effect test is finished by charpy effect test machine. From the table 1 it is seen that normal effect quality of composite material is 136.44 KJ/m².

Table 1 Impact Strength of compounds

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Impact strength(KJ/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>141.23</td>
</tr>
<tr>
<td>2</td>
<td>98.47</td>
</tr>
<tr>
<td>3</td>
<td>171.32</td>
</tr>
</tbody>
</table>

5.6. SEM Analysis
The accompanying Figure 11. demonstrates test's surface geography of Abaca/Agave strengthened with Flyash nanopowder/epoxy tar after creation. The SEM test demonstrates the different of mechanical properties through stage dissemination data. Figure demonstrates that period of Abaca/Agave/Flyash nanopowder/epoxy fortified epoxy composite. It is seen that because of hand layup process, Flyash and epoxy pitch are taken uneven surfaces which may diminish elastic and flexural properties similarly however it is demonstrated that this uneven surfaces of Flyash and sap may build sway quality of material.

![Figure 11: SEM Images of Abaca/Agave/Flyash Nano Powder Reinforced Hybrid Compounds](image)

IV. CONCLUSION

Common grit strengthened compounds structure one such class of ingredients which gangs predominant mechanical properties as well as bio-degradable in nature. Normal grit fortified compounds can be a potential applicant where they can supplant the conventional material arrangement of wind industry. Be that as it may, it is absurd to totally supplant the engineered strands by common filaments just, so as to show signs of improvement properties, it is fundamental to utilize some measure of Nanopowder, for example, Flyash to improve its mechanical properties with low thickness. From this exploration it is discovered that including 6% of Flyash Nanopowder in Epoxy which improves the effect quality of material upto 137.66 KJ/m², Tensile quality upto 28 N/mm², and flexural quality 63 N/mm² with keeping up low material thickness.

REFERENCES

Experimental Research on Abaca/Agave/Fly ash Nano Powder Reinforced Hybrid Composites


DOI: https://doi.org/10.1007/s40735-019-01259-2


30. Raja Ganesan Prabhakaran Vasantha-Srinivasan, Sengodan Karthi, Muthiah Chellappandan, Athiratham Ponsankaar, Annamalai Thanigavel, Sengottayan Senthil-Nathan, Devarajan Chandramohan, Aspergillus flavus (Link) toxins reduces the fitness of dengue vector Aedes aegypti (Linn) and their non-target toxicity against aquatic predator, Microbial pathogenesis,128,281-287,2019.

DOI:https://doi.org/10.1016/j.micpath.2019.01.014.


ATHORS PROFILE

Mr. T. Naresh Kumar, Assistant professor in Mechanical Engineering Department, Malla Reddy Engineering College(Autonomous), Masiammaguda, Hyderabad. He has 5.6 years of teaching experience.

He completed M.Tech in 2013 at MITS, Madanapalle, Javaharal Nehru Technological University, Anantapur. He had guided 3 M.Tech projects and published 13 papers in various National and International Journals and Conferences.

D. David, Pursued M.E. degree in Mechanical Engineering with a specialization of Computer Aided Design from Sathyabama University.Chennai. Currently he is working as a Assistant professor in the Department of Mechanical Engineering, Velammal Engineering College, Chennai - 600066, India. He has more than 9 years of teaching experience.

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
Mr. S. Shankaranarayanan was born in Anaikulam, Tenkasi (Dt), India, in 1986. He received B.E. degree in Mechanical Engineering from Dr.Sivanthi Adhithanar College of Engineering, Tiruchendur, in 2008, and M.E. degree in Production Engineering from National Engineering College, Kovilpatti, in 2014. Currently he is working as a Assistant professor in the Department of Mechanical Engineering, Velammal Engineering College, Chennai - 600066, India. He has more than 8 years of teaching experience. His field of interest is composite materials. He has Published 5 international Journals, 2 International conference and 5 National conferences.