
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

662

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

Abstract: In many DSP applications, generally multipliers and

adders are two key components which are highly complex and

consume more power. Out of that the design of adder circuitry is

quite complex compared to multiplier which consumes more

power. Hence optimization of power consumption of adder

circuits is a challenging task in the recent year and is a need of

today’s world. In order to give a justice to this problem, work

presented in this paper describes the technique of designing

floating point adder and subtractor using low power pipelining

technique which leads to a reduction in power consumption by a

significant amount. Moreover, the presented work in the paper

deals with the design of low power transistorized architecture for

32-bit floating point adder/ subtractor without and with pipelining

approach in 50nm CMOS VLSI technology. The experimental

results demonstrated that, the dynamic power consumption of the

floating point adder/subtractor architectures is reduced

significantly by employing pipelining technique as compared to

the without pipelining technique. Also, in this work a significant

improvement has been achieved in the critical path for pipelined

approach compared to without pipeline approach. The proposed

design is a full custom design prepared and analyzed using

cadence 6.15 tool.

Index Terms: Subtractor, Floating Point Adder,

Adder/Subtractor Area, Critical path.

I. INTRODUCTION

 The current trend towards low-power design is mainly

driven by two forces, the growing demand for long-life

autonomous portable equipment and the technological

limitations of high-performance VLSI systems [1]. For the

first category of products, low-power is the major goal for

which speed and dynamic range might have to be sacrificed.

High speed and high integration density are the objectives for

the second application category, which has experienced a

dramatic increase of heat dissipation that is now reaching a

fundamental limit. These two forces are now merging together

as portable equipment grows to encompass high throughput

computationally intensive products such as portable

computers and cellular phones.

Now-a-days, out of speed, area, time, the low power is the

extreme development in the electronic semiconductor

industry primary issue in electronic structure frameworks.

Revised Manuscript Received on August 05, 2019.

 First Author Dr. Shrikant J. Honade, Department of E & TC, G H

Raisoni CEM, Amravati, Maharashtra, India.

Additional power expending results in components

overheating and makes the system disappointment. The

design of the module will relies upon the lower power

dissipation or utilization in any basic arithmetic circuits or

segments [2]. Low-power is a basic prerequisite for compact

sight and multimedia devices utilizing different signal

processing algorithms and architectures [1]. Inexact chips are

littler, quicker and devour less energy. Albeit fixed point

arithmetic circuits have been examined regarding inexact

processing; floating point (FP) arithmetic circuits are

altogether more power hungry and they have not been

completely considered for inexact computing [10]. Addition

is one of the four essential operations in arithmetic. Binary

Signed-Digit Residue Number System (BSD-RNS) is one of

the explicit and optimized number system. In this paper we

propose three low power configuration structures for three

BSD-RNS adders [3]. Another structure of superset adder is

presented. In this Current Mode approach is proposed for the

circuit [4]. With a ton of new ternary circuits being proposed

as an option in contrast to the digital logic, we make a stride

further to structure a Ternary coded Decimal (TCD) adder

circuit dependent on CMOS technology [5]. Redundant

Binary Signed Digit (RBSD) number system spurs the

designers to design fast processing device. RBSD adders can

perform quick addition of two numbers because of the wonder

of the nonappearance of carry calculation and manipulation

requirement [6]. In present day nanotechnology and quantum

calculation, reversible logic plays a significant job as it has

insignificant effect on physical entropy. The key purpose of

reversible computing is that the electric charge at the output of

any circuit ought to stay accessible for further calculations. It

implies transistor should not pursue the process of flow of

charge during on/off positions [7]. Quantum-dot cell

automata (QCA) is a developing field coupled

nanotechnology that is made of cells containing electrons [8].

Hybrid logic approach is assumed to design the full adder [9].

Carry select adder (CSLA) is known to be the quickest adder

among the customary adder structures [12]. 8-bit, 16-bit,

32-bit, and 64-bit square-root CSLA (SQRT CSLA) have

been designed and contrasted with the conventional SQRT

CSLA design [16]. Reversible logic has developed as a

noteworthy area of research because of its capacity to lessen

the power dissipation which is the fundamental necessity in

the low power design [14]. The layout design of the ripple

carry adder is simple and it makes the calculation to be

quicker [13].

Low Power 32-Bit Floating Point

Adder/Subtractor Design using 50nm CMOS

VLSI Technology

 Shrikant J. Honade

Low Power 32-bit Adder/Subtractor Design Using 50nm CMOS VLSI Technology

663

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

In floating point addition (or subtraction), the two

numbers must have same exponent for their mantissas to be

included (or subtracted) effectively. So in the

adder/subtractor unit, the exponent of the smallest number is

augmented in such a way that mantissa of both the are

equivalent and the mantissa of the smallest number is then

moved right 'n' times where 'n' is the difference between the

larger and smaller number. After the addition/subtraction task

is played out, the resultant mantissa is normalized by the LOD

technique. The LOD detects the most significant '1' by tallying

the quantity of zeros (nz) before the most significant '1'. The

mantissa is then moved left 'nz' times [17]. Advances in

CMOS technology have prompted a restored enthusiasm for

the design of essential functional units for digital systems

[18]. This wide usage space makes the adders a genuine

precedent investigation to investigate the design

methodologies [18]. Low-power VLSI circuits designs has

turned into a vital execution objective in view of the quickly

developing technology in versatile mobile computation and

communication [19]. Customary design strategies for

majority gate are not valuable here because of equipment

wasteful aspects [19]. Floating point adders are additionally

utilized in encryption and hashing function execution [20].

The speed of a VLSI adder relies upon a few

components: technology, circuit family, adder topology,

transistor sizes, and second-order effects. Therefore there are

no basic principles to be connected while evaluating delay.

Skilled designers are prepared to do tweaking the structure to

acquire the best execution and most minimal vitality through

transistor sizing. But, it is an ad-hoc process and thus it is

troublesome, if certainly feasible, to foresee the best topology

[21]. The architectures explained by some of the authors used

the concept of pipelining and parallel processing in order to

improve the performance; which is restricted by the

availability of hardware resource on FPGA development

platform. Hence, there is a need for full custom VLSI

architectures to be designed and developed using CAD VLSI

design tool adopting pipelining and parallel processing for

implementation in real time applications. Pipelining

transformation results in a reduction in

the critical path, which may be exploited either to extend the

clock speed or to cut back power consumption

at identical speed. [22].

II. FLOATING POINT ARITHMETICS

The IEEE 754-2008 standard specifies however binary

floating point numbers are represented additionally as a way

to perform arithmetic operations on them [16], [17].

Single precision floating point binary

numbers comprises 32 bits; 1 sign bit, 8 bits for exponent

and 23 bits for mantissa. The exponent is represented in

excess-127 code to facilitate exponent

comparison required when performing arithmetic operations.

The 23 bit mantissa truly incorporates a 24th implied bit.

The floating point number is alleged to be normalized once

it’s adjusted such that the implied bit is “1’. Hence it’s

dropped upon storage permitting enhanced accuracy and

retrieved when performing operations for

correct calculations. For numbers that are smaller than the

smallest normalized number, the implied bit is ‘0’ and also

the number is referred to as a de-normalized or

subnorm number. Various parallel architectures used for

decimal floating point multipliers are proposed in the

literature and the designs were optimized at different levels of

the design but it was based on fixed point multiplier [3]. But,

due to the developments in the VLSI technology, several

complex algorithms that appeared unfeasible to implement

into practice, have turn into easily realizable today with

preferred concert parameters so that latest designs can be

integrated. The performance of system’ is essentially

predicted with the capability of the functioning of adder and

multiplier [19]. In floating point numbers, multiplication

of 2 numbers is basically performed through adding their

exponents and multiplying their mantissas. As mentioned

before, for floating pont multiplication, the bottle neck of the

design is that the 24*24 bit multiplier used to calculate

the resulting 48 bit mantissa.

In this work, the single precision numbers in the

binary IEEE 754 standard is used. The single precision

numbers in the binary IEEE standard are created as shown in

Figure 1. The most significant bit is the sign bit, which

indicates a negative number if it is set to 1. The following field

denotes the exponent with a constant bias added to it as shown

in figure 1, the remaining part of the number is normalized to

have one non-zero bit to the left of the floating point.

 Sign

bit

8-bit

Exponent

23-bit

Mantissa

03031 23 22

e+Bias FS

Figure 1: Standard IEEE Floating Point Number Format

Therefore, the value given by the standard format can be

expressed using expression (1) [10].

 (1)

The range of single precision floating point number varies

from

 .

The exponent is a signed number represented using the bias

method with a bias of 127. The term biased exponent refers to

the unsigned number contained in bits 1 through 8 and

unbiased exponent (or just exponent) means the actual power

to which 2 is to be raised. The fraction represents a number

less than 1, but the significand of the floating-point number is

1 plus the fraction part. In other words, if e is the biased

exponent (value of the exponent field) and f is the value of the

fraction field, the number being represented is

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

664

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

III. FLOATING POINT ADDITION / SUBTRACTION

Digital addition operation plays an important role in recent

embedded processors and the performance of adder unit

basically decides the performance of ALU in CPU and GPU.

A composite DSP system consists of a number of adders and

multipliers. The performance of such complex system is

completely depends upon the efficient design of adders and

multipliers. Out of that the most fundamental component is

the adders which are incredibly often present inside the

building blocks of various systems like controllers and

processing chips, FIR filtering, communication, and

cryptography etc [22]. Figure 2 illustrated the design process

of the floating point addition and subtraction.

S2S1

F1 F2

25 25

25

eANS FANS

24

e

e

COMPARATOR

MUX21 MUX21

BARREL SHIFTER

MUX21

ADD/SUB

EXPONENT

NORMALISE

POWER

DIFFERENCE

Figure 2: Floating Point Addition/Subtraction Unit

Let and represent two floating point numbers;

represents the addition of both number; and

 can be rewritten as

 = + (). The subtraction process is converted to

addition form by inversing the sign bit of F2. For this reason,

only addition algorithm is elaborated here. Addition and

subtraction algorithms are realized in three steps. Xi

represents the number; Si is the sign, ei is exponent and Fi is

the fraction part of any number. Lets define the inputs as

X1=(S1,e1 ,F1) and A2=(S2,e2,F2). The result is represented as

FANS = (SANS,eANS ,fANS)= X1+X2 or X1 + (- X2) The algorithm

steps are as follows [23]:

 Step 1: If absolute value of X1 is smaller than X2, X1 and X2

are interchanged. The right shift amount of F2 is calculated

by subtracting e1 from e2. (Sign)_1_ (Mantissa) is added to

the bits after the sign bit (1.F1) or (1.F2).

 Step 2: (1.F1) is shifted to the right by the amount of (e1- e2).

If the sign bits are equal, then (1.F1) and (1.F2) are added, if

not (1.F2) is subtracted from (1.F1). The sign of the resulting

number SANS is the sign of the bigger F number.

 Step 3: FANS is shifted to the left until the first bit becomes

1, and amount of the shift is calculated. eANS is obtained

by subtracting the amount of shift from e1.

IV. DESIGN METHODOLOGY

The main aim of this work is to design the prototype 32-bit

floating point adder/subtractor unit using low power VLSI

design strategy at circuit level using industry standard tool

like cadence. The various steps used for designing the

proposed work is discussed in this section.

A. Designing of Arithmetic Circuits using Front End

VLSI Approach

The VLSI front end design involves transformation of the

given entity followed by the behavioural and functional

simulation based on requirement of the design under

consideration. This approach is responsible for creating the

register transfer level (RTL) design which is a gate level

design. The VHDL RTL models are validated through

simulation by means of a number of test benches written in

VHDL.

Floating point arithmetic is basically used for

performing various arithmetic operations like addition,

subtraction and multiplication of two floating point numbers.

Here we consider floating point adder, subtractor and

multiplier design by considering two floating point numbers

represented using 32-bit single precision representation

method in standard IEEE 754 floating point format. In this

step, 32-bit floating point arithmetic units are designed and

simulated. The specialty of this is that, all the required

libraries apart from standard IEEE library is manually created

and is used for processing. Figure 3 shows the simulation

setup for combined floating point arithmetic unit obtained by

applying common input signal obtained from the data

generator unit. Figure 4 and figure 5 and shows the RTL view

for independent 32-bit floating point adder and subtractor

unit.

Low Power 32-bit Adder/Subtractor Design Using 50nm CMOS VLSI Technology

665

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

Figure 4: Simulation setup for floating point arithmetic units

library ieee;
 use ieee.std_logic_1...

 use ieee.std_logic_a...

Design Unit Header

mux_sel <= EXP_diff(8);

Statement_1

mw_I13din0 <= A_EXP;

Statement_2

mw_I13din1 <= B_EXP;

Statement_3

EXP_in(7:0) EXP_out(7:0)

SIG_in(SIG_width - 1:0)SIG_out(SIG_width - 1:0)

EXP_in(7:0) EXP_out(7:0)

SIG_in(SIG_width - 1:0)SIG_out(SIG_width - 1:0)

EXP_in(7:0) EXP_out(7:0)

SIG_in(SIG_width:0)SIG_out(SIG_width - 1:0)

A_in(width - 1:0) A_out(width - 1:0)

B_in(width - 1:0) B_out(width - 1:0)

invert_A

invert_B

A_in(width - 1:0) A_out(width - 1:0)

B_in(width - 1:0) B_out(width - 1:0)

swap_AB

A_in(28:0) A_out(28:0)

B_in(28:0) B_out(28:0)

cin

dif f (8:0)

a_exp_in <= "0" & A_EXP;

block_370

FP(31:0) EXP(7:0)

isDN

isINF

isNaN

isZ

SIG(31:0)

SIGN

I3combo : process (a_exp...
 variable m...

 variable m...
 variable diff
 variable b...
 begin

 mw_I3t0 :=
 mw_I3t1 :=
 borrow := ...
 diff := sign...

A_in <= "00" & A_SIG(23 ...

block_358

I4combo : process (a_inv,...
 variable m...

 variable m...
 variable m...
 variable m...
 begin

 mw_I4t0 :=
 mw_I4t1 :=
 mw_I4carry
 mw_I4sum

cin_sub <= (A_isDN or A_...

block_216

eb3_truth_process : proc...
 begin

 if (A_isNaN
 isINF_tab
 isNaN <=
 isZ_tab ...

 elsif (B_is...
 isINF_tab
 isNaN <=
 isZ_tab ...

InvertLogic_truth_process :
 begin

 if (A_SIGN
 invert_A ...
 invert_B ...
 elsif (A_SI...

 invert_A ...
 invert_B ...
 elsif (A_SI...
 invert_A ...

SignLogic_truth_process :
 variable b...

 begin
 b1_A_SIG...
 case b1_A...
 when "000"

 OV <= '0'
 Z_SIGN
 when "001"
 OV <= '1'

ADD_SUB <= '1';

block_212

B_XSIGN <= not (B_SIGN

block_423

b_exp_in <= "0" & B_EXP;

block_374

FP(31:0) EXP(7:0)

isDN

isINF

isNaN

isZ

SIG(31:0)

SIGN

B_in <= "00" & B_SIG(23 ...

block_362

I13combo : process (mw_ ...
 variable dt...

 begin
 case mux...
 when '0' |
 dtemp :...

 when '1' |
 dtemp :...
 when oth...
 dtemp :...

EXP_isINF <= '1' when (OV

block_366

EXP_in(7:0) EXP_out(7:0)

SIG_in(27:0) SIG_out(27:0)

zero

EXP(7:0) FP(31:0)

isINF

isNaN

isZ

SIG(22:0)

SIGN

Z_SIG <= SIG_norm2(25 ...

block_221

I10

FPround

I11

FPnormalize

I12

FPselComplement

I14

FPinvert

I5

FPswap

I6

FPalign

I0

UnpackFP
I1

UnpackFP

block_406

or2

block_404

or2

I8

FPadd_normalize

FP_A(31:0)

FP_B(31:0)

I2

PackFP

FP_Z(31:0)

block_408

or2

 Figure 5: RTL view of 32-bit floating point adder

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

666

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

library ieee;
 use ieee.std_logic_1...
 use ieee.std_logic_a...

Design Unit Header

mux_sel <= EXP_diff (8);

Statement_1

mw_I13din0 <= A_EXP;

Statement_2

mw_I13din1 <= B_EXP;

Statement_3

EXP_in(7:0) EXP_out(7:0)

SIG_in(SIG_width - 1:0)SIG_out(SIG_width - 1:0)

EXP_in(7:0) EXP_out(7:0)

SIG_in(SIG_width - 1:0)SIG_out(SIG_width - 1:0)

EXP_in(7:0) EXP_out(7:0)

SIG_in(SIG_width:0)SIG_out(SIG_width - 1:0)

A_in(width - 1:0) A_out(width - 1:0)

B_in(width - 1:0) B_out(width - 1:0)

invert_A

invert_B

A_in(width - 1:0) A_out(width - 1:0)

B_in(width - 1:0) B_out(width - 1:0)

swap_AB

A_in(28:0) A_out(28:0)

B_in(28:0) B_out(28:0)

cin

di ff(8:0)

a_exp_in <= "0" & A_EXP ;

block_370

FP(31:0) EXP(7:0)

isDN

isINF

isNaN

isZ

SIG(31:0)

SIGN

I3combo : process (a_exp...
 variable m...
 variable m...
 variable diff

 variable b...
 begin
 mw_I3t0 :=
 mw_I3t1 :=
 borrow := ...
 diff := sign...

A_in <= "00" & A_SIG(23 ...

block_358

I4combo : process (a_inv,...
 variable m...
 variable m...
 variable m...

 variable m...
 begin
 mw_I4t0 :=
 mw_I4t1 :=
 mw_I4carry
 mw_I4sum

cin_sub <= (A_isDN or A_...

block_216

eb3_truth_process : proc...
 begin
 if (A_isNaN
 isINF_tab

 isNaN <=
 isZ_tab ...
 elsif (B_is...
 isINF_tab
 isNaN <=
 isZ_tab ...

InvertLogic_truth_process :
 begin
 if (A_SIGN
 invert_A ...

 invert_B ...
 elsif (A_SI ...
 invert_A ...
 invert_B ...
 elsif (A_SI ...
 invert_A ...

SignLogic_truth_process :
 variable b...
 begin
 b1_A_SIG ...
 case b1_A...
 when "000"
 OV <= '0'
 Z_SIGN

 when "001"
 OV <= '1'

ADD_SUB <= '0';

block_212

B_XSIGN <= not (B_SIGN

block_423

b_exp_in <= "0" & B_EXP ;

block_374

FP(31:0) EXP(7:0)

isDN

isINF

isNaN

isZ

SIG(31:0)

SIGN

B_in <= "00" & B_SIG(23 ...

block_362

I13combo : process (mw_...
 variable dt...
 begin
 case mux...
 when '0' |
 dtemp :...
 when '1' |
 dtemp :...

 when oth...
 dtemp :...

EXP_isINF <= '1' when (OV

block_366

EXP_in(7:0) EXP_out(7:0)

SIG_in(27:0) SIG_out(27:0)

zero

EXP(7:0)FP(31:0)

isINF

isNaN

isZ

SIG(22:0)

SIGN

Z_SIG <= SIG_norm2(25 ...

block_221

I10

FPround

I11

FPnormalize

I12

FPselComplement

I14

FPinvert

I5

FPswap

I6

FPalign

I0

UnpackFP
I1

UnpackFP

block_406

or2

block_404

or2

I8

FPadd_normalize

FP_A(31:0)

FP_B(31:0)

I2

PackFP

FP_Z(31:0)

block_408

or2

Figure 6: RTL view of 32-bit floating point subtractor

Figure 7: Simulation result of floating point arithmetic unit

The simulation result is illustrated in figure 7, where Bus123 and Bus128 represents the two floating point number randomly

generated using data generator and FP_A, and FP_S represents the result generated through floating point adder and floating

point subtractor unit respectively. The simulation results are self explanatory and more precise also.

Low Power 32-bit Adder/Subtractor Design Using 50nm CMOS VLSI Technology

667

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

B. Designing of Arithmetic Circuits using Back End VLSI Approach

In this step, all the above designed floating point arithmetic units are mapped to the transistor level and then tested it using

cadence 6.15 tool.

B.1 Floating Point Adder using 50nm CMOS technology

Here, the above designed floating point adder unit is passed through cadence 6.15 rtl compiler tool. It will map the front end

designs into gate level net-list i.e. it will transfer the high level language design into basic gate and then it is synthesized in order

to obtain the transistorized designs for 32-bit floating point adder, is obtained using 50nm technology. Then in order to check

the functionality of the design, simulation setup or test setup is prepared using cadence 6.15 virtuoso tool as shown in figure 8.

This setup consists of data generator and the floating point adder unit.

Figure 8: Simulation setup for floating point adder

Figure 9: Simulation result of floating point adder

The synthesis report showing transistor count of the circuit as

depicted in table 1.

Table 1. Element Count for Floating Point Adder

Adder

Element Type Model Count

bsim4 n n_50n 8819

bsim4 p p_50n 8819

iprobe 9

resistor 32

vsource 3

Total 17682

Total nodes in the netlist 11511

The simulation is performed using cadence 6.15 ADE tool in

ultrasim mode. The simulation result along with the output

waveform is shown in figure 9. From simulation result, we can

easily visualize that after applying two operands op11 &

op22, the circuit is able to perform addition of two as

represented by ‘y’ and it is matching with the front end result

shown in figure 7.

From table 1, it is clear that, the total number of

bsim4 transistors required for designing the floating point

adder is 17634 excluding the encrypted models. Also, the

power analysis is done for the above circuit which results into

average power consumption of 0.000381 watt when operated

on input supply voltage of 1volt.

B.2 Floating Point Subtractor using 50nm CMOS technology

Here, floating point subtractor designed in the preceding section is passed through cadence

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

668

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

6.15 rtl compiler tool and then it is synthesized in order to obtain the transistorized designs for 32-bit floating point adder, is

obtained using 50nm technology. After that, to check the functionality of the design, simulation setup or test setup is prepared

using cadence 6.15 virtuoso tool as shown in figure 11. This setup consists of data generator and the floating point adder unit.

Figure 11: Simulation setup for floating point subtractor

The simulation result along with the output current waveform is shown in figure 12.

Figure 12: Simulation output for floating point subtractor

From simulation result, we can easily visualize that after applying two operands op11 & op22, the circuit is able to perform

subtraction of two as represented by ‘y’ and it is matching with the front end result shown in figure 7. The synthesis report is

basically netlist showing transistor count of the circuit as depicted in table 2.

Table 2. Element Count for Floating Point Subtractor

Subtractor

Element Type Model Count

bsim4 n n_50n 8863

bsim4 p p_50n 8863

iprobe 9

resistor 32

vsource 3

Total 17770

Total nodes in the netlist 11583

From the table 2, it is clear that, the total number of bsim4

transistors required for designing the floating point multiplier

is 17726 excluding the encrypted models. Also, the power

analysis is done for the above circuit which results into

average power consumption of 0.0005404watt when operated

on input supply voltage of 1volt.

B.3 Pipelined Floating Point Adder / Subtractor using Front End

Low Power 32-bit Adder/Subtractor Design Using 50nm CMOS VLSI Technology

669

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

The design of pipelined floating point adder/subtractor circuit

is done here by using two approaches i.e. front end and back

end. Front end approach is related with the coding and

simulation whereas the backend is related with transforming

the design to the transistor level and resembling the

functionality with front end approach. The proposed design is

a full-custom design. Also, pipelined arithmetic unit requires

the triggering circuits for their operation in order to achieve

high performance; control unit is designed by using FSM

approach. During the process, several times online IEEE

floating point calculator and MATLAB tool is used for data

conversion and verification. Also, some times synthesizable

and non-synthesizable code style is also used for accurate

representation. In this step, ripple carry floating point

adder/subtractor is redesigned using the concept of pipelining

in order to optimize the power. Figure 13 shows the RTL view

for 32-bit pipelined floating point adder/subtractor and

multiplier unit. The simulation outputs is illustrated in figure

14 for pipelined floating point adder/subtractor respectively,

wherein FP_A and FP_B represents the two floating point

number randomly generated using data generator, clk

indicates clock signal and FP_Z, represents the corresponding

output signal. The simulation output shows that, the output

FP_Z approximately takes 9 clock cycles to update the output

in case of adder/subtractor. The result in these cases is self

explanatory and more precise also. In figure 14, ADD_SUB is

a multiplexed signal which performs addition operation when

ADD_SUB=1 and subtraction operation when ADD_SUB=0.

library ieee;
 use ieee.std_logic_1...
 use ieee.std_logic_a...

Design Unit Header
clk

A _ EX P(7 :0) A _ alig n(28 :0)

A _ in(2 8:0) A _ SIG N_ stage 2

A _ is IN F B _ alig n(28 :0)

A _ isN aN B _ XS IGN _ stage 2

A _ isZ c in

A _ S IG N E X P_ b ase _s tag e 2(7 :0)

A D D_ S UB _ out inve rt_ A

B _ EX P(7 :0) inve rt_ B

B _ in(2 8:0) is IN F_ tab_ s tag e 2

B _ is IN F isN aN_ stag e 2

B _ isN aN isZ_tab _s tag e 2

B _ isZ

B _ XS IG N

cin_ sub

c lk

E X P _d iff(8:0)

A _ alig n(28 :0) A _ SIG N_ stage 3

A _ SIG N_ stage 2 ad d _o ut(2 8:0)

B _ alig n(28 :0) B _ XS IGN _ stage 3

B _ XS IGN _ stage 2 E X P _b ase (7:0)

c in is IN F_ tab_ s tag e 3

c lk isN aN_ stag e 3

E X P_ b ase _s tag e 2(7 :0) isZ_tab _s tag e 3

inve rt_ A

inve rt_ B

is IN F_ tab_ s tag e 2

isN aN_ stag e 2

isZ_tab _s tag e 2

A D D _S U B A _ EX P(7 :0)

c lk A _ in(2 8:0)

FP _ A(3 1:0) A _ is IN F

FP _ B(3 1:0) A _ isN aN

A _ isZ

A _ S IG N

A D D_ S UB _ out

B _ EX P(7 :0)

B _ in(2 8:0)

B _ is IN F

B _ isN aN

B _ isZ

B _ XS IG N

cin_ sub

E X P _d iff(8:0)

A _ SIG N_ stage 3 E X P _no rm (7:0)

ad d _o ut(2 8:0) is IN F_ tab_ s tag e 4

B _ XS IGN _ stage 3 isN aN_ stag e 4

c lk isZ_tab _s tag e 4

E X P _b ase (7:0) O V _ stage 4

is IN F_ tab_ s tag e 3 S IG _no rm(2 7:0)

isN aN_ stag e 3 Z_ S IG N _stag e 4

isZ_tab _s tag e 3 ze ro _ stage 4

c lk is IN F_ tab

E X P _no rm (7:0) isN aN

is IN F_ tab_ s tag e 4 isZ_ tab

isN aN_ stag e 4 O V

isZ_tab _s tag e 4 S IG _no rm2 (2 7:0)

O V _ stage 4 Z_ E XP (7:0)

S IG _no rm(2 7:0) Z_ S IG N

Z_ S IG N _stag e 4 ze ro

ze ro _ stage 4

c lk FP _ Z(3 1:0)

is IN F_ tab

isN aN

isZ_ tab

O V

S IG _no rm2 (2 7:0)

Z_ E XP (7:0)

Z_ S IG N

ze ro

I2

FPadd_stage2

I3

FPadd_stage3

I1

FPadd_stage1

I4

FPadd_stage4

ADD_SUB

clk

I5

FPadd_stage5

I6

FPadd_stage6

FP_A(31:0)

FP_B(31:0)

FP_Z(31:0)

Figure 13: RTL view of pipelined floating point adder/subtractor

Figure 14: Simulation output of pipelined floating point adder/subtractor

B.4 Pipelined Floating Point Adder / Subtractor using Back End

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

670

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

The transistorized designs for 32-bit pipelined ripple carry floating point adder/subtractor are developed in 50nm technology.

Figure 15: Simulation setup for pipelined floating point adder/subtractor

The synthesized designs of pipelined floating point

adder/subtractor unit in stages are obtained which is basically

a transistorized network consisting of pmos and nmos

transistors designed using 50nm technology. Then in order to

check the functionality of the design, simulation setup or test

setup is prepared using cadence 6.15 virtuoso tool as shown in

figure 15. This setup consists of data generator and the

floating point adder unit. The simulation is performed using

cadence 6.15 ADE tool in ultrasim mode. The simulation

result is shown in figure 16. From simulation result, we can

easily visualize that after applying two operands op11 &

op22, the circuit is able to perform required arithmetic

operating on the applied signal as represented by ‘add_op’.

The synthesis report is depicted in table 3.

Figure 16: Simulation result for pipelined floating point adder/subtractor

Low Power 32-bit Adder/Subtractor Design Using 50nm CMOS VLSI Technology

671

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

Table 3. Element Count for Pipelined Floating Point

Adder/subtractor

Pipelined Adder/subtractor

Element Type Model Count

bsim4 n n_50n 8911

bsim4 p p_50n 8911

iprobe 12

resistor 32

vsource 66

Total 17932

Total nodes in the netlist 11857

From the table 3, it is clear that, the total number of bsim4

transistors required for designing the pipelined floating

arithmetic unit is 17822 excluding the encrypted models.

Also, the power analysis is done for the above circuit which

results into average power consumption of 0.00000027watt

when operated on input supply voltage of 1volt. The results

shown in figure 16 are in hexadecimal format which are same

as that of front end result depicted in figure 14 when verified

using hex2float converter designed manually

V. EXPERIMENTAL RESULTS

The universal gates like NAND, NOR and basic gates are

accessible as customary standard cells. These

cells accessible within the library are used to synthesize the

design. During this work Cadence 6.15 design library is

manually employed for synthesizing the rest of the design.

The experimental results obtained are compared in terms of

performance metric like transistor count, power consumption

and critical path is discussed. Critical path is nothing but the

path between input node and output node with maximum

delay. Because of this the computational speed of the circuit

gets reduced. So, in order to obtain the computational speed,

the value of critical path should be as low as possible.

Similarly, the power consumption of the circuit should be as

low as possible for the low power devices and the pipelining

technique is one which can be used to reduced the power

consumption at circuit level [22]. Hence pipelining technique

is used in this work for power optimization and the obtained

results are outstanding. Figure 17 (a) and figure 17(b) shows

the transistor count and required for implementation of

floating point adder/subtractor without and with pipelining

technique.

Figure 17 (a) : Transistor count

Figure 17 (b): Area occupied

Figure 18: Power consumption

The power consumption and critical path comparison for the

ripple carry adder/subtractor designed using pipeling

approach and without pipelined approach is illustrated in

figure 18 and figure 19 respectively. Also, the detailed

performance comparison of different floating point

adder/subtractor is depicted n table 4. From all these results, it

can be easily observed that, the performance of proposed

32-bit ripple carry pipelined adder/subtractor is superior as

compared to non-pipelined in terms of power consumption

and critical path.

Figure 19: Critical path

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

672

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

VI. CONCLUSION

In this paper an novel 32-bit ripple carry floating point adder/subtractor unit is successfully designed using backend 50nm

CMOS VLSI technology and its functionality is also verified using front end approach. From the experimental results it is clear

that by using the concept of pipelining, the power consumption of the adder/subtractor unit is found to be 0.27 miliwatt which is

very less as compared to the non-pipelined architectures. Moreover a critical path for the pipelined architecture is found as 55

i.e. delay is less in pipelined architecture as compared to simple. Apart from this, an area comparison for pipelined and simple

floating point adder/subtractor unit is demonstrated which represents that the pipelined units required some more area as

compared to non- pipelined unit. Hence in future research, there is a scope to put efforts in order to minimize both power and

area combinely. Also, one may go for designing the layout for the proposed arithmetic circuits for the fabrication of chip.

VII. ACKNOWLEDGEMENT

The author sincerely thanks to Guru Dr. Prashant V. Ingole, Chairman IETE Amravati centre, Professor & Head, Department of

Information Technology, PRMITR, Badnera(M.S.) for their constant guidance and supervision in completing this work. The

author also thanks to his mentor and beloved principal of GHRCEM Amravati, Dr. Vijay Rathod, and Dr. S. V. Dudul, Head of

Applied Electronics department, SGBAU Amravati for their valuable suggestion, criticism and time to time encouragement in

carrying out this research. Last but not the least, author also expresses his warm appreciation to his Brother, Amol, Mr. Nitin A.

Shelke for their constant help in editing this article.

Table 4. Detail performance comparison of various floating point adders/subtractor

Reference

Paper

Performance Measures

Method/ Algorithm Platform Technology Area (um
2
)

Dynamic

Power

Consumption

Maximum

Frequency

[2]
4-bit ripple carry adder

using 8 Transistors

Cadence

Virtuoso
UMC 180nm NA 298.4uW 100MHz

[5]
Superset adder using

current mirror
SPICE 180nm NA 484uW 25MHz

[8]

QCA based 4-bit ripple

carry adder

NA NA

0.30 NA NA

QCA based 4-bit ripple

borrow subtractor
0.38 NA NA

QCA based 4-bit full

subtractor
0.05 NA NA

[9]
Full adder using hybrid

logic

Microwind

3.0

180nm Transistor

count: 16

5.641uW NA

90nm 1.114uW NA

[10]
Inexact floating point full

adder

Synopsys

DC
65nm 6422.72 0.2555mW NA

[11]
1-bit full adder cell using

hybrid-CMOS logic style
HSPICE

TSMC

180nm

Transistor

count: 22
12.85uW NA

[12] 16-bit carry select adder

Xilinx ISE

14.7,

Xpower

analyzer

NA 1924.3 297mW NA

[13]
4-bit ripple carry adder

using 9T full adder

Microwind

3.0
120nm

Transistor

count: 36
9.731μW NA

[14]
32-bit reversible floating

point subtractor

Xilinx

Virtex5vlx

30tff665-3,

ModelSim,

Xpower

analyzer

NA NA 0.410 W NA

[15]
1-bit full adder cell using

Energy efficient FTL

Microwind

3.0
90nm 303.6 62.64uW NA

Low Power 32-bit Adder/Subtractor Design Using 50nm CMOS VLSI Technology

673

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

[16]

8-bit Modified SQRT

CSLA architecture

Cadence rtl

compler,

encounter

 180nm

895 188.4uW NA

 16-bit Modified SQRT

CSLA architecture
1,929 471.8uW NA

 32-bit Modified SQRT

CSLA architecture
3,985 969.9uW NA

64-bit Modified SQRT

CSLA architecture
8,183 2050.1uW NA

[19]
Low power and high

performance full adder
HSPICE 180nm NA

3.961uW

100MHz
2.545uW

0.9616uW

0.53103uW

[20]

32-bit Ling adder using

Lander Fischer Synopsys

DC
180nm

11038 NA

NA
32-bit Ling adder using

Kogge-Stone
13561 NA

Proposed

work

32-bit ripple carry

flaoting point adder

Cadence

Virtuoso

NCSU 50

nm

44.085
0.318 mW,

vdd=1V

500MHz

32-bit ripple carry

flaoting point subtractor
44.315

0.5404 mW,

vdd=1V

32-bit pipelined ripple

carry flaoting point

adder/subtractor

44.555
0.27 uW,

vdd=1V

REFERENCES

1. Arunraj R. and Vishnu Narayanan P M, “Design of Robust and Power

Efficient Full Adder Using Energy Efficient Feed through Logic,”

International Journal of Engineering Research and General Science,

vol. 2, no. 2, pp. 96–101, 2014.amlesh Pedraj and Jayendra kumar,

“Design and Implementation of Low Power Inexact Floating Point

Adder,” International journal of Computer Application, vol. 168, no.7,

pp. 43–46, 2017.

2. Sudhakar Alluri, M. Dasharatha, B. R. Naik, and N. S. S. Reddy,

“Design of Low Power High Speed Full Adder Cell with XOR/XNOR

Logic Gates,” International Conference on Communication and Signal

Processing, IEEE, pp. 565–570, 2016.

3. Adib Armand and Somayeh Timarchi, “Low power design of binary

signed digit residue number system adder,” 2016 24th IEEE Iranian

Conference on Electrical Engineering (ICEE), pp. 844–848, 2016.

4. S. A. H. Ejtahed and M. B. Ghaznavi-Ghoushchi, “Design and

Implementation of a Power and Area Optimized Reconfigurable

Superset Parallel Prefix Adder,” 24th Iranian Conference on Electrical

Engineering (ICEE), IEEE, pp. 1655–1660, 2016

5. J. Mounika, Mohd Ziauddin Jahangir and K. Ramanujam, “CMOS

based design and simulation of Ternary Full Adder and Ternary coded

decimal (TCD) adder circuit,” 2016 International Conference on

Circuit, Power and Computing Technologies [ICCPCT], IEEE, pp.

1–5, 2016.

6. Vandana Shukla, O. P. Singh, G. R. Mishra, and R. K. Tiwari, “A

novel approach to design a redundant binary signed digit adder cell

using reversible logic gates,” 2015 IEEE UP Section Conference on

Electrical Computer and Electronics (UPCON 2015), pp. 1-6,2015.

7. Varun Pratap Singh and Manish Rai, “Verilog design of full adder

based on reversible gates,” Proceeding International Conference on

Advanced Computer Communication and Automation (ICACCA

2016), IEEE, pp. 1–5, 2016.

8. C. Labrado and H. Thapliyal, “Design of adder and subtractor circuits

in majority logic-based field-coupled QCA nanocomputing,”

Electronics Letter, vol. 52, no. 6, pp. 464–466, 2016.

9. M. Nikhil Theja and T. Balakumaran, “Energy efficient low power

high speed full adder design using hybrid logic,” 2016 International

Conference on Circuit, Power Computer Technology, pp. 1–8, 2016.

10. Weiqiang Liu, Libnin Chen, C. Wang, Maire O. Neill, and F.

Lombardi, “Design and analysis of inexact floating-point adders,”

IEEE Transactions on Computer, vol. 65, no. 1, pp. 308–314, 2015.

11. Milad Jalalian Abbasi morad, S. R. Talebiyan, and E. Pakniyat,

“Design of New Low Power High-performance Full Adder with New

XOR-XNOR Circuit,” Second International Congress on Technology,

Communication and Knowledge (ICTCK 2015), pp. 153–158, 2015.

12. M. Vinod Kumar Naik and Y. M. Aneesh, “Design of carry select

adder for low-power and high speed VLSI applications,” Proceeding of

2015 IEEE International Conference on Electrical, Computer

Communication Technology (ICECCT 2015), pp. 1-4, 2015.

13. S. Usha and T. Ravi, “Design of 4 bit ripple carry adder using hybrid

9TFull Adder,” 2015 International Conference on Circuit, Power

Computer. Technology [ICCPCT], IEEE, pp. 1–8, 2015.

14. AV Anantha Lakshmi and GF Sudha, “Design of a reversible single

precision floating point subtractor,” Springerplus open journal, vol. 3,

no. 1, pp. 1-20, 2014.

15. B. Ramkumar and H. M. Kittur, “Low-power and area-efficient carry

select adder,” IEEE Transactions on very large scale integration (VLSI)

systems, vol. 20, no. 2, pp. 371–375, 2012.

16. Lamiaa S. A. Hamid, Khaled A. Shehata, Hassan El-Ghitani, and

Mohamed ElSaid, “Design of generic floating point multiplier and

adder/subtractor units,” 2010 12th International conference on

computer modelling and simulation, IEEE computer society, pp.

615–618, 2010.

17. Bart R. Zeydel, Dursun Baran, and Vojin G. Oklobdzija,

“Energy-efficient design methodologies: high-performance VLSI

adders,” IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp.

1220–1233, 2010.

18. Mohammad Hossein Moaiyeri, Reza F. Mirzaee, and Keivan Navi,

“Two new low-power and high-performance full adders,” Journal of

Computers, vol. 4, no. 2, pp. 119–126, 2009.

19. Giorgos Dimitrakopoulos and Dimitris Nikolos, “High-speed

parallel-prefix VLSI ling adders,” IEEE Transactions on Computers,

vol. 54, no. 2, pp. 225–231, 2005.

20. Vojin G. Oklobdzija, Bart R. Zeydel, Hoang Q. Dao, Sanu Mathew,

and R. Krishnamurthy, “Comparison of high-performance VLSI

adders in the energy-delay space,” IEEE Transactions on very large

scale integration (VLSI) systems, vol. 13, no. 6, pp. 754–758, 2005.

21. Keshab K. Parahi, "VLSI Digital Signal Processing System: Design

and Implementation," Wiley Inter-science publication, John Wiley and

Sons Inc. PP.1-784.

22. Ujwal S. Ghate, Ajay A. Gurjar, Vilas N. Ghate, “ Power Optimization

of single precision FFTdesign using fully combinational circuits,” 15th

International Conference on

Advanced Computing

Technologies (ICACT), 2013.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-10, August 2019

674

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number J87880881019/2019©BEIESP

DOI: 10.35940/ijitee.J8788.0881019

AUTHORS PROFILE

Shrikant Honade has completed his Ph.D degree

from Sant Gadge Baba Amravati University

Amravati, received M.Tech. degree in ESC from

Government College Of Engineering, Amravati,

(M.S.), India. His area of research includes DSP,

AI and VLSI. He is presently working as a full time

Assistant Professor in E&TC department at G. H.

Raisoni College of Engineering and Management, Amravati (Maharashtra),

India

