Electrical Energy Audit – An Experience in a Small Scale Textile Mill

P. Nagaveni, M. Siva RamKumar, M. Nivetha, A. Amudha, G. Emayavaramban

Abstract: Electrical Energy has become one of the vital factors in deciding the total production cost and maintenance cost. Day by day, energy demand keeps rising in the industrial sectors because of this reason it is essential to reduce energy consumption for that energy conservation is must needed action. Energy Audit is the prime tool for finding the energy conservation opportunities. It helps us to make attempts to balance the total energy inputs with its use and serves to identify all the energy flow in a facility. Energy auditing will not only save money but also improves the quality of electrical energy supply. Energy Conservation and Energy efficiency in industry has to be improved, this is the prime motive for Government of India. This paper shares the experiences of the authors on Electrical Energy Conservation Projects carried out in a Textile Industry situated in Tamilnadu State. We have used Load Manager for the observation of electrical data during normal working load condition itself. These data helps us to gain the electrical energy auditing experience in the industry.

Index Term: Energy; Electrical Energy Audit; Power quality analyzer; Textile industry; Environmental improvement; Payback period.

I. INTRODUCTION

The industrial sector consume about one third of the total energy usage in the world. Since energy use in many sectors highly affects both the local and global environment, it is necessary to increase the awareness of energy efficiency usage within industries. Furthermore, seen from the industrial sectors, it is also important to reduce dependency on energy with unstable prices in order to obtain economic predictability[1-3, 20]. Tamilnadu has the major Textile industrial units in India, which is consume a significant amount of energy. The estimated energy saving potential is 23% for textile industry. The textile industry plays an important role in the Indian economy which contributes 4% of GDP and 35% of gross export earnings, also Tamilnadu is the largest garment exporter in India, So India consumes more energy for their textile process. In major foreign policies, the importing materials from the other countries should be manufactured at particular energy efficient process. Due to unawareness of energy efficiency most of the energy is in wastage form or losses.

II. DETAILS OF EXISTING CONDITIONS

A. Industry Model

A private sector contains more than 30000 spindles operation in the industry with proper blowroom, and major spinning, drawing sections, it consumes more than 3 lakhs kWh in a month during the year 2018-19.

B. Electrical Maximum Demand

This textile industry has four separate Low-Tension service, which is receiving the power from TNEB(Tamil Nadu Electricity Board) under Tariff III B. The permitted MD is around 420 kW.

C. Electricity Consumption

Energy Consumption: 10,080 kWh/day
Electricity Bill / day: Rs 70,560

D. Electricity Tariff

The textile industry is situated in a Non-Metropolitan locality and LT Tariff III B is applicable at the following rates:
Energy (kWh) charges: Rs 7 / kWh
E. Machineries/Equipments Inventory

The factory manager provides the following machineries and equipments:
- BR (Blow Room) – 1 line
- RF (Ring frames) – 18 Cone and Cheese Winding machines -- 3
- Sewing Thread machines
- Cards, Preparatory machines, Draw frames, Combers, Lap formers, etc.

Diesel Generators: 1 x 500 KVA

III. SERVICE CONNECTIONS & DATA SURVEY

It has four Low tension (LT) service connections provided by Tamilnadu Electricity Board (TNEB).

i) SC 886 - Connected Load \(\rightarrow \) 105 H.P + 4 KW
ii) SC 955 - Connected Load \(\rightarrow \) 145 H.P + 3.83 KW
iii) SC 1029 - Connected Load \(\rightarrow \) 147 H.P + 2 KW
iv) SC 1202 - Connected Load \(\rightarrow \) 145 H.P + 3 KW

A. Service Connection I – SC 886:

Under service connection I, the details provided by the Electricity Board in main distribution board is as follows:
- S.C no : 886
- Total demand : 84 kW
- T.F : III B
- Connected Load : 105 HP + 4 KW
- C.T ratio : 200/5 A
- Multiplication Factor : 40
- Date of S.C Provided : 05/04/2004
- Unit cost : Rs 7/Unit

B. Service Connection II – SC 955:

Under service connection II, the details provided by the Electricity Board in main distribution board is as follows:
- S.C no : 955
- Total demand : 112.5 kW
- T.F : III B
- Connected Load : 145 HP + 3.83 KW
- Unit cost : Rs 7/Unit
- C.T ratio : 200/5 A
- Multiplication Factor : 40
- Date of S.C Provided : 2/6/2003
- Class : 0.5
- Failures of Capacitors : 12

C. Service Connection III – SC 1029:

Under service connection III, the details provided by the Electricity Board in main distribution board is as follows:
- S.C no : 1029
- Total demand : 112.5 kW
- T.F : III B
- Connected Load : 147 HP + 2 KW
- Unit cost : Rs 7/Unit
- Failures of Capacitors : 20

D. Service Connection IV – SC 1202:

Under service connection IV, the details provided by the Electricity Board in main distribution board is as follows:
- S.C no : 1202
- Total demand : 111.75 kW
- T.F : III B
- Multiplication Factor : 40
- Date of S.C Provided : 13/11/2009
- Unit cost : Rs 7/Unit
- C.T ratio : 200/5 A
- Connected load : 145 HP+3KW

Total Connected Loads in that textile industry are 388 KW (or) 518 HP

IV. DETAILS OF ENERGY AUDITING

With the help of power analyzer, we can observe the existing conditions of capacitors and also found the various internal electrical parameter conditions of all individual machines. The existing capacitors connected in all the service machinery has some connectivity problems, because of that there is a mis operation of generation and absorption of reactive power in it. In order to identify that, we have to check the current drawn of every capacitor. From this checking, we found the existing condition of capacitors is as shown in table 1:

<table>
<thead>
<tr>
<th>Service Connection</th>
<th>Total Existing Capacitors</th>
<th>Total kVAR installed</th>
<th>Failures of Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 886</td>
<td>20</td>
<td>72</td>
<td>12</td>
</tr>
<tr>
<td>SC 955</td>
<td>25</td>
<td>93</td>
<td>14</td>
</tr>
<tr>
<td>SC 1029</td>
<td>27</td>
<td>92</td>
<td>20</td>
</tr>
<tr>
<td>SC 1202</td>
<td>8</td>
<td>63</td>
<td>4</td>
</tr>
</tbody>
</table>

From this condition, we can easily identify the reactive power requirement oscillations. After this we can found the all parameters with the help of power analyzer. In this power analyzer, there is a two important connectivity which is connected with every machinery is as follows and shown in figure 1,

- C.T – Current Transformers – Connected around three wire supply system to motor point individually
- P.T – Potential Transformers – Connected in the 3 terminal of Motor supply
![Image](image-url)

Fig.1. Data Analysis using Power Analyzer

Table 2. Motor parameter Spreadsheets – Ring Frame motor

<table>
<thead>
<tr>
<th>Model 8332</th>
<th>Serial</th>
<th>304037 1:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend</td>
<td>RF10M - Ring Frame Motor 10</td>
<td></td>
</tr>
<tr>
<td>Date Started</td>
<td>Time Started</td>
<td>Date Ended</td>
</tr>
<tr>
<td>2/13/2013</td>
<td>9:08:45 AM</td>
<td>2/13/2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.No</th>
<th>Urms</th>
<th>Hz</th>
<th>sum of phases</th>
<th>sum of phases</th>
<th>sum of phases</th>
<th>sum of phases</th>
<th>PF</th>
<th>PF</th>
<th>PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Hz</td>
<td>W</td>
<td>Wh</td>
<td>VAR</td>
<td>VA</td>
<td>Phase 1</td>
<td>Phase 2</td>
<td>Phase 3</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>414.5</td>
<td>50.84</td>
<td>7142.14</td>
<td>9.92</td>
<td>6532.3</td>
<td>9681.060791</td>
<td>0.749</td>
<td>0.745</td>
<td>0.717</td>
</tr>
<tr>
<td>2</td>
<td>414.2</td>
<td>50.82</td>
<td>7141.17</td>
<td>19.8</td>
<td>6527.4</td>
<td>9677.165283</td>
<td>0.75</td>
<td>0.746</td>
<td>0.718</td>
</tr>
<tr>
<td>3</td>
<td>414.2</td>
<td>50.79</td>
<td>7381.11</td>
<td>30.1</td>
<td>6567.1</td>
<td>9881.792236</td>
<td>0.758</td>
<td>0.754</td>
<td>0.727</td>
</tr>
<tr>
<td>4</td>
<td>414.3</td>
<td>50.8</td>
<td>7376.46</td>
<td>40.3</td>
<td>6561.1</td>
<td>9874.338135</td>
<td>0.758</td>
<td>0.754</td>
<td>0.727</td>
</tr>
<tr>
<td>5</td>
<td>414.3</td>
<td>50.86</td>
<td>7259.64</td>
<td>50.4</td>
<td>6546.9</td>
<td>9777.875977</td>
<td>0.754</td>
<td>0.75</td>
<td>0.723</td>
</tr>
<tr>
<td>6</td>
<td>414.5</td>
<td>50.87</td>
<td>7171.86</td>
<td>60.4</td>
<td>6556.8</td>
<td>9706.106689</td>
<td>0.751</td>
<td>0.746</td>
<td>0.718</td>
</tr>
<tr>
<td>7</td>
<td>414.2</td>
<td>50.82</td>
<td>7040.03</td>
<td>70.2</td>
<td>6506.6</td>
<td>9588.50197</td>
<td>0.746</td>
<td>0.742</td>
<td>0.714</td>
</tr>
<tr>
<td>8</td>
<td>414.3</td>
<td>50.78</td>
<td>7270.31</td>
<td>80.3</td>
<td>6554.2</td>
<td>9790.626465</td>
<td>0.754</td>
<td>0.75</td>
<td>0.723</td>
</tr>
<tr>
<td>9</td>
<td>414.5</td>
<td>50.85</td>
<td>7490.68</td>
<td>90.7</td>
<td>6588.1</td>
<td>9977.849121</td>
<td>0.762</td>
<td>0.758</td>
<td>0.731</td>
</tr>
<tr>
<td>10</td>
<td>414.4</td>
<td>50.83</td>
<td>7366.63</td>
<td>100.9</td>
<td>6568.7</td>
<td>9872.13208</td>
<td>0.758</td>
<td>0.754</td>
<td>0.726</td>
</tr>
<tr>
<td>11</td>
<td>414.1</td>
<td>50.83</td>
<td>7202.15</td>
<td>110.9</td>
<td>6524.2</td>
<td>9719.967041</td>
<td>0.753</td>
<td>0.748</td>
<td>0.721</td>
</tr>
<tr>
<td>12</td>
<td>414.6</td>
<td>50.82</td>
<td>7104.33</td>
<td>120.8</td>
<td>6528.2</td>
<td>9650.459961</td>
<td>0.748</td>
<td>0.744</td>
<td>0.716</td>
</tr>
<tr>
<td>13</td>
<td>414.4</td>
<td>50.82</td>
<td>7126.50</td>
<td>130.7</td>
<td>6516.8</td>
<td>9659.197754</td>
<td>0.749</td>
<td>0.746</td>
<td>0.718</td>
</tr>
<tr>
<td>14</td>
<td>414.3</td>
<td>50.83</td>
<td>7390.76</td>
<td>140.9</td>
<td>6574.9</td>
<td>9894.173096</td>
<td>0.758</td>
<td>0.755</td>
<td>0.728</td>
</tr>
<tr>
<td>15</td>
<td>414.3</td>
<td>50.79</td>
<td>7403.65</td>
<td>151.2</td>
<td>6568.6</td>
<td>9899.613037</td>
<td>0.759</td>
<td>0.755</td>
<td>0.728</td>
</tr>
<tr>
<td>16</td>
<td>414.3</td>
<td>50.82</td>
<td>7273.98</td>
<td>161.3</td>
<td>6554.4</td>
<td>9793.634033</td>
<td>0.754</td>
<td>0.75</td>
<td>0.723</td>
</tr>
<tr>
<td>17</td>
<td>414.4</td>
<td>50.82</td>
<td>7065.65</td>
<td>181.1</td>
<td>6528.6</td>
<td>9622.433105</td>
<td>0.747</td>
<td>0.742</td>
<td>0.714</td>
</tr>
<tr>
<td>18</td>
<td>414.3</td>
<td>50.82</td>
<td>7242.74</td>
<td>221.8</td>
<td>6547.7</td>
<td>9765.939697</td>
<td>0.754</td>
<td>0.749</td>
<td>0.721</td>
</tr>
<tr>
<td>19</td>
<td>414.3</td>
<td>50.82</td>
<td>7209.48</td>
<td>241.7</td>
<td>6529.8</td>
<td>9729.509766</td>
<td>0.753</td>
<td>0.749</td>
<td>0.72</td>
</tr>
<tr>
<td>20</td>
<td>414.5</td>
<td>50.8</td>
<td>7418.45</td>
<td>252.0</td>
<td>6582.6</td>
<td>9920.151855</td>
<td>0.759</td>
<td>0.755</td>
<td>0.728</td>
</tr>
<tr>
<td>21</td>
<td>414.2</td>
<td>50.78</td>
<td>7472.85</td>
<td>262.4</td>
<td>6587.6</td>
<td>9964.144775</td>
<td>0.761</td>
<td>0.757</td>
<td>0.73</td>
</tr>
<tr>
<td>22</td>
<td>414.2</td>
<td>50.83</td>
<td>7314.22</td>
<td>272.6</td>
<td>6556.0</td>
<td>9824.642822</td>
<td>0.756</td>
<td>0.752</td>
<td>0.725</td>
</tr>
</tbody>
</table>

Avg 414.3 7266.58 127.3 6549.5 9785.060 0.754 0.75 0.723
Table 2. show the motor internal parameter under various load conditions in the textile process. In this the reactive power needed by the machine is 6.6 kVAR. According to this reactive power demand the PF maintained in the range of 0.75 only. So we need to provide the required reactive power compensation through capacitor banks for maintaining good PF and reduces the power loss.

<table>
<thead>
<tr>
<th>S.no</th>
<th>Energy Saving in kWh @ 0.85 Load factor / Month</th>
<th>EB Bill Saving in Rs / Year</th>
<th>Pay Back period In Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2506</td>
<td>2,10,515</td>
<td>5</td>
</tr>
</tbody>
</table>

V. ELECTRICAL ENERGY CONSERVATION

After the completion of all the data’s collection in all the service connection, we have to analyze all the requirement of reactive power individually. According to that we make a design of suitable capacitors for all the machineries.

- **Total No of Capacitors installed**: 113 No’s
- **Total kVAR Installed**: 253 kVAR

A. Service connection SC 886

- Energy Bill can be reduced up to 6%
- Energy savings is 8 % of 84 KW (i.e.) 6.72 KW in this service due to Reactive power Compensation
- Individuals motor unbalanced current carry will be limited +/- 10 %
- Efficiency & the life span of the machines improved up to 3% & 10 years

Table 3. Energy Bill – Before Audit

<table>
<thead>
<tr>
<th>S.no</th>
<th>Energy usage in kWh @ 0.85 Load factor / Month</th>
<th>EB Bill in Rs / Year</th>
<th>Investment For Audit Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38,556</td>
<td>3,238,704</td>
<td>72,000</td>
</tr>
</tbody>
</table>

Table 4. Energy Bill Saving – After Audit

<table>
<thead>
<tr>
<th>S.no</th>
<th>Energy Saving in kWh @ 0.85 Load factor / Month</th>
<th>EB Bill Saving in Rs / Year</th>
<th>Pay Back period In Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3084</td>
<td>2,59,096</td>
<td>4</td>
</tr>
</tbody>
</table>

In this service connection we attained the savings of 3084 units per month by the small investment of money with 4 month of payback period.

B. Service connection SC 995

- Energy Bill can be reduced up to 6%

- Energy savings is **6.5 %** of **84 KW** (i.e.) **5.46 KW** in this service due to Reactive power Compensation
- Individuals motor unbalanced current carry will be limited +/- 10 %
- Efficiency & the life span of the machines improved up to 3% & 10 years

Table 5. Energy Bill – Before Audit

<table>
<thead>
<tr>
<th>S.no</th>
<th>Energy usage in kWh @ 0.85 Load factor / Month</th>
<th>EB Bill in Rs / Year</th>
<th>Investment For Audit Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38,556</td>
<td>3,238,704</td>
<td>72,000</td>
</tr>
</tbody>
</table>

Table 6. Energy Bill Saving – After Audit

In this service connection we attained the savings of 2506 units per month by the small investment of money with 5 month of payback period.

C. Service connection SC 1029

- Energy Bill can be reduced up to 6%
- Energy savings is **9 %** of **84 KW** (i.e.) **7.56 KW** in this service due to Reactive power Compensation
- Individuals motor unbalanced current carry will be limited +/- 10 %
- Efficiency & the life span of the machines improved up to 3% & 10 years

Table 7. Energy Bill – Before Audit

<table>
<thead>
<tr>
<th>S.no</th>
<th>Energy usage in kWh @ 0.85 Load factor / Month</th>
<th>EB Bill in Rs / Year</th>
<th>Investment For Audit Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38,556</td>
<td>3,238,704</td>
<td>72,000</td>
</tr>
</tbody>
</table>

Table 8. Energy Bill Saving – After Audit

In this service connection we attained the savings of 3470 units per month by the small investment of money with 3 month of payback period.
D. Service connection SC 1202
- Energy Bill can be reduced up to 6%
- Energy savings is 5% of 70 KW (i.e.) 3.5 KW in this service due to Reactive power Compensation
- Individuals motor unbalanced current carry will be limited +/- 10 %
- Efficiency & the life span of the machines improved up to 3% & 10 years

Table 9. Energy Bill – Before Audit

<table>
<thead>
<tr>
<th>S.no</th>
<th>Energy usage in kWh @ 0.85 Load factor / Month</th>
<th>EB Bill in Rs / Year</th>
<th>Investment For Audit Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32,130</td>
<td>2,698,920</td>
<td>75,000</td>
</tr>
</tbody>
</table>

Table 10. Energy Bill Saving – After Audit

<table>
<thead>
<tr>
<th>S.no</th>
<th>Energy Saving in kWh @ 0.85 Load factor / Month</th>
<th>EB Bill Saving in Rs / Year</th>
<th>Pay Back period In Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1606</td>
<td>1,34,946</td>
<td>7</td>
</tr>
</tbody>
</table>

In this service connection we attained the savings of 1606 units per month by the small investment of money with 7 month of payback period.

VI. CONCLUSION

The industrial sector plays a major role in energy consumption. So, we are concentrating one of the higher consumption manufacturing company for the energy analysis. In this company electricity consumption takes the lead role compared to other energy sources. In this project, the energy conservation of textile industry was analysis and executed. The management of the textile industry attain the maximum production 16% less energy cost, so they are raising their production rate per hours due to the savings attained and the saving is 7.23% on the electricity cost in a year. Also an improvement of power factor from 0.92 to 0.98 by installing the capacitor bank. According to the environmental benefits, we can reduce some production of SOx and NOx by attaining the electricity savings in the industry, also we suggest that the some portion of renewable energy sources should be consider for compensate above the base loads in future which helps further savings of cost with moderate ROI.

REFERENCES
AUTHORS PROFILE

Mrs. P. Nagaveni obtained M.E. Energy Engineering from Kumaraguru college of Technology during the year 2013 and B.E.Electrical and Electronics Engineering from Hindusthan College of Engineering and Technology in the year 2011. She has three years of excellence in teaching profession and in energy management Research. She is currently an Assistant Professor with the Karpagam Academy of Higher Education. She has published several International Journal papers, Conference proceedings and academic books. She received ranking awards from Anna University during UG programme. Also She is doing various energy auditing and analytical study in various industries. She is a member of IRED, IAENG, EAI, SDIWC. His research interests include Energy Audit and management, Transmission and Distribution, Building information and modelling and Renewable Energy.

Dr. M. Siva Ramkumar received the B.E. EEE and M.E. Power Electronics & Drives degrees from Anna University, and the Ph.D. degree in EEE from the Karpagam Academy of Higher Education, Coimbatore, India. He has Six years of excellence in teaching and in Research. He is currently an Assistant Professor with the Karpagam Academy of Higher Education. He has published around 69 International Journal papers and 47 papers in Conference proceedings He received 3 National Level awards for his Teaching and Research Excellence. He is a Life Member of ISTE, AMIE, MIAEMP, ISRD and member of IEEE, IRED, IAENG, IACSIT, WASET, ORCID, ISID, IASTER, EAI, SESI, SDIWC, ICSES, IEDRC. His research interests include Power Electronics (DC-DC Converters & Matrix Converters), Smart Grid and Renewable Energy.

Mrs. M. Nivetha acquired Master of Engineering Degree in Power Electronics from Government college of Engineering, Tirunelveli, India in the year 2015. She acquired Bachelor of Engineering Degree in Electrical and Electronics from Government College of Technology, Coimbatore, India in the year 2013. She is currently an Assistant Professor with the Karpagam Academy of Higher Education. Her areas of interests are Control system and Power Electronics.

Dr. A. Amudha Obtained Ph.D. Degree in the Faculty of Electrical Engineering under Anna University, Chennai, India in the year 2013 and Master of Engineering Degree in Power Systems from Thiyagarajar college of Engineering in the year 1992. She acquired Bachelor of Engineering Degree in Electrical and Electronics from Government College of Technology, Coimbatore, India in the year 1990. She is working as Professor and Head in EEE Department, Karpagam Academy of Higher Education, Karpagam University, India. She has totally around 28 years of teaching experience. She has published around 81 National and International Journal papers and 25 papers in Conference proceedings. She is a recognized reviewer in many reputed journals. She has produced 5 Ph.D Scholar. She is also a member of ISTE, IE(I), IAENG, IRED, IACSIT. Her areas of interests are Renewable Energy, Smartgrid, Distributed Generation and Power System Operation and Control.

Mr. G. Emayavaramban received the B.E. and M.E. degrees from Anna University, and the Ph.D. degree in EEE from the Karpagam Academy of Higher Education, Coimbatore, India. He has four years of excellence in research. He is currently an Assistant Professor with the Karpagam Academy of Higher Education. He has published several papers in referred journals and conferences. His research interests include biosignal processing, artificial intelligence, human-computer interface. He received the silver and bronze medals in national and international exhibitions for his research.