FPGA Implementation of Variable Feed Rate Algorithm for a Three Input Fuzzy Controller to Maintain the Cane Level
 V. Sai Sri Krishna, Yogesh Misra, G. Anantha Rao

Abstract

Fuzzy logic which is one of methodology of soft computing has provided to be brilliant choice for the many control system application. Fuzzy logic is practical to numerous fields. One of the uses of fuzzy logic is in sugar mill. It is very important to produce sugar at low cost. Irregular supply of sugar cane decreases the efficiency of cane juice extraction during manufacturing of sugar. To increase the efficiency of cane juice extraction it is necessary to sustain the cane height at desired level inside Donnelly chute. A methodology to develop a variable feed rate algorithm for three inputs fuzzy controller sustains the cane height at desired level and was developed with fuzzy logic tool box of MATLAB software. The developed fuzzy controller can be implemented by using HDL language and Xilinx Vivado 2016.2.

Index Terms: fuzzy logic, fuzzy controller, HDL language

I. INTRODUCTION

Sugar producing from sugar cane happens in a specific period of year. India was second biggest maker of sugar on the planet after Brazil. It is a test to create sugar of good quality at lower cost which requires improvement in sugar making process. Over 60% of the globe sugar is generated as of sugar cane along with the parity is from sugar beet [1]. In India 60 million farmers depends on cane cultivation [2].
The flow of sugar making Process is described below. Cane billets were transformed into cane fiber during sugar making process. Cane billets are placed on cane carrier. The cane is passed through rotating knives, by which cane is cut into little fibers about $1-2 \mathrm{~cm}$. Cane juice is obtained through crushing fiber [2, 3, 4]. A schematic for juice extraction of cane is given in Figure 1.Arrangement of a mill is given in Figure 2. Various important mill parameters such as mean diameter of roll, work opening [5] and contact angle [6] are useful for finding the required parameters. The length of the roll $\left(L_{r}\right)$ is 183 cm , width of the roll $\left(\mathrm{B}_{\mathrm{c}}\right)$ is 43.5 cm , optimum angle (α) is 61° and roll speed (S) is in $(\mathrm{m} / \mathrm{s})$. Escribed volume of cane $\left(\mathrm{m}^{3} / \mathrm{s}\right)$ is given by [7].

$$
\begin{equation*}
\mathrm{V}_{\mathrm{e}}=\mathrm{L}_{\mathrm{r}} \times \mathrm{B}_{\mathrm{c}} \times \mathrm{S} \operatorname{Cos} \alpha \tag{1}
\end{equation*}
$$

If q_{c} is the bulk density of cane at entry plane $\left(350 \mathrm{Kg} / \mathrm{m}^{3}\right)$ then the crushing rate or mass flow rate $(\mathrm{Kg} / \mathrm{s})$ is given by
$\mathrm{Q}_{\mathrm{c}}=\mathrm{q}_{\mathrm{c}} \times \mathrm{V}_{\mathrm{e}}$
The carrier speed (cm/s) [8] is given by

Manuscript published on 30 August 2019.
*Correspondence Author(s)
V. Sai Sri Krishna, PG Scholar, GMR Institute of Technology, India

Yogesh Misra, Professor, Department of ECE, GMRIT, India
G. Anantha Rao, Sr. Assistant Professor, Department of ECE, GMRIT, Rajam, India.
© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Carrier Speed $(\mathrm{cm} / \mathrm{s})=($ Feed Rate $) /($ Mass of cane in 1 cm of Carrier)
The motor speed (rpm) [8] is given by
Motor Speed $=\left(1.91 \times \mathrm{S}_{\text {rake }}\right) \mathrm{rpm}$
Where $\mathrm{S}_{\text {rake }}=$ rake carrier speed cm / s

II. THREE INPUTS FUZZY CONTROLLER DESIGN AND VARIABLE FEED RATE ALGORITHM

The three inputs fuzzy controller [9] to sustain cane height is given in Figure 3. Rake carrier prepared cane weight, Donnelly chute level of cane and the roll rotational speed are three variables used for extraction of cane juice. The Donnelly chute height, speed of rake carrier motor and the variation in prepared cane on the carrier are $180 \mathrm{~cm}, 17 \mathrm{rpm}$ to 116 rpm and 500 Kg to 1000 Kg respectively. The length, width and depth of chute are $180 \mathrm{~cm}, 43.5 \mathrm{~cm}$ and 183 cm . The length, width and weight of rake carrier are $800 \mathrm{~cm}, 150 \mathrm{~cm}$ and 500 kg . The endeavour of this algorithm depends on three variables values to vary rake carrier speed such that cane level in the Donnelly chute remains constant. The input parameters weight, height and roll speed are given in Figure 5, Figure 6 and Figure 7. The output parameter speed is given in Figure 8. Three inputs development algorithm [10] is given in Figure 4. The rules for roll speed for $12 \mathrm{~cm} / \mathrm{s}, 14.3 \mathrm{~cm} / \mathrm{s}$, $16.6 \mathrm{~cm} / \mathrm{s}$ are given in Table I, Table II and Table III. The flow rate $\left(\mathrm{Q}_{\mathrm{c}}\right)$ when roll speed is $12.0 \mathrm{~cm} / \mathrm{s}, 14.3 \mathrm{~cm} / \mathrm{s}$ and $16.6 \mathrm{~cm} / \mathrm{s}$ from (2) is $19.3 \mathrm{Kg} / \mathrm{s}, 22.8 \mathrm{Kg} / \mathrm{s}$ and $26.6 \mathrm{Kg} / \mathrm{s}$.
The cane weight on rake carrier, cane level and roll rotational speed are the three inputs to fuzzy controller. Three sensors are required to sense the cane in the rake carrier, cane height in chute and rotational speed of rolls are load cell, light sensor tacho generator sensor. Amount of cane present on rake carrier is given by load cell. A load cell signal conditioning system [8] is explained. Level of cane in chute is determined by using height sensor. A signal conditioning system for height sensing [8] is explained. Rotational speed of roll is measured using tacho generator. A signal conditioning system for tacho generator [8] is explained. The digital values obtained from analog digital converter by using the output of signal conditioning system for cane weight, cane level and roll speed are given in Figure 6, Figure 7 and Figure 8.

III. IMPLEMENTATION OF ALGORITHM OF FUZZY CONTROLLER USING VHDL

The fuzzification in terms of VHDL code is done as follows. Triangular membership function is given in Figure 9. It contains three points namely point-1, point-2 and point-3. The slopes of membership graph are represented by slope-1 and slope-2 and they are calculated from (5) and (6).

Slope-1 $=(\mathrm{y} 2-\mathrm{y} 1) \div($ Point-2 - Point-1 $)$
Slope-2 $=(\mathrm{y} 2-\mathrm{y} 1) \div($ Point-3 - Point-2 $)$
Where y2 is 1 (FFH) maximum value of a membership function and y1 is $0(00 \mathrm{H})$ minimum value of a membership function. The degree of membership of any value on x-axis less than or equal to the value of point- 1 and greater than or equal to the value of point 3 is always 0 . The degree of membership of any value on x-axis greater than the value of Point-1 and less than Point-2 is calculated from (7) and (8).
$\mu=($ Input Value - Point-1) \times Slope- 1
(7)

The degree of membership of any value on x-axis greater than or equal to the value of Point- 2 and less than Point- 3 is calculated as follows:
$\mu=($ Input Value - Point-2) \times Slope- 2
The notations used in representing a point in a membership function are as follows:
P represents the point, 1st digit represents number of point (i.e. Point-1, Point-2 or Point-3) of membership function graph and 2 nd digit represents the number of linguistic variable.

A. Fuzzification of Weight

The linguistic variables of weight are given in Figure 6. The digital values obtained from analog to digital converter by using signal conditioning system of cane weight are the values given to linguistic variables. For instance Point-3 of linguistic variable SL is represented by P31, Point-2 of linguistic variable UH is represented by P210 and Point-1 of linguistic variable SH is represented by P111. The x -axis represents variation of cane weight from 500 Kg to 1000 Kg .

B. Slope Calculation of Weight

(i) Calculation of slopes of Linguistic Variable SL

Point-2 and Point-3 of SL is represented by P21 and P31 and its Slope-2SL is calculated from (6)
Slope-2SL $=[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 31-\mathrm{P} 21)]$

$$
=[\mathrm{FFH} /(1 \mathrm{BH}-00 \mathrm{H})]=09 \mathrm{H}
$$

(ii) Calculation of slopes of Linguistic Variable UL
(a)Point-1 and point-2 of UL is represented by P12 and P22 respectively and its Slope-1UL is calculated from (5)
$\begin{aligned} \text { Slope-1UL } & =[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 22-\mathrm{P} 12)] \\ & =[\mathrm{FFH} /(1 \mathrm{BH}-00 \mathrm{H})]=09 \mathrm{H}\end{aligned}$
(b)Point-3 of UL is represented by P32 and its Slope-2UL is calculated from (6)
$\begin{aligned} \text { Slope 2UL } & =[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 32-\mathrm{P} 22)] \\ & =[\mathrm{FFH} /(34 \mathrm{H}-1 \mathrm{BH})]=0 \mathrm{AH}\end{aligned}$

$$
=[\mathrm{FFH} /(34 \mathrm{H}-1 \mathrm{BH})]=0 \mathrm{AH}
$$

(iii) Calculation of slopes of Linguistic Variable EL
(a) Point-1 and point-2 of EL is represented by P13 and P23 respectively and its Slope-1EL is calculated from (5)

$$
\begin{aligned}
\text { Slope-1EL } & =[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 23-\mathrm{P} 13)] \\
& =[\mathrm{FFH} /(34 \mathrm{H}-1 \mathrm{BH})]=0 \mathrm{AH}
\end{aligned}
$$

(b)Point-3 of EL is represented by P33 and its Slope-2EL is calculated from (6)

$$
\begin{aligned}
\text { Slope 2EL } & =[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 33-\mathrm{P} 23)] \\
& =[\mathrm{FFH} /(4 \mathrm{DH}-34 \mathrm{H})]=0 \mathrm{AH}
\end{aligned}
$$

Similarly for all the Linguistic variables of input parameter WEIGHT slopes are calculated and are given in Table IV.

C. Fuzzification of Height

The linguistic variables of height are given in Figure 7. The digital values obtained from analog to digital converter by using signal conditioning system of cane level are the values given to linguistic variables. The x-axis represents variation of cane level from 0 cm to 180 cm .

D. Slope Calculation of Height

(i) Calculation of slopes of Linguistic Variable EL

Point-2 and Point-3 of EL is represented by P21 and P31 and its Slope-2EL is calculated from (6)

Slope-2EL $=[($ FFH $-00 H) /(\mathrm{P} 31-\mathrm{P} 21)]$

$$
=[\mathrm{FFH} /(47 \mathrm{H}-32 \mathrm{H})]=0 \mathrm{CH}
$$

(ii) Calculation of slopes of Linguistic Variable VL
(a)Point-1 and point-2 of VL is represented by P12 and P22 respectively and its Slope-1VL is calculated from (5)

$$
\begin{aligned}
\text { Slope-1VL } & =[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 22-\mathrm{P} 12)] \\
& =[\mathrm{FFH} /(47 \mathrm{H}-32 \mathrm{H})]=0 \mathrm{CH}
\end{aligned}
$$

(b)Point-3 of VL is represented by P32 and its Slope-2VL is calculated from (6)

$$
\begin{aligned}
\text { Slope 2VL } & =[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 32-\mathrm{P} 22)] \\
& =[\mathrm{FFH} /(5 \mathrm{BH}-47 \mathrm{H})]=0 \mathrm{CH}
\end{aligned}
$$

(iii) Calculation of slopes of Linguistic Variable L
(a) Point-1 and point-2 of L is represented by P13 and P23 respectively and its Slope-1L is calculated from (5)

Slope-1L $=[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 23-\mathrm{P} 13)]$

$$
=[\mathrm{FFH} /(5 \mathrm{BH}-47 \mathrm{H})]=0 \mathrm{CH}
$$

(b)Point-3 of L is represented by P33 and its Slope-2L is calculated from (6)

$$
\begin{aligned}
\text { Slope } 2 \mathrm{~L} & =[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 33-\mathrm{P} 23)] \\
& =[\mathrm{FFH} /(70 \mathrm{H}-5 \mathrm{BH})]=0 \mathrm{CH}
\end{aligned}
$$

Similarly for all the Linguistic variables of input parameter HEIGHT slopes are calculated and are given in Table V.

E. Fuzzification of Roll Speed

The linguistic variables of roll speed are given in
Figure 8. The digital values obtained from analog to digital converter by using signal conditioning system of roll speed are the values given to linguistic variables. The x-axis represents variation of roll speed from $12.0 \mathrm{~cm} / \mathrm{s}$ to $16.6 \mathrm{~cm} / \mathrm{s}$.

F. Slope Calculation of Roll Speed

(i) Calculation of slopes of Linguistic Variable RL

Point-2 and Point-3 of RL is represented by P21 and P31 and its Slope-2EL is calculated from (6)
Slope-2RL $=[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 31-\mathrm{P} 21)]$
$=[\mathrm{FFH} /(\mathrm{E} 6 \mathrm{H}-\mathrm{D} 5 \mathrm{H})]=0 \mathrm{FH}$
(ii) Calculation of slopes of Linguistic Variable RM

(a) Point-1 and point-2 of RM is represented by P 12 and P22 respectively and its Slope-1RM is calculated from (5)

$$
\begin{aligned}
\text { Slope-1RM } & =[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 22-\mathrm{P} 12)] \\
& =[\mathrm{FFH} /(\mathrm{E} 6 \mathrm{H}-\mathrm{D} 5 \mathrm{H})]=0 \mathrm{FH}
\end{aligned}
$$

(b)Point-3 of RM is represented by P32 and its Slope-2RM is calculated from (6)

$$
\begin{aligned}
\text { Slope } 2 \mathrm{RM} & =[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 32-\mathrm{P} 22)] \\
& =[\mathrm{FFH} /(\mathrm{F} 6 \mathrm{H}-\mathrm{E} 6 \mathrm{H})]=0 \mathrm{FH}
\end{aligned}
$$

(iii) Calculation of slopes of Linguistic Variable RR

Point-1 and Point-2 of RR is represented by P13 and P23 and its Slope-1RR is calculated from (5)
Slope-1RR $=[(\mathrm{FFH}-00 \mathrm{H}) /(\mathrm{P} 23-\mathrm{P} 13)]$

$$
=[\mathrm{FFH} /(\mathrm{F} 6 \mathrm{H}-\mathrm{E} 6 \mathrm{H})]=0 \mathrm{FH}
$$

Slopes for all the Linguistic variables of input parameter ROLL SPEED slopes are calculated and are given in Table VI.

Example-I:
Let the values of cane weight, cane height and roll speed at some instant is $720 \mathrm{Kg}, 80 \mathrm{~cm}$ and $14.6 \mathrm{~cm} / \mathrm{s}$.

G. Calculation of Degree of Membership of WEIGHT

The load cell generates 16.26 mV for 720 Kg cane weight. The output of signal conditioning system of load cell for 16.26 mV is 1.100 V is given in Figure 10. The output of ADC when it receives 1.100 V analog voltage is (01110000) and it is represented as 70 H in hexadecimal. The 70 H value will intersect linguistic variables L and JR of cane WEIGHT is given in Figure 6
The degree of membership of this input value for linguistic variable L is calculated from (8)

$$
\begin{aligned}
\mu \mathrm{L} & =1-(\text { Input Value }-\mathrm{P} 25) \times \text { Slope }-2 \mathrm{~L} \\
& =\mathrm{FFH}-(70 \mathrm{H}-66 \mathrm{H}) \times 09 \mathrm{H} \\
& =\text { A5 H }=165 \mathrm{D}
\end{aligned}
$$

The degree of membership of this input value for linguistic variable JR is calculated from (7)

$$
\begin{aligned}
\mu \mathrm{JR} & =(\text { Input Value }-\mathrm{P} 16) \times \text { Slope }-1 \mathrm{JR} \\
& =(70-66 \mathrm{H}) \times 09 \mathrm{H} \\
& =5 \mathrm{AH}=90 \mathrm{D}
\end{aligned}
$$

The degree of membership of 720 Kg cane in nine linguistic variables is zero and it is given below for all eleven linguistic variables of input parameter WEIGHT.

$$
\mu \mathrm{L}=\mathrm{A} 5 \mathrm{H}, \mu \mathrm{JR}=5 \mathrm{AH}, \text { and } \mu \mathrm{SL}=\mu \mathrm{UL}=\mu \mathrm{EL}=
$$

$\mu \mathrm{VL}=\mu \mathrm{H}=\mu \mathrm{VH}=\mu \mathrm{EH}=\mu \mathrm{UH}=\mu \mathrm{SH}=0$
The simulation result showing the membership of linguistic variable L and JR when cane weight is 720 Kg is given in Figure 11.

H. Calculation of Degree of membership of HEIGHT

The height sensor will generate 14.7 mA when cane is 80 cm from the base of the Donnelly chute. Signal conditioning system for height sensing gives output of 1.469 V for 14.7 mA input is depicted in Figure 12. The output of ADC when it receives 1.469 V analog voltage is (1001 0110). The analog voltage is complimented by inverter and we get (0110 1001) and it is represented as 69 H in hexadecimal. The 69 H value intersects linguistic variables L and JR of cane HEIGHT is given in Figure 7.
The degree of membership of input value for linguistic variable L is calculated from (8)

$$
\begin{aligned}
\mu \mathrm{L} & =1-(\text { Input Value }-\mathrm{P} 23) \times \text { Slope }-2 \mathrm{~L} \\
& =\mathrm{FFH}-(69 \mathrm{H}-5 \mathrm{BH}) \times 0 \mathrm{CH} \\
& =57 \mathrm{H}=87 \mathrm{D}
\end{aligned}
$$

The degree of membership of this input value for linguistic variable JR is calculated from (7)

$$
\begin{aligned}
\mu \mathrm{JR} & =(\text { Input Value }- \text { P14 }) \times \text { Slope- } 1 \mathrm{JR} \\
& =(69 \mathrm{H}-5 \mathrm{BH}) \times 0 \mathrm{CH} \\
& =\mathrm{A} 8 \mathrm{H}=168 \mathrm{D}
\end{aligned}
$$

The degree of membership of 80 cm cane from the base of Donnelly Chute in five linguistic variables is zero and it is given below for all seven linguistic variables of input parameter HEIGHT.

$$
\mu \mathrm{L}=57 \mathrm{H}, \mu \mathrm{JR}=\mathrm{A} 8 \mathrm{H}, \mu \mathrm{EL}=\mu \mathrm{VL}=\mu \mathrm{H}=\mu \mathrm{VH}=
$$ $\mu \mathrm{EH}=0$

The simulation result showing the membership of linguistic variable L and $J R$ when cane height is 80 cm is given in Figure 13.

I. Calculation of Degree of Membership of ROLL SPEED

Tacho generator gives output of $185 \mu \mathrm{~V}$ for roll speed $14.6 \mathrm{~cm} / \mathrm{s}$. Signal conditioning system for tacho generator gives output of 2177 mV for $185 \mu \mathrm{~V}$ is depicted in Figure 14. ADC gives analog voltage is (1110 1000) and E8H in hexadecimal for input 2177 mV . The E8H value will intersect linguistic variables RM and RR of ROLL SPEED is given in Figure 8
The degree of membership of this input value for linguistic variable RM is calculated from (8)

$$
\begin{aligned}
\mu \mathrm{RM} & =1-(\text { Input Value }-\mathrm{P} 22) \times \text { Slope-1RM } \\
& =\mathrm{FFH}-(\mathrm{E} 8 \mathrm{H}-\mathrm{E} 6 \mathrm{H}) \times 0 \mathrm{FH} \\
& =\mathrm{E} 1 \mathrm{H}=225 \mathrm{D}
\end{aligned}
$$

The degree of membership function of this input value for linguistic variable RR is calculated from (7)

$$
\begin{aligned}
\mu R R & =(\text { Input Value }-\mathrm{P} 13) \times \text { Slope }-1 \mathrm{RR} \\
& =(\mathrm{E} 8 \mathrm{H}-\mathrm{E} 6 \mathrm{H}) \times 0 \mathrm{FH} \\
& =1 \mathrm{EH}=30 \mathrm{D}
\end{aligned}
$$

The degree of membership of roll speed $14.6 \mathrm{~cm} / \mathrm{s}$ in one linguistic variable is zero and it is given below for all three linguistic variables of input parameter ROLL SPEED.

$$
\mu \mathrm{RL}=0, \mu \mathrm{RM}=\mathrm{E} 1 \mathrm{H}, \mu \mathrm{RR}=1 \mathrm{EH}
$$

The simulation result showing the membership of linguistic variable RL, RM and RR
when roll speed is $14.6 \mathrm{~cm} / \mathrm{s}$ is depicted in Figure 15.

J. Implementation of Rule Inference Algorithm

In continuation with Example-I, the cane weight of 720 Kg has degree of membership in L and JR linguistic variables of input parameter WEIGHT, the cane height of 80 cm has degree of membership in L and JR linguistic variables in input parameter HEIGHT and the roll speed $14.6 \mathrm{~cm} / \mathrm{s}$ has degree of membership in RM and RR linguistic variables in input parameter ROLL SPEED. Total 186 rules having L and JR linguistic variables in both WEIGHT, HEIGHT and RM and RR linguistic variables in ROLL SPEED. The fired rules are represented in Table I, Table II and Table III in bold and italic manner.The part of VHDL code for finding minimum degree of membership value of each rule is given in Figure 16.

Published By:

Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

The minimum degree of membership among the three antecedents of all fired rules is
$\operatorname{MinR}(103)=57 \mathrm{H}, \operatorname{MinR}(104)=57 \mathrm{H}, \operatorname{MinR}(114)=\mathrm{A} 5 \mathrm{H}$, $\operatorname{MinR}(115)=5 A H, \operatorname{MinR}(180)=1 \mathrm{EH}, \operatorname{MinR}(181)=1 \mathrm{EH}$, $\operatorname{MinR}(191)=1 \mathrm{EH}, \operatorname{MinR}(192)=1 \mathrm{EH}$ and minimum value of all remaining fired rules is 00 H . The minimum degree of membership value results are given in Figure 17 and Figure 18.

The maximum value of consequents among all the fired rules having same output linguistic variable is chosen as the final fuzzy value of corresponding linguistic variable. The final value of EL is represented by $\operatorname{MaxR}(0)$, VL by MaxR (1), L by MaxR (2), JR by MaxR (3), H by MaxR (4), VH by MaxR (5), EH by MaxR (6), UH by MaxR(7) and SH by MaxR (8). The part of VHDL code for finding the maximum value of all rules having same consequent is given in Figure 19. The maximum value of consequents among all the fired rules of Example-I are
$\operatorname{MaxR}(0)=00 \mathrm{H}, \operatorname{MaxR}(1)=00 \mathrm{H}, \operatorname{MaxR}(2)=5 \mathrm{AH}, \operatorname{MaxR}$ (3) $=\mathrm{A} 5 \mathrm{H}, \operatorname{MaxR}(4)=1 \mathrm{EH}, \operatorname{MaxR}(5)=00 \mathrm{H}, \operatorname{MaxR}(6)=$ $00 \mathrm{H}, \operatorname{MaxR}(7)=00 \mathrm{H}, \operatorname{MaxR}(8)=00 \mathrm{H}$. The maximum values of consequents obtained are shown in Figure 20.

K. Implementation of Defuzzification Algorithm

Defuzzification changes fuzzy output into crisp output. The Sugeno style of fuzzy logic is used as it requires only singleton value. The singleton values of all linguistic variables of output parameter SPEED (Figure 9) are given below.
Singleton value of linguistic variable $\mathrm{EL}=\mathrm{SEL}=17 \mathrm{H}$
Singleton value of linguistic variable VL $=\mathrm{SVL}=1 \mathrm{DH}$
Singleton value of linguistic variable $L=S L=2 A H$
Singleton value of linguistic variable $\mathrm{JR}=\mathrm{SJR}=36 \mathrm{H}$
Singleton value of linguistic variable $\mathrm{H}=\mathrm{SH}=43 \mathrm{H}$
Singleton value of linguistic variable VH $=\mathrm{SVH}=4 \mathrm{FH}$
Singleton value of linguistic variable $\mathrm{EH}=\mathrm{SEH}=5 \mathrm{CH}$
Singleton value of linguistic variable $\mathrm{UH}=\mathrm{SUH}=68 \mathrm{H}$
Singleton value of linguistic variable $\mathrm{SH}=\mathrm{SSH}=6 \mathrm{EH}$
The crisp (defuzzified) output is obtained from (9)
Crisp Output $=($ Numerator $) /($ Denominator $)$
Here,
Numerator $=[\{\operatorname{MaxR}(0) \times$ SEL $\}+\{\operatorname{MaxR}(1) \times$ SVL $\}+$ $\{\operatorname{MaxR}(2) \times \operatorname{SL}\}+\{\operatorname{MaxR}(3) \times \operatorname{SJR}\}+\{\operatorname{MaxR}(4) \times \operatorname{SH}\}+$ $\{\operatorname{MaxR}(5) \times$ SVH $\}+\{\operatorname{MaxR}(6) \times$ SEH $\}+\{\operatorname{MaxR}(7) \times$ SUH $\}+\{\operatorname{MaxR}(8) \times$ SSH $\}]$
(10)

Denominator $=\operatorname{MaxR}(0)+\operatorname{MaxR}(1)+\operatorname{MaxR}(2)+\operatorname{MaxR}$ (3) $+\operatorname{MaxR}$ (4) $+\operatorname{MaxR}$ (5) $+\operatorname{MaxR}(6)+\operatorname{MaxR}(7)+\operatorname{MaxR}$ (8)
(11)

From Example-I results are obtained as Numerator $=396 \mathrm{CH}$ (0011100101101100) is obtained from (10) and Denominator $=011 \mathrm{DH}(0000000100011101)$ is obtained from (11) and Crisp output $=33 \mathrm{H}=51 \mathrm{D}(\mathrm{rpm})$ is obtained from (9). The crisp output result is depicted in Figure 21.

IV. RESULTS AND DISCUSSION

Three inputs fuzzy controller developed using algorithm is implemented using VHDL by using Xilinx Vivado 2016.2 software. Cane weight, cane level and the roll speed during each sampling is kept same as the corresponding cases of Algorithm of MATLAB design [10]. The results obtained for algorithm using VHDL by using Xilinx Vivado are compared with Algorithm of MATLAB design.In case-I and case-II the
cane weight and cane level values for the first simulation are 750 Kg and 90 cm correspondingly. In case-I, case-III and case-V roll speed for the first simulation is $15 \mathrm{~cm} / \mathrm{s}$. In case-II, case-IV and case-VI roll speed for the first simulation is $15.4 \mathrm{~cm} / \mathrm{s}$. The cane level values obtained by using Xilinx Vivado compared with Matlab for case-I and case-II is depicted in Table VII and Table VIII. In case-III and case-IV the cane weight and cane level for the first simulation are 750 Kg and 0 cm correspondingly. The cane level values obtained by using Xilinx Vivado compared with Matlab for case-III and case-IV is given by Table IX and Table X. In Case-V and Case-VI the cane weight and cane level for the first simulation are 750 Kg and 180 cm correspondingly. The cane level values obtained by using Xilinx Vivado compared with Matlab for case-V and case-VI is given by Table XI and Table XII. Comparison between Matlab and Xilinx results of case-I is depicted in Figure 22 and Table XIII. Comparison between Matlab and Xilinx results of case-II is given in Figure 23 and Table XIV. Comparison between Matlab and Xilinx results of case-III is depicted in Figure 24 and Table XV. Comparison between Matlab and Xilinx results of case-IV is given in Figure 25 and Table XVI. Comparison between Matlab and Xilinx results of case-V is given in Figure 26 and Table XVII. Comparison between Matlab and Xilinx results of case-VI are given in Figure 27 and Table XVIII. Comparison between all six cases of Matlab and Xilinx results is given in Figure 28 and Table XIX.

V. CONCLUSION

The fuzzy controller maintains cane level in the range 85 cm to 95 cm for an average 69.75% of simulation duration. Time required for reaching cane level at 90 cm for case-III, case-IV, case-V and case-VI are 57.8 seconds, 79.4 seconds, 109.5 seconds and 49.2 seconds respectively. Lowest level of cane in chute for case-I, case-II, case-V and case-VI are 78.7 cm , $79.1 \mathrm{~cm}, 78.7 \mathrm{~cm}$ and 80.5 cm respectively. Highest level of cane in chute for case-I, case-II, case-III and case-IV are 97. $1 \mathrm{~cm}, 93.9 \mathrm{~cm}, 97.6 \mathrm{~cm}$ and 94.6 cm respectively. Percentage of time cane level is in between 85 cm to 95 cm for case-I, case-II, case-III, case-IV, case-V and case-VI are 84.8%, $76.2 \%, 60.0 \%, 62.2 \%, 62.7 \%$ and 72.6% respectively.

ACKNOWLEDGEMENT

The authors are thankful to the Principal, Vice-Principal of GMR Institute of Technology, Rajam, Andhra Pradesh (India) and the Head of the department of Electronics and Communication Engineering for their continuous encouragement to carry out this project.

Figure 1: Schematic of Cane Juice Extraction Process

Figure 2: Two Rolls and Chute Arrangement of a Mill

Figure 3: Three Inputs Fuzzy Controller to Maintain Cane Level

Figure 4: Three Inputs Fuzzy Controller Development Algorithm

Figure 5: Fuzzified Input Parameter WEIGHT with Point Representation

Figure 6: Fuzzified Input Parameter HEIGHT with Point Representation

Figure 7: Fuzzified Input Parameter ROLL SPEED with Point Representation

Figure 8: Output Parameter SPEED

0 point 1
point 3

Figure 9: Triangular Membership Function

Figure 10: Output of Load Signal Conditioning System When Rake Carrier has 720 Kg Cane

Figure 11: Degree of Membership when Cane Weight is $720 \mathrm{Kg} \mu \mathrm{L}=$ dmf_w_f[4] = A5H, $\mu \mathrm{JR}=$ dmf_w_f[5] = 5AH

Figure 12: Output of Cane Level Sensing Signal Conditioning when Cane is at 80 cm in Chute

Figure 13: Degree of membership when Cane Height is $\mathbf{8 0} \mathbf{c m} \boldsymbol{\mu} \mathbf{L}=$ dmf_h_f[1] = 57H, $\boldsymbol{\mu} \mathbf{J R}=$ dmf_h_f[2] = A8H

Figure 14: Output of Roll Speed Signal Conditioning System when its Speed is $14.6 \mathrm{~cm} / \mathrm{s}$

Figure 15: Degree of membership when Roll Speed is 14.6 $\mathrm{cm} / \mathrm{s} \mu \mathrm{RL}=$ dmf_r_f[0] = 00H, $\mu \mathrm{RM}=$ dmf_r_f[1] = E1H, $\overline{\mu R R}=$ dmf_r_f $[2]=1 \mathrm{EH}$

PROCESS (DMF_R_F, DMF_H_F, DMF_W_F) BEGIN
$\operatorname{minR}(0)<=\min \left(D M F _R _F(0), D M F _H _F(0)\right.$,
DMF_W_F (0);
$\operatorname{minR}(1)<=\min \left(D M F _R _F(0), D M F _H _F(0)\right.$,
DMF_W_F(1);
$\operatorname{minR}(2)<=\min \left(D M F _R _F(0), D M F _H _F(0)\right.$,
DMF_W_F (2);
$\operatorname{minR}(3)<=\min \left(D M F _R _F(0), D M F _H _F(0)\right.$,
DMF_W_F(3);
Figure 16: Part of VHDL code for finding the minimum degree of Membership Value of Each Rule

Figure 17: VHDL Simulation Showing MinR (103), MinR (104), MinR (114) and MinR (115)

Figure 18: VHDL Simulation Showing MinR (180), MinR (181), MinR (191), MinR (192)
$\operatorname{MaxR}(5)<=\max 5(\operatorname{minR}(79), \operatorname{minR}(80), \operatorname{minR}(89)$, $\operatorname{minR}(90), \min R(99), \operatorname{minR}(100), \operatorname{minR}(110), \operatorname{minR}(158)$, $\operatorname{minR}(159), \min R(168), \min R(169), \min R(178), \min R(188)) ;$ $\operatorname{MaxR}(6)<=\max 6(\operatorname{minR}(78), \operatorname{minR}(88), \operatorname{minR}(156)$, $\operatorname{minR}(157), \min R(166), \min R(167), \operatorname{minR}(176), \operatorname{minR}(177)$, $\operatorname{minR}(187)$);
$\operatorname{MaxR}(7)<=\max 7(\operatorname{minR}(77), \operatorname{minR}(155), \operatorname{minR}(165))$; $\operatorname{MaxR}(8)<=\max 8(\operatorname{minR}(154))$;
Figure 19: Part of VHDL code for finding the maximum value of all rules having same consequent

Figure 20: VHDL Simulation Showing the values of Linguistic Variables of Output Parameter SPEED

Figure 21: VHDL Simulation Showing "MOTOR_SPEED of Example-I

Figure 22: Comparison between Matlab and Xilinx Implementation of case-I of Algorithm

Figure 23: Comparison between Matlab and Xilinx Implementation of case-II of Algorithm

Figure 24: Comparison between Matlab and Xilinx Implementation of case-III of Algorithm

Figure 25: Comparison between Matlab and Xilinx Implementation of case-IV of Algorithm

Figure 26: Comparison between Matlab and Xilinx Implementation of case-V of Algorithm

Figure 27: Comparison between Matlab and Xilinx Implementation of case-VI of Algorithm

Comparison between all six cases of MATLAB and XILINX Implementation of

Figure 28: Comparison between all six cases of Matlab and Xilinx Implementation of Algorithm

Table I: Rule Matrix of Algorithm "If ROLL SPEED is RL"[11]								
	HEIGHT							
W		EL	VL	L	JR	H	VH	EH
	SL	VH	VH	H	H	JR	L	L
	UL	VH	H	H	JR	L	L	L
E	EL	H	H	JR	JR	L	L	VL
	VL	H	JR	JR	L	L	VL	VL
I	L	JR	JR	JR	L	L	VL	$V L$
G	JR	JR	JR	L	L	VL	VL	VL
	H	JR	L	L	L	VL	VL	EL
H	VH	L	L	L	VL	VL	VL	EL
	EH	L	L	L	VL	VL	VL	EL
T	UH	L	L	VL	VL	VL	EL	EL
	SH	L	VL	$V L$	$V L$	VL	EL	EL

Table II: Rule Matrix of Algorithm "If ROLL
SPEED is RM"[11]
HEIGHT

	HEIGHT							
W		EL	VL	L	JR	H	VH	EH
	SL	UH	EH	VH	VH	H	JR	L
E	UL	EH	VH	VH	H	JR	JR	L
	EL	VH	VH	H	JR	JR	L	L
	VL	VH	H	H	$J R$	L	L	VL
I	L	H	H	JR	JR	L	L	$V L$
G	JR	H	JR	JR	L	L	VL	$V L$
	H	JR	JR	JR	L	L	VL	$V L$
H	VH	JR	JR	L	L	VL	VL	VL
	EH	JR	L	L	L	VL	VL	$V L$
T	UH	JR	L	L	VL	VL	VL	$E L$
	SH	L	L	L	$V L$	VL	VL	$E L$

Table III: Rule Matrix of Algorithm "If ROLL SPEED is RR"[11]								
	HE IGHT							
W		EL	VL	L	JR	H	VH	EH
	SL	UH	EH	VH	VH	H	JR	L
	UL	EH	VH	VH	H	JR	$J R$	L
E	EL	VH	VH	H	JR	JR	L	L
I	VL	VH	H	H	JR	L	L	$V L$
	L	H	H	JR	JR	L	L	$V L$
G	JR	H	JR	JR	L	L	VL	$V L$
	H	JR	JR	JR	L	L	VL	$V L$
H	VH	JR	JR	L	L	VL	VL	$V L$
	EH	$J R$	L	L	L	$V L$	VL	VL
T	UH	JR	L	L	VL	$V L$	VL	$E L$
	SH	L	L	L	$V L$	$V L$	VL	EL

Table IV: Slopes of Input Parameter		
WEIGHT		
Linguistic Variable	Slope-1	Slope-2
SL	-	09 H
UL	09 H	0 AH
EL	0 AH	0 AH
VL	0 AH	0 AH
L	0 AH	09 H
JR	09 H	0 AH
H	0 AH	09 H
VH	09 H	0 BH
EH	0 BH	0 AH
UH	0 AH	0 AH
SH	0 AH	-

Table V: Slopes of Input Parameter HEIGHT		
Linguistic Variable	Slope-1	Slope-2
EL	-	0 CH
VL	0 CH	0 CH
L	0 CH	0 CH
JR	0 CH	0 CH
H	0 CH	0 CH
VH	0 CH	0 CH
EH	0 CH	0 CH

ACCESS
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019

Table VI: Slopes of Input Parameter ROLL		
SPEED		
Linguistic Variable	Slope-1	Slope-2
RL	-	0 FH
RM	0 FH	0 FH
RR	0 FH	-

Table VII. VHDL Implementation of Case-I of Algorithm											
Parameters		Cane Level (cm)	Cane Weight (Kg)	Motor Speed (rpm)	Carrier Speed (cm/s)	Cane In Carrier (Kg/cm)	Feed Rate (Kg/s)	Data for next sampling		Cane Level (cm)	
Time (s)	Roll Speed (cm/s)							$\mathbf{K g}$	Cm	Vhdl	Matlab
0	15	90	750	45.0	23.6	0.938	22.1	-19	-6.8	83.2	84.6
10		83.2	729	51.0	26.7	0.911	24.3	+3	+1.1	84.3	84.2
20		84.3	792	49.0	25.7	0.990	25.4	+14	+5.0	89.3	88.8
30		89.3	908	41.0	21.5	1.135	24.4	+4	+1.4	90.7	87.4
40	12.6	90.7	965	29.0	15.2	1.206	18.3	-19	-6.8	83.9	85.3
50		83.9	720	46.0	24.1	0.900	21.7	+15	+5.4	89.3	90.3
60		89.3	760	43.0	22.5	0.950	21.4	+12	+4.3	93.6	92.1
70		93.6	790	40.0	20.9	0.988	20.6	+4	+1.4	95.0	94.6
80		95.0	820	37.0	19.4	1.025	19.9	-3	-1.1	93.9	92.8
90	16.2	93.9	555	74.0	38.7	0.694	26.9	+9	+3.2	97.1	97.1
100		97.1	609	60.0	31.4	0.761	23.9	-21	-7.5	89.6	90.2
110		89.6	578	70.0	36.6	0.723	26.5	+5	+1.8	91.4	92.3
120		91.4	598	64.0	33.5	0.748	25.1	-9	-3.2	88.2	90.5
130		88.2	700	55.0	28.8	0.875	25.2	-8	-2.9	85.3	86.9
140		85.3	679	59.0	30.9	0.849	26.2	+2	+0.7	86.0	89.8
150	15.4	86.0	800	47.0	24.6	1.000	24.6	-1	-0.4	85.6	91.9
160		85.6	845	45.0	23.6	1.056	24.9	+2	+0.7	86.3	89.0
170		86.3	835	47.0	24.6	1.044	25.7	+10	+3.6	89.9	92.9
180		89.9	874	43.0	22.5	1.093	24.6	-1	-0.4	89.5	86.8
190		89.5	900	43.0	22.5	1.125	25.3	+6	+2.1	91.6	92.2
200		91.6	924	35.0	18.3	1.155	21.1	-36	-12.9	78.7	82.6

Table VIII. VHDL Implementation of Case-II of Algorithm											
Parameters		Cane Level (cm)	Cane Weight (Kg)	Motor Speed (rpm)	Carrier Speed (cm/s)	Cane In Carrier (Kg/cm)	$\begin{gathered} \text { Feed } \\ \text { Rate } \\ (\mathbf{K g} / \mathbf{s}) \end{gathered}$	Data for next sampling		Cane Level (cm)	
Time (s)	Roll Speed (cm/s)							Kg	Cm	Vhdl	Matlab
0	15.4	90	750	47	24.6	0.938	23.1	-16	-5.7	84.3	85.7
10	15.8	84.3	729	52.0	27.2	0.911	24.8	-5	-1.8	82.5	84.3
20	15.0	82.5	792	49.0	25.7	0.990	25.4	+14	+5.0	87.5	89.7
30	16.2	87.5	908	41.0	21.5	1.135	24.4	-16	-5.7	81.8	79.0
40	16.6	81.8	965	42.0	22.0	1.206	26.5	-1	-0.4	81.4	78.6
50	13.4	81.4	720	49.0	25.7	0.900	23.1	+16	+5.7	87.1	84.7
60	13.8	87.1	760	43.0	22.5	0.950	21.4	-7	-2.5	84.6	85.1
70	13.4	84.6	790	44.0	23.0	0.988	22.7	+12	+4.3	88.9	91.2
80	15.4	88.9	820	47.0	24.6	1.025	25.2	+5	+1.8	90.7	93.7
90	16.2	90.7	555	74.0	38.7	0.694	26.9	+9	+3.2	93.9	96.9
100	13.0	93.9	609	51.0	26.7	0.761	20.3	-5	-1.8	92.1	94.8
110	14.3	92.1	578	60.0	31.4	0.723	22.7	-2	-0.7	91.4	94.4
120	14.6	91.4	598	56.0	29.3	0.748	21.9	-15	-5.4	86.0	91.5
130	12.3	86.0	700	44.0	23.0	0.875	20.1	+4	+1.4	87.4	93.3

140	12.6	87.4	679	48.0	25.1	0.849	21.3	+11	+3.9	91.3	94.4
150	15.4	91.3	800	47.0	24.6	1.000	24.6	-1	-0.4	90.9	95.8
160	12.0	90.9	845	31.0	16.2	1.056	17.1	-21	-7.5	83.4	88.7
170	14.3	83.4	835	45.0	23.6	1.044	24.6	+17	+6.1	89.5	90.5
180	14.6	89.5	874	43.0	22.5	1.093	24.6	+12	+4.3	93.8	91.9
190	15.0	93.8	900	40.0	20.9	1.125	23.5	-5	-1.8	92.0	92.3
200	15.4	92.0	924	35.0	18.3	1.155	21.1	-36	-12.9	79.1	81.9

Table IX．VHDL Implementation of Case－III of Algorithm											
Parameters		Cane Level （cm）	Cane Weight （Kg）	Motor Speed （rpm）	Carrier Speed （cm／s）	$\begin{gathered} \text { Cane } \\ \text { In } \\ \text { Carrier } \\ (\mathrm{Kg} / \mathrm{cm}) \\ \hline \end{gathered}$	Feed Rate （Kg／s）	Data for next sampling		Cane Level （cm）	
Time （s）	Roll Speed （cm／s）							Kg	Cm	Vhdl	Matlab
0	15	0	750	70.0	36.6	0.938	34.3	＋103	＋36．8	36.8	35.4
10		36.8	729	64.0	33.5	0.911	30.5	＋65	＋23．2	60.0	59.7
20		60.0	792	56.0	29.3	0.990	29.0	＋50	＋17．9	77.9	79.7
30		77.9	908	44.0	23.0	1.135	26.1	＋21	＋7．5	85.4	86.8
40	12.6	85.4	965	32.0	16.8	1.206	20.3	＋1	＋0．4	85.8	85.4
50		85.8	720	46.0	24.1	0.900	21.7	＋15	＋5．4	91.2	90.8
60		91.2	760	42.0	22.0	0.950	20.9	＋7	＋2．5	93.7	92.2
70		93.7	790	40.0	21.0	0.988	20.7	＋5	＋1．8	95.5	95.1
80		95.5	820	37.0	19.4	1.025	19.9	－3	－1．1	94.4	93.7
90	16.2	94.4	555	74.0	38.7	0.694	26.9	＋9	＋3．2	97.6	96.9
100		97.6	609	60.0	31.4	0.761	23.9	－21	－7．5	90.1	89.8
110		90.1	578	70.0	36.6	0.723	26.5	＋5	＋1．8	91.9	91.6
120		91.9	598	64.0	33.5	0.748	25.1	－9	－3．2	88.7	89.5
130		88.7	700	54.0	28.3	0.875	24.8	－12	－4．3	84.4	86.3
140		84.4	679	59.0	30.9	0.849	26.2	＋2	＋0．7	85.1	83.8
150	15.4	85.1	800	47.0	24.6	1.000	24.6	－1	－0．4	84.7	85.2
160		84.7	845	45.0	23.6	1.056	24.9	＋2	＋0．7	85.4	85.9
170		85.4	835	47.0	24.6	1.044	25.7	＋10	＋3．6	89.0	89.1
180		89.0	874	43.0	22.5	1.093	24.6	－1	－0．4	88.6	88.4
190		88.6	900	44.0	23.0	1.125	25.9	＋12	＋4．3	92.9	90.9
200		92.9	924	35.0	18.3	1.155	21.1	－36	－12．9	80.0	80.2

Table X．VHDL Implementation of Case－IV of Algorithm											
Parameters		Cane Level （cm）	Cane Weight （Kg）	Motor Speed （rpm）	Carrier Speed （cm／s）	Cane In Carrier $(\mathrm{Kg} / \mathrm{cm})$	$\begin{aligned} & \text { Feed } \\ & \text { Rate } \\ & (\mathrm{Kg} / \mathrm{s}) \end{aligned}$	Data for next sampling		Cane Level （cm）	
Time （s）	Roll Speed （cm／s）							Kg	Cm	Vhdl	Matab
0	15.4	0	750	72.0	37.7	0.938	35.4	＋107	＋38．2	38.2	39.6
10	15.8	38.2	729	67.0	35.1	0.911	32.0	＋67	＋23．9	62.1	64.2
20	15.0	62.1	792	55.0	28.8	0.990	28.5	＋45	＋16．1	78.2	79.9
30	16.2	78.2	908	44.0	23.0	1.135	26.1	＋1	＋0．4	78.6	80.3
40	16.6	78.6	965	42.0	22.0	1.206	26.5	－1	－0．4	78.2	79.3
50	13.4	78.2	720	49.0	25.7	0.900	23.1	＋16	＋5．7	83.9	85.4
60	13.8	83.9	760	44.0	23.0	0.950	21.9	－2	－0．7	83.2	85.4
70	13.4	83.2	790	45.0	23.6	0.988	23.3	＋18	＋6．4	89.6	91.1
80	15.4	89.6	820	47.0	24.6	1.025	25.2	＋5	＋1．8	91.4	88.6
90	16.2	91.4	555	74.0	38.7	0.694	26.9	＋9	＋3．2	94.6	93.6
100	13.0	94.6	609	51.0	26.7	0.761	20.3	－5	－1．8	92.8	92.5
110	14.3	92.8	578	60.0	31.4	0.723	22.7	－2	－0．7	92.1	92.1
120	14.6	92.1	598	56.0	29.3	0.748	22.0	－14	－5	86.7	89.2
130	12.3	86.7	700	44.0	23.0	0.875	20.1	＋4	＋1．4	88.1	91.0
140	12.6	88.1	679	48.0	25.1	0.849	21.3	＋11	＋3．9	92.0	92.1
150	15.4	92.0	800	47	24.6	1.000	24.6	－1	－0．4	91.6	93.5
160	12.0	91.6	845	31.0	16.2	1.056	17.1	－21	－7．5	84.1	86.4
170	14.3	84.1	835	45.0	23.6	1.044	24.6	＋17	＋6．1	90.2	90.7

Published By：
Blue Eyes Intelligence Engineering
and Sciences Publication（BEIESP）

ACCESS
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075 (Online), Volume-8 Issue-10, August 2019

180	14.6	90.2	874	42.0	22.0	1.093	24.0	+6	+2.1	92.3	91.8
190	15.0	92.3	900	41.0	21.5	1.125	24.2	+2	+0.7	93.0	92.2
200	15.4	93.0	924	35.0	18.3	1.155	21.1	-36	-12.9	80.1	81.5

Table XI. VHDL Implementation of Case-V of Algorithm											
Parameters		Cane Level (cm)	Cane Weig ht (Kg)	Motor Speed (rpm)	Carrier Speed (cm/s)	Cane In Carrier (Kg/cm)	$\begin{gathered} \text { Feed } \\ \text { Rate } \\ (\mathrm{Kg} / \mathbf{s}) \end{gathered}$	Data for next sampling		Cane Level (cm)	
Time (s)	Roll Speed (cm/s)							Kg	Cm	Vhdl	Matlab
0	15	180	750	29.0	15.2	0.938	14.3	-97	-34.6	145.4	145.7
10		145.4	729	38.0	19.9	0.911	18.1	-59	-21.1	124.3	123.9
20		124.3	792	39.0	20.4	0.990	20.2	-38	-13.6	110.7	111.8
30		110.7	908	34.0	17.8	1.135	20.2	-38	-13.6	97.1	97.5
40	12.6	97.1	965	29.0	15.2	1.206	18.3	-19	-6.8	90.3	91.8
50		90.3	720	46.0	24.1	0.900	21.7	+15	+5.4	95.7	95.4
60		95.7	760	39.0	20.4	0.950	19.4	-8	-2.9	92.8	92.9
70		92.8	790	41.0	21.5	0.988	21.2	+10	+3.6	96.4	95.0
80		96.4	820	37.0	19.4	1.025	19.9	-3	-1.1	95.3	93.6
90	16.2	95.3	555	73.0	38.2	0.694	26.5	+5	+1.8	97.1	96.8
100		97.1	609	60.0	31.4	0.761	23.9	-21	-7.5	89.6	89.7
110		89.6	578	70.0	36.6	0.723	26.5	+5	+1.8	91.4	91.5
120		91.4	598	64.0	33.5	0.748	25.1	-9	-3.2	88.2	89.4
130		88.2	700	55.0	28.8	0.875	25.2	-8	-2.9	85.3	86.2
140		85.3	679	59.0	26.2	0.849	26.2	+2	+0.7	86.0	83.7
150	15.4	86.0	800	47.0	24.6	1.000	24.6	-1	-0.4	85.6	85.1
160		85.6	845	45.0	23.6	1.056	24.9	+2	+0.7	86.3	85.8
170		86.3	835	47.0	24.6	1.044	25.7	+10	+3.6	89.9	89.0
180		89.9	874	43.0	22.5	1.093	24.6	-1	-0.4	89.5	88.3
190		89.5	900	43.0	22.5	1.125	25.3	+6	+2.1	91.6	85.8
200		91.6	924	35.0	18.3	1.155	21.1	-36	-12.9	78.7	80.4

Table XII. VHDL Implementation of Case-VI of Algorithm											
Parameters		Cane Level (cm)	Cane Weig ht (Kg)	Motor Speed (rpm)	Carrier Speed (cm/s)	Cane In Carrier (Kg/cm)	Feed Rate (Kg/s)	Data for next sampling		Cane Level (cm)	
Time (s)	Roll Speed (cm/s)							Kg	Cm	Vhdl	Matlab
0	15.4	180	750	29.0	15.2	0.938	14.3	-104	-37.1	142.9	143.2
10	15.8	142.9	729	41.0	21.5	0.911	19.6	-57	-20.4	122.5	122.1
20	15.0	122.5	792	40.0	20.9	0.990	20.7	-33	-11.8	110.7	111.7
30	16.2	110.7	908	38.0	19.9	1.135	22.6	-34	-12.1	98.6	102.1
40	16.6	98.6	965	38.0	19.9	1.206	24.0	-26	-9.3	89.3	90.0
50	13.4	89.3	720	49.0	25.7	0.900	23.1	+16	+5.7	95.0	96.1
60	13.8	95.0	760	40.0	20.9	0.950	19.9	-22	-7.9	87.1	86.5
70	13.4	87.1	790	44.0	23.0	0.988	22.7	+12	+4.3	91.4	91.1
80	15.4	91.4	820	47.0	24.6	1.025	25.2	+5	+1.8	93.2	93.6
90	16.2	93.2	555	74.0	38.7	0.694	26.9	+9	+3.2	96.4	95.7
100	13.0	96.4	609	50.0	26.2	0.761	19.9	-9	-3.2	93.2	94.3
110	14.3	93.2	578	60.0	31.4	0.723	22.7	-2	-0.7	92.5	93.9
120	14.6	92.5	598	56.0	29.3	0.748	21.9	-15	-5.4	87.1	91.0
130	12.3	87.1	700	44.0	23.0	0.875	20.1	+4	+1.4	88.5	92.8
140	12.6	88.5	679	48.0	25.1	0.849	21.3	+11	+3.9	92.4	90.7
150	15.4	92.4	800	47.0	24.6	1.000	24.6	-1	-0.4	92.0	88.6
160	12.0	92.0	845	31.0	16.2	1.056	17.1	-21	-7.5	84.5	87.9
170	14.3	84.5	835	45.0	23.6	1.044	24.6	+17	+6.1	90.6	90.8
180	14.6	90.6	874	42.0	22.0	1.093	24.0	+6	+2.1	92.7	91.9
190	15.0	92.7	900	41.0	21.5	1.125	24.2	+2	+0.7	93.4	92.3
200	15.4	93.4	924	35.0	18.3	1.155	21.1	-36	-12.9	80.5	91.2

Table XIII: Comparison between MATLAB and XILINX Implementation of Case-I of Algorithm		
Matlab Implemen t-ation of Algorithm	Xilinx Implement -ation of Algorithm	
Percentage of time cane level is in between 85 cm to 95 cm	89.1%	84.8%
Lowest Level of Cane in the Chute (cm)	82.6	78.7
Highest Level of Cane in the Chute (cm)	97.1	97.1
Slowest Speed of Carrier Motor (rpm)	31.1	29.0
Fastest Speed of Carrier Motor (rpm)	74.6	74.0
Slowest Speed of Cane Carrier (cm/s)	16.3	15.2
Fastest Speed of Cane Carrier (cm/s)	39.1	38.7
Mean Cane Level (cm)	89.6	88.7
Standard Deviation (cm)	3.5	4.2

Table XIV: Comparison between MATLAB and XILINX Implementation of Case-II of Algorithm

Implementation of Case-II of Algorithm		
Parameter	Matlab Implemen t-ation of Algorithm	Xilinx Implement -ation of Algorithm
Percentage of time cane level is in between 85 cm to 95 cm	69.5%	76.2%
Lowest Level of Cane in the Chute (cm)	78.6	79.1
Highest Level of Cane in the Chute (cm)	96.9	93.9
Slowest Speed of Carrier Motor (rpm)	31.2	31.0
Fastest Speed of Carrier Motor (rpm)	74.1	74.0
Slowest Speed of Cane Carrier $(\mathrm{cm} / \mathrm{s})$	16.3	16.2
Fastest Speed of Cane Carrier (cm/s)	38.8	38.7
Mean Cane Level (cm)	89.4	87.7
Standard Deviation (cm)	5.2	4.2

Table XV: Comparison between MATLAB and XILINX Implementation of Case-III of Algorithm		
Parameter	Matlab Implemen t-ation of Algorithm	Xilinx Implement -ation of Algorithm
Percentage of time cane level is in between 85 cm to 95 cm	69.1%	60.0%
Time required to reach cane level at 90 cm (sec)	58.5	57.8
Highest Level of Cane in the Chute (cm)	96.9	97.6
Slowest Speed of Carrier Motor (rpm)	31.4	32.0
Fastest Speed of Carrier Motor (rpm)	74.1	74.0

DOI: 10.35940/ijitee.J9908.0881019
Journal Website: www.ijitee.org

Slowest Speed of Cane Carrier $(\mathrm{cm} / \mathrm{s})$	16.4	16.8
Fastest Speed of Cane Carrier $(\mathrm{cm} / \mathrm{s})$	38.8	38.7

Table XVI: Comparison between MATLAB and XILINX

Implementation of Case-IV of Algorithm		
Parameter	Matlab Implemen t-ation of Algorithm	Xilinx Implement -ation of Algorithm
Percentage of time cane level is in between 85 cm to 95 cm	70.2%	62.2%
Time required to reach cane level at 90 cm (sec)	78.1	79.4
Highest Level of Cane in the Chute (cm)	93.6	94.6
Slowest Speed of Carrier Motor (rpm)	31.2	31.0
Fastest Speed of Carrier Motor (rpm)	75.4	74.0
Slowest Speed of Cane Carrier (cm/s)	16.3	16.2
Fastest Speed of Cane Carrier (cm/s)	39.5	38.7

Table XVII: Comparison between MATLAB and XILINX Implementation of Case-V of Algorithm		
Parameter	Matlab Implemen t-ation of Algorithm	Xilinx Implement -ation of Algorithm
Percentage of time cane level is in between 85 cm to 95 cm	62.7%	62.7%
Time required to reach cane level at 90 cm (sec)	109.6	109.5
Lowest Level of Cane in the Chute (cm)	80.4	78.7
Slowest Speed of Carrier Motor (rpm)	29.5	29.0
Fastest Speed of Carrier Motor (rpm)	74.2	73.0
Slowest Speed of Cane Carrier (cm/s)	15.4	15.2
Fastest Speed of Cane Carrier $(\mathrm{cm} / \mathrm{s})$	38.8	38.2

Table XVIII: Comparison between MATLAB and								
XILINX Implementation of Case-VI of Algorithm				$	$	Parameter	Matlab Implemen t-ation of Algorithm	Xilinx -atement Algorithm
:---:	:---:	:---:						
Percentage of time cane level is in between 85 cm to 95 cm	72.8%	72.6%						
Time required to reach cane level at 90 cm (sec)	50.0	49.2						

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Lowest Level of Cane in the Chute (cm)	86.5	80.5
Slowest Speed of Carrier Motor (rpm)	29.5	29.0
Fastest Speed of Carrier Motor (rpm)	74.2	74.0
Slowest Speed of Cane Carrier $(\mathrm{cm} / \mathrm{s})$	15.4	15.2
Fastest Speed of Cane Carrier $(\mathrm{cm} / \mathrm{s})$	38.4	38.7

Table XIX: Comparison between all six cases of MATLAB and XILINX Implementation of Algorithm						
Percentage of time cane level is in between $\mathbf{8 5} \mathbf{c m}$ to 95 cm	Case-I	Case-II	Case-III	Case-IV	Case-V	Case-VI
MATLAB Implementation of Algorithm	89.1%	69.5%	69.1%	70.2%	62.7%	72.8%
XILINX Implementation of Algorithm	84.8%	76.2%	60.0%	62.2%	62.7%	72.6%

REFERENCES

1. D.P Kulkarni, Cane Sugar Manufacture, The Sugar technologists association of India, New Delhi, 2002-03.
2. A jha, "India's sugar policy and world sugar economy" in proc. FAO International sugar conference, Fiji, August 2012.
3. Indian Sugar Mills Association (ISMA), 2010, "Important Events" (online) at: http://www.indiansugar.com/EventDetails.
4. S. Ahmed, Indian Sugar Industry, Centre for management studies, Jamia Millia Islamia, New Delhi, India, Unpublished.
5. Kent, Geoffrey A, "Increasing the capacity of Australian raw sugar factory milling units", PhD. Dissertation, school of Engineering, Mechanical Engineering Department, James Cook University, Brisbane, 2003.
6. Seturaman, P, "Design of an experimental apparatus to analyze bagasse behaviour in a chute", M.E Dissertation, Queensland University of Technology, Brisbane, 2012.
7. Murry, C.R, Holt, J. E and Munro, B.M "An investigation of factory feed chutes" proc. Qd. Soc. Sug. Cane Tech. $29^{\text {th }}$ conf., pp. 143, 1962.
8. Yogesh Misra, H R Kamath, "Implementation and Performance Analysis of a Three Inputs Conventional Controller to Maintain the Cane Level During Cane Crushing in FPGA using VHDL" International Journal of Engineering Research \& Technology (IJERT) Vol.3, Issue9, September 2014.
9. Yogesh Misra, H R Kamath, "Analysis and Design of a Three Inputs Fuzzy System for Maintaining the Cane Level during Sugar Manufacturing" journal of Automation and Control, 2014, Vol.2, No.3, pp.62-78.
10. Yogesh Misra, H R Kamath, "Development of Variable Feed Rate Algorithm for Three Inputs Fuzzy System to Maintain the Cane Level during Sugar Juice Extraction" Cooperative Sugar Journal, Vol.48, No.7, March 2015.

AUTHORS PROFILE

V. Sai Sri Krishna received his B.Tech degree in Electronics and Communication Engineering from Sri Vasavi Engineering College which is affiliated under JNTUK, Andhra Pradesh, India in 2017. He is pursuing his M.Tech degree in VLSI and Embedded Systems Design specialization in GMRIT which is affiliated under JNTUK, Andhra Pradesh, India. His areas of interest are ASIC design implementations and low power digital VLSI design.

Dr. Yogesh Misra has 24 years of industrial and teaching experience and currently working as Professor in Electronics and Communication Engineering Department of GMR Institute of Technology, Rajam, Andhra Pradesh, India. Dr. Misra has worked in U V Instruments (P) Ltd, a sugar mill automation company for many years. He has authored

