Fekete – Szego Problem for Sakaguchi kind of Functions Related to Shell – like Curves Connected with Fibonacci Numbers

P.Lokesh, B.Srutha keerthi

Abstract: In this paper, it is attempted to introduce and investigate new subclasses of Sakaguchi kind of functions related to shell – likes curves connected with Fibonacci numbers. Furthermore, the estimates of first two coefficients of functions in these classes are obtained. Fekete – Szego inequalities for these function classes are also determined.

Keywords: Fibonacci numbers, Sakaguchi kind of functions, Fekete – Szego inequalities.

I. INTRODUCTION

 $\Omega = \left\{z: \left|z\right| < 1\right\}$ denote the unit disc on the complex plane. The class of all analytic functions of the form

$$f(z) = z + \sum_{n=1}^{\infty} a_n z^n$$
 (1)

in the open unit disc Ω with normalization f(0) = f'(0) - 1 = 0 is denoted by A and class $S \subset A$ is the class which consists of univalent functions in Ω .

The koebe one quarter theorem [3] ensures that the image of Ω under every univalent function $f\in A$ contains a disk of radius ½. Thus every univalent function

$$f \in A$$
 has an inverse f^{-1} satisfying $f^{-1}(f(z)) = z$, $(z \in \Omega)$ and $f(f^{-1}(w)) = w(|w| < r_0(f), r_0(f) \ge \frac{1}{4})$

A function $f\in A$ is said to be bi – univalent on Ω if both f and f^{-1} are univalent in Ω . Let Σ denote the class of bi univalent functions as defined in the unit disk Ω . Since $f\in \Sigma$ has the Maclaurian Series given by (1), a computation shows that its inverse $g=f^{-1}$ has the

Revised Manuscript Received on July 08, 2019.

First Author Name, his/her department, Name of the affiliated College or University/Industry, City, Country. Email: xyz1@blueeyesintlligence.org
Second Author Name, department, Name of the affiliated College or University/Industry, City, Country. Email: xyz2@blueeyesintlligence.org

Third Author Name, department, Name of the affiliated College or University/Industry, City, Country. Email: xyz3@blueeyesintlligence.org

expansion

Schwarz Lemma that

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) + \dots$$

One can see a short history and examples of function in the class Σ in [13]. Several authors have introduced and investigated subclasses of bi – univalent functions and obtained bounds for the initial coefficients (see [1, 2,8,13,14,15]).

An analytic function f is subordinate to an analytic function F in Ω , written as f π $F(z \in \Omega)$, provided there is an analytic function w defined on Ω with w(0) = 0 and |w(z)| < 1 satisfying f(z) = F(w(z)). It follows from

$$f(z) \pi F(z) \Leftrightarrow f(0) = F(0)$$

 $f(\Omega) \subset F(\Omega)$ $z \in \Omega$

(for details see [3,7]. The important subclasses of S in geometric function theory such that if $f \in A$ are recalled and

$$\frac{zf'(z)}{f(z)} \pi p(z) = 1 + \frac{zf''(z)}{f'(z)} \pi p(z)$$

 $p(z) = \frac{1+z}{1-z} \text{ , then it is said that } f \text{ is star like and convex, respectively. These functions form known classes denoted by } S^* \text{ and } C \text{ , respectively. Recently, in } [12], Sokol introduced the class } SL \text{ of Shell-like functions on the set of functions } f \in A \text{ which is described in the following definitions:}$

Definition 1.1. The function $f \in A$ belongs to the class SL if it satisfies the condition that

$$\frac{zf'(z)}{f(z)}\pi \ \widetilde{p}(z)$$

with

$$\tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}$$

where

$$\tau = \frac{\left(1 - \sqrt{5}\right)}{2} \approx -0.618$$

It should be observed SL is a subclass of the star like functions S^* .

Later, Dziok et al. in [4] and [5] and Ozlem Guney et al. [9] defined and introduced various subclasses of bi-univalent function related to a shell - like curve connected with Fibonacci numbers, respectively.

Definition 1.2. The function $f \in A$ belongs to the class KSL of convex shell - like functions if it satisfies the

$$1 + \frac{zf''(z)}{f'(z)} \pi \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}$$

$$\tau = \frac{\left(1 - \sqrt{5}\right)}{2} \approx -0.618$$
with

The function \widetilde{p} is not univalent in Ω , but it is univalent in the disc $|z| < \frac{(3-\sqrt{5})}{2} \approx 0.38$

$$\widetilde{p}(0) = \widetilde{p}(-1/2\tau) = 1$$
 and $\widetilde{p}(e^{\mu i \arccos(1/4)}) = \frac{\sqrt{5}}{5}$, and it may also be noticed that

$$\frac{1}{|\tau|} = \frac{|\tau|}{1 - |\tau|}$$

which shows that the number $|\tau|$ divides [0,1] such that it fulfills the golden section. The image of the unit circle |z|=1 under \tilde{p} is a curve described by the equation given

$$(10x - \sqrt{5})y^2 = (\sqrt{5} - 2x)(\sqrt{5x} - 1)^2$$

which is translated and revolved trisectrix of Maclaurin. The curve $\widetilde{p}(re^{it})$ is a closed curve without any loops for The curve $0 < r \le r_0 = \frac{\left(3 - \sqrt{5}\right)}{2} \approx 0.38$ For $r_0 < r < 1$, it has a loop and for r=1, it has a vertical asymptote. Since τ satisfies the equation $\tau^2 = 1 + \tau$, this expression can be used to obtain higher powers τ^n as a linear function of lower powers, which in turn can be decomposed all the way down to a linear combination of τ and 1. The resulting recurrence relationships yield Fibonacci numbers u_n :

$$\tau^n = u_n \tau + u_{n-1}$$

In [11], taking $\pi = t$, Raina and Sokol showed that

$$\widetilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2} = \left(t + \frac{1}{t}\right) \frac{1}{1 - t - t^2}$$

$$= \frac{1}{\sqrt{5}} \left(t + \frac{1}{t} \right) \left(\frac{1}{1 - (1 - \tau)t} - \frac{1}{1 - \pi t} \right)$$

$$= \left(t + \frac{1}{t} \right) \sum_{n=1}^{\infty} \frac{(1 - \tau)^n - \tau^n}{\sqrt{5}} t^n$$
(3)

$$= \left(t + \frac{1}{t}\right) \sum_{n=1}^{\infty} u_n t^n = 1 + \sum_{n=1}^{\infty} \left(u_{n-1} + u_{n+1}\right) \tau^n z^n$$

where

$$u_n = \frac{(1-\tau)^n - \tau^n}{\sqrt{5}}, \tau = \frac{1-\sqrt{5}}{2} (n = 1, 2,)$$
(4)

This shows that the relevant connection of \vec{p} with the sequence of Fibonacci numbers u_n , such that $u_0 = 0, u_1 = 1, u_{n+2} = u_n + u_{n+1}$ for $n = 0, 1, 2, \dots$ And they got

$$\widetilde{p}(z) = 1 + \sum_{n=1}^{\infty} \widetilde{p}_{n} z^{n} = 1 + (u_{0} + u_{2}) \tau z + (u_{1} + u_{3}) r^{2} z^{2} + \sum_{n=3}^{\infty} (u_{n-3} + u_{n-2} + u_{n-1} + u_{n}) r^{n} z^{n}
= 1 + \tau z + 3\tau^{2} z^{2} + 4\tau^{3} z^{3} + 7\tau^{4} z^{4} + 11\tau^{5} z^{5} + \dots$$
(5)

Let $p(\beta)$, $0 \le \beta < 1$, denote the class of analytic functions $p_{\text{in }\Omega \text{ with }} p(0)=1$, and $\text{Re}\{p(z)\} > \beta$. Especially, p instead of p(0) is used.

Theorem 1.3. [5] The function $\widetilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau^2 - \tau^2}$

belongs to the class $p(\beta)$ with $\beta = \frac{\sqrt{5}}{10} \approx 0.2236$

Now the following lemma is given to prove the theorem.

[10] Let $p(z)=1+c_1z+c_2z^2+....$ then

$$|c_n| \le 2$$
, for $n \ge 1$. (6)

In this present work, two subclasses of Sakaguchi kind of Σ associated with shell – like functions connected with Fibonacci numbers are introduced to obtain the initial Taylor coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for these function classes. Also, bounds for the Fekete – Szego functional $|a_3 - \mu a_2^2|$ for each subclass are also given.

International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8, Issue-10S, August 2019

II. BI – UNIVALENT FUNCTION CLASS $SLM_{\lambda,t,\Sigma}(\widetilde{p}(z))$

In this section, a new subclass of Sakaguchi kind of Σ is associated with shell – like functions connected with Fibonacci numbers in order to obtain the initial Taylor coefficients a_2 and a_3 for the function class of subordination.

Firstly, let $p(z)=1+p_1z+p_2z^2+...$ and $p \pi \widetilde{p}$. Then there exists an analytic functions u such that |u(z)|<1 in Ω and $p(z)=\widetilde{p}(u(z))$. Therefore the function

$$h(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + c_1 z + c_2 z^2 + \dots$$

is in the class p(0). It follows that

$$u(z) = \frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2}\right) \frac{z^2}{2} + \left(c_3 - c_1 c_2 - \frac{c_1^3}{4}\right) \frac{z^3}{2} + \dots$$
(8)

and

$$\begin{split} \widetilde{p}(u(z)) &= 1 + \widetilde{p}_1 \left\{ \frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2} \right) \frac{z^2}{2} + \left(c_3 - c_1 c_2 - \frac{c_1^3}{4} \right) \frac{z^3}{2} + \ldots \right\} \\ &+ \widetilde{p}_2 \left\{ \frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2} \right) \frac{z^2}{2} + \left(c_3 - c_1 c_2 - \frac{c_1^3}{4} \right) \frac{z^3}{2} + \ldots \right\}^2 \\ &+ \widetilde{p}_3 \left\{ \frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2} \right) \frac{z^2}{2} + \left(c_3 - c_1 c_2 - \frac{c_1^3}{4} \right) \frac{z^3}{2} + \ldots \right\}^3 + \ldots . \end{split}$$

$$=1+\frac{\tilde{p}_{1}c_{1}z}{2}+\left\{\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)\tilde{p}_{1}+\frac{c_{1}^{2}}{4}\tilde{p}_{2}\right\}z^{2}+\left\{\frac{1}{2}\left(c_{3}-c_{1}c_{2}+\frac{c_{1}^{2}}{4}\right)\tilde{p}_{1}+\frac{1}{2}c_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)\tilde{p}_{2}+\frac{c_{1}^{3}}{8}\tilde{p}_{3}\right\}z^{3}+\dots$$
(9)

And similarly, there exists an analytic function v such that |v(w)| < 1 in Ω and $p(w) = \tilde{p}(v(w))$. Therefore, the function

$$K(w) = \frac{1 + v(w)}{1 - v(w)} = 1 + d_1 w + d_2 w^2 + \dots$$
(10)

is in the class P(0). It shows that

$$v(w) = \frac{d_1 w}{2} + \left(d_2 - \frac{d_1^2}{2}\right) \frac{w^2}{2} + \left(d_3 - d_1 d_2 - \frac{d_1^2}{4}\right) \frac{w^3}{2} + \dots$$
(11)

And

$$\widetilde{p}(v(w)) = 1 + \frac{\widetilde{p}_1 d_1 w}{2} + \left\{ \frac{1}{2} \left(d_2 - \frac{d_1^2}{2} \right) \widetilde{p}_1 + \frac{d_1^2}{4} \widetilde{p}_2 \right\} w^2 + \left\{ \frac{1}{2} \left(d_3 - d_1 d_2 + \frac{d_1^2}{4} \right) \widetilde{p}_1 + \frac{1}{2} d_1 \left(d_2 - \frac{d_1^2}{2} \right) \widetilde{p}_2 + \frac{d_1^3}{8} \widetilde{p}_3 \right\} w^3 + \dots$$
(12)

Definition 2.1. For $0 \le \lambda \le 1, |t| \le 1$ but $t \ne 1$ a function

 $f \in A$ of the form (1) is said to be in the class $SLM_{\lambda,t,\Sigma}(\widetilde{p}(z))$ if the following subordination hold:

$$\frac{(1-t)(\lambda z^3 f'''(z) + (1+2\lambda)z^2 f''(z) + zf'(z))}{\lambda z^2 (f''(z) - t^2 f''(z)) + z(f'(z) - tf'(tz))} \pi \tilde{p}(z) = \frac{1+\tau^2 z^2}{1-\tau z - \tau^2 z^2}$$
(13)

and

$$\frac{(1-t)(\lambda w^3 g'''(w) + (1+2\lambda)w^2 g''(w) + wg(w))}{\lambda w^2 (g''(w) - t^2 g''(w)) + w(g'(w) - tg'(tw))} \pi \widetilde{p}(w) = \frac{1+\tau^2 w^2}{1-\tau w - \tau^2 w^2}$$
(14)

$$\tau = \frac{\left(1 - \sqrt{5}\right)}{2} \approx -0618 \quad \text{where } z, w \in \Omega \text{ and } g$$

is given by (2).

In the following theorem, an attempt has been made to determine the initial Taylor coefficients $\begin{vmatrix} a_2 \end{vmatrix}$ and $\begin{vmatrix} a_3 \end{vmatrix}$ for the function $\begin{vmatrix} SLM_{\lambda,t,\Sigma}(\widetilde{p}(z)) \end{vmatrix}$. Fekete — Szego functional $\begin{vmatrix} a_3 - \mu a_2^2 \end{vmatrix}$ for this subclass is also obtained.

Theorem 2.2. Let f be given by (1) be in the class $SLM_{\lambda,t,\Sigma}(\tilde{p}(z))$ Then

$$|a_2| \le \frac{|\tau|}{\sqrt{4(1+\lambda)^2(1-t)^2 + [3(1+2\lambda)(2-t-t^2) - 8(1+\lambda)^2(2-3t+t^2)]\tau}}$$
 (15)

and

$$|a_{s}| \leq \frac{|r|4(1+\lambda)^{2}((1-t)^{2}-2(2-3t+t^{2})r)}{3(1+2\lambda)(2-t-t^{2})[4(1+\lambda)^{2}(1-t)^{2}+(3(1+2\lambda)(2-t-t^{2})-8(1+\lambda)^{2}(2-3t+t^{2})]r}$$

(16)

Proof. Let $f \in SLM_{\lambda,t,\Sigma}(\widetilde{p}(z))$ and $g = f^{-1}$. Considering (13) and (14), we have

Considering (13) and (14), we have
$$\frac{(1-t)(\lambda z^{3}f'''(z)+(1+2\lambda)z^{2}f''(z)+zf'(z))}{\lambda z^{2}(f''(z)-t^{2}f''(tz))+z(f'(z)-tf'(tz))} = \widetilde{p}(u(z))$$
(17)

and

$$\frac{(1-t)(\lambda w^3 g'''(w) + (1+2\lambda)w^2 g''(w) + wg(w))}{\lambda w^2 (g''(w) - t^2 g''(tw)) + w(g'(w) - tg'(tw))} = \widetilde{p}(v(w))$$
(18)

$$\tau = \frac{\left(1 - \sqrt{5}\right)}{2} \approx -0618 \text{ where } z, w \in \Omega \text{ and } g$$

is given by (2).

Since

Where

$$\frac{(1-t)(\lambda z^3 f'''(z) + (1+2\lambda)z^2 f''(z) + zf'(z))}{\lambda z^2 (f''(z) - t^2 f''(tz)) + z(f'(z) - tf'(tz))}$$

$$=1+2(1+\lambda)(1-t)a_2z+(3(1+2\lambda)(2-t-t^2)a_3-4(1-t^2)(1+\lambda)^2a_2^2)z^2+....$$

and

 $(1-t)^2 w^2 a''(w) + (1+22) w^2 a''(w) + wa(w)$

 $\lambda w^2 (g''(w) - t^2 g''(tw)) + w(g'(w) - tg'(tw))$

 $=1-2(1+\lambda(1-t)a_2w+(6(1+2\lambda)(2-t-t^2)-4(1-t^2)(1+\lambda)^2)a_2^2)-3(1+2\lambda)(2-t-t^2)a_3)w^2+.....Thus we have$

 $1 + 2(1 + \lambda)(1 - t)a_2z + \left(3(1 + 2\lambda)(2 - t - t^2)a_3 - 4(1 - t^2)(1 + \lambda)^2a_2^2\right)z^2 + \dots$

$$=1+\frac{\tilde{p}_{1}c_{1}z}{2}+\left\{\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)\tilde{p}_{1}+\frac{c_{1}^{2}}{4}\tilde{p}_{2}\right\}z^{2}+\left\{\frac{1}{2}\left(c_{3}-c_{1}c_{2}+\frac{c_{1}^{2}}{4}\right)\tilde{p}_{1}+\frac{1}{2}c_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)\tilde{p}_{2}+\frac{c_{1}^{3}}{8}\tilde{p}_{3}\right\}z^{3}+\dots$$
(19)

and

$$1 - 2 \Big(1 + \lambda \big(1 - t \big) a_2 w + \Big(\Big(6 \big(1 + 2\lambda \big) \Big(2 - t - t^2 \Big) - 4 \Big(1 - t^2 \Big) \big(1 + \lambda \big)^2 \Big) a_2^2 \Big) - 3 \big(1 + 2\lambda \big) \big(2 - t - t^2 \big) a_3 \Big) w^2 + \dots$$

$$=1+\frac{\tilde{p}_{1}d_{1}w}{2}+\left\{\frac{1}{2}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)\tilde{p}_{1}+\frac{d_{1}^{2}}{4}\tilde{p}_{2}\right\}w^{2}+\left\{\frac{1}{2}\left(d_{3}-d_{1}d_{2}+\frac{d_{1}^{2}}{4}\right)\tilde{p}_{1}+\frac{1}{2}d_{1}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)\tilde{p}_{2}+\frac{d_{1}^{3}}{8}\tilde{p}_{3}\right\}w^{3}+\dots$$
(20)

It follows from (19) and (20) that

$$2(1+\lambda)(1-t)a_2 = \frac{c_1\tau}{2}$$

(21)

$$3(1+2\lambda)(2-t-t^2)a_3-4(1-t^2)(1+\lambda)^2a_2^2=\frac{1}{2}\left(c_2-\frac{c_1^2}{2}\right)\tau+\frac{c_1^2}{4}3\tau^2,$$
(22)

and

$$-2(1+\lambda)(1-t)a_{2} = \frac{d_{1}\tau}{2}$$

$$(2(3(1+2\lambda)(2-t-t^{2})-2(1-t^{2})(1+\lambda)^{2})a_{2}^{2})-3(1+2\lambda)(2-t-t^{2})a_{3}$$

$$=\frac{1}{2}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)\tau + \frac{d_{1}^{2}}{4}3\tau^{2}$$
(24)

From (21) and (23), we have

$$c_1 = -d_1$$

(25)

and

$$8a_2^2 = \frac{\left(c_1^2 + d_1^2\right)\tau^2}{4(1+\lambda)^2(1-t)^2}$$

(26)

Now, by summing (22) and (24), we obtain
$$(6(1+2\lambda)(2-t-t^2)-8(1+\lambda)^2(1-t^2))a_2^2=\frac{1}{2}(c_2+d_2)r-\frac{1}{4}(c_1^2+d_1^2)r+\frac{3}{4}(c_1^2+d_1^2)r^2$$

By putting (26) in (27), we have

$$2(4(1+\lambda)^{2}(1-t)^{2}+(3(1+2\lambda)(2-t-t^{2})-8(1+\lambda)^{2}(2-3t+t^{2}))r)a_{2}^{2}=\frac{1}{2}(c_{2}+d_{2})r^{2}.$$
(28)

Therefore, using Lemma 1.4, we obtain

$$|a_2| \le \frac{|\tau|}{\sqrt{4(1+\lambda)^2(1-t)^2 + (3(1+2\lambda)(2-t-t^2) - 8(1+\lambda)^2(2-3t+t^2))\tau}}$$
(29)

Now, so as to find the bound on $|a_3|$, let's subtract from (22) and (24). So, we find $6(1+2\lambda)(2-t-t^2)a_3-6(1+2\lambda)(2-t-t^2)a_2^2=\frac{1}{2}(c_2-d_2)$

Hence, we get

$$6(1+2\lambda)(2-t-t^2)a_3 \le 2|\tau| + 6(1+2\lambda)(2-t-t^2)a_2^2$$
 (31)

Then, in view of (29), we obtain

$$|a_{3}| \leq \frac{|r|4(1+\lambda)^{2}((1-t)^{2}-2(2-3t+t^{2})r)}{3(1+2\lambda)(2-t-t^{2})^{4}(1+\lambda)^{2}((1-t)^{2}+(3(1+2\lambda)(2-t-t^{2})-8(1+\lambda)^{2}(2-3t+t^{2}))r)}$$
(32)

П

If we can take the parameter $\lambda=0$ in the above theorem, we have the following the initial Taylor coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the function class $KL_{\Sigma,t}(\widetilde{p}(z))$.

Corollary 2.3. Let f given by (1) be in the class $KSL_{\Sigma}(\widetilde{p}(z))$ Then

$$|a_2| \le \frac{|\tau|}{\sqrt{4(1-t)^2 + (3(2-t-t^2) - 8(2-3t+t^2))\tau}}$$
(33)

And

$$|a_3| \le \frac{|\tau|4((1-t)^2 - 2(2-3t+t^2)\tau)}{3(2-t-t^2)(4(1-t)^2 + (3(2-t-t^2)-8(2-3t+t^2))\tau)}$$
(34)

Taking t = 0, we get the following corollary which is obtained by [9].

Corollary 2.4. Let f given by (1) be in the class $KSL_{\Sigma}(\widetilde{p}(z))$. Then

$$\left| a_2 \right| \le \frac{\left| \tau \right|}{\sqrt{4 - 10\tau}} \tag{35}$$

and

$$|a_3| \le \frac{|\tau|(1-4\tau)}{3(2-5\tau)}$$
 (36)

III. FEKETE- SZEGO INEQUALITIES FOR THE FUNCTION $SLM_{\lambda,t,\Sigma} \big(\widetilde{p}(z) \big)$

Fekete and Szego [6] introduced the generalized functional $\left|a_3-\mu a_2^2\right|$, where μ is some real number. Due to Zaprawa [15], in the following theorem we determine the Fekete – Szego functional for $f\in SLM_{\lambda,t,\Sigma}\left(\widetilde{p}(z)\right)$.

Theorem 3.1. let f given by (1) be in the class $SLM_{\lambda,t,\Sigma}(\widetilde{p}(z))$ and $\mu \in \Re$. Then we have

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases} \frac{\left|\tau\right|}{3\left(1+2\lambda\right)\left(2-t-t^{2}\right)}, \left|\mu-1\right| \leq \frac{A_{1}}{A_{2}}\\ \frac{4\left(1-\mu\right)\tau^{2}}{2A_{1}}, \left|\mu-1\right| \geq \frac{A_{1}}{A_{2}} \end{cases}$$

Where

$$A_{1} = 8(1+\lambda)^{2}(1-t)^{2} + (6(1+2\lambda)(2-t-t^{2}) - 16(1+\lambda)^{2}(2-3t+t^{2}))t$$

and

$$A_2 = 6(1+2\lambda)(2-t-t^2)\tau$$

Proof . From (28) and (30) the following equation is obtained

$$a_{3} - \mu u_{2}^{2} = (1 - \mu) \frac{(c_{2} + d_{2})r^{2}}{2[8(1 + \lambda)^{2}(1 - t)^{2} + [6(1 + 2\lambda)(2 - t - t^{2}) - 16(1 + \lambda)^{2}(2 - 3t + t^{2})]r]} + \frac{(c_{2} - d_{2})r}{12(1 + 2\lambda)(2 - t - t^{2})}$$

$$= \left(\frac{(1 - \mu)r^{2}}{2[8(1 + \lambda)^{2}(1 - t)^{2} + [6(1 + 2\lambda)(2 - t - t^{2}) - 16(1 + \lambda)^{2}(2 - 3t + t^{2})]r}\right) + \frac{r}{12(1 + 2\lambda)(2 - t - t^{2})}c_{2}$$

$$+ \left(\frac{(1 - \mu)r^{2}}{2[8(1 + \lambda)^{2}(1 - t)^{2} + [6(1 + 2\lambda)(2 - t - t^{2}) - 16(1 + \lambda)^{2}(2 - 3t + t^{2})]r}\right) - \frac{r}{12(1 + 2\lambda)(2 - t - t^{2})}d_{2}$$
(37)

Therefore

$$a_{3} - \mu a_{2}^{2} = \left(h(\mu) + \frac{\tau}{12(1+2\lambda)(2-t-t^{2})}\right)c_{2} + \left(h(\mu) - \frac{\tau}{12(1+2\lambda)(2-t-t^{2})}\right)d_{2}$$
(38)

where

$$h(\mu) = \frac{(1-\mu)\tau^2}{2(8(1+\lambda)^2(1-t)^2 + (6(1+2\lambda)(2-t-t^2)-16(1+\lambda)^2(2-3t+t^2))\tau)}$$
(39)

Then, by taking modulus of (38), we conclude that

International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8, Issue-10S, August 2019

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{|\tau|}{3(1+2\lambda)(2-t-t^2)}, 0 \le \frac{|\tau|}{12(1+2\lambda)(2-t-t^2)} \\ 4|h(\mu)|, |h(\mu)| \ge \frac{|\tau|}{12(1+2\lambda)(2-t-t^2)} \end{cases}$$

Taking $\mu = 1$, the following corollary is obtained.

Corollary 3.2. If $f \in SLM_{\lambda,t,\Sigma}(\widetilde{p}(z))$, then

$$\left|a_3 - a_2^2\right| \le \frac{|\tau|}{3(1+2\lambda)(2-t-t^2)}$$
 (40)

If we take the parameter $\lambda=0$ in the above theorem, we have the following the Fekete – Szego inequality for the function class $KSL_{\Sigma}(\widetilde{p}(z))$.

Corollary 3.3. Let f given by (1) be in the class $KSL_{\Sigma}(\widetilde{p}(z))_{\mathrm{and}} \mu \in \Re$

Then we have

$$\left|a_3-\mu a_2^2\right| \leq \frac{\frac{|r|}{3(2-t-r^2)}, \left|\mu-1\right| \leq \frac{8(1-t)^2+\left(6(2-t-r^2)-16(2-3t+r^2)\right)tr}{6(2-t-r^2)|r|}}{\frac{4(1-\mu)r^2}{2(8(1-t)^2+\left(6(2-t-r^2)-16(2-3t+r^2)\right)tr}, \left|\mu-1\right| \geq \frac{8(1-t)^2+\left(6(2-t-r^2)-16(2-3t+r^2)\right)tr}{6(2-t-r^2)|r|}}$$

Taking t = 0 we get the following corollary which is obtained by [9].

Corollary 3.4. Let f given by (1) be in the class $KSL_{\Sigma}(\widetilde{p}(z))$ and $\mu \in \Re$. Then we have

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases} \frac{\left|\tau\right|}{6}, \left|\mu-1\right| \leq \frac{2-5\tau}{3\left|\tau\right|} \\ \frac{\left(1-\mu\right)\tau^{2}}{2\left(2-5\tau\right)}, \left|\mu-1\right| \geq \frac{2-5\tau}{3\left|\tau\right|} \end{cases}$$

IV. CONCLUSION

It is attempted to introduce and investigate new subclasses of Sakaguchi kind of functions related to shell – likes curves connected with Fibonacci numbers. Furthermore, the estimates of first two coefficients of functions in these classes are obtained. Fekete – Szego inequalities for these function classes are also determined.

REFERENCES

- D.A. Brannan, J. Clunie and W.E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math., 22 (1970), 476–485.
- D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Stud. Univ. Babes-Bolyai Math., 31(2) (1986), 70–77.
- P.L. Duren, Univalent Functions. In: Grundlehren der Mathematisheen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, 1983.
- J. Dziok, R.K. Raina and J. Sokol, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comp. Math. Appl., 61 (2011), 2605–2613.
- 5. J. Dziok, R.K. Raina and J. Sokol, On α -convex functions related to a shell-like curve connected with Fibonacci numbers, Appl. Math. Comp., 218 (2011), 996–1002.
- M. Fekete and G. Szego, Eine Bemerkung uber ungerade schlichte Functionen, J. London Math. Soc., 8 (1933), 85–89.
- S.S. Miller and P.T. Mocanu, Differential Subordinations Theory and Applications, Series of Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York (2000).

- M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68.
- H. Ozlem Guney, G. Murusundaramoorth and J. Sokol, Subclasses of biunivalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae mathematica, 10(1) (2018), 70–84.
- Ch. Pommerenke, Univalent functions, Math. Math, Lehrbucher, Vandenheock and Ruprecht, Gottingen, (1975).
- R.K. Raina and J. Sokol, Fekete-Szego problem for some starlike functions related to shell-like curves, Math. Slovaca, 66 (2016), 135–140.
- J. Sokol, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, 175 (1999), 111–116.
- H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10) (2010), 1188–1192. Q.-H. Xu, Y.-C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990–994.
- X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, International Mathematical Forum, 7(30) (2012), 1495–1504.
- P. Zaprawa, On the Fekete-Szego problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21(1) (2014), 169–178.

AUTHORS PROFILE

P.Lokesh Research Scholar, Department of Mathematics, Bharathiar University.

B.Srutha keerthi Mathematics Division, School of Advanced Sciences, VIT University Chennai Campus, Vandallur kellambakkam Road, Chennai – 600127, India

