
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-10S, August 2019

385

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number:J107108810S19//2019©BEIESP

DOI: 10.35940/ijitee.J1071.08810S19



Abstract: This paper presents two new conceptual relationships

between classes of software development known as dependency

and association. The design between the two relationships could

be interchangeable because it always takes place in real-life

situations — for instance, the relationship from friends to

husband-wife and vice versa. However, in terms of coding, the

most important factor is system performance. That means the

designer could write the code as dependency or association to

provide the same result. To improve the efficiency of the program,

the researcher writes the code in the C++ language to execute four

types of variables named messages, strings, calculation, and

sorting. The four types of the variable used to test the

performance of aggregation, composition, dependency, and

functional programming, the timestamp was used to measure the

execution time before and after for each case 50 times. The F-test

statistic was used to compare the mean difference of each type of

variable. The researcher found that for the Message variable. The

functional programming is the fastest, followed by aggregation,

composition, and dependency, the average C.P.U. time are

13566.60, 17891.70, 18532.66 and 19336.76, at 0.0 level of

significance. For the String variable found that functional

programming is the fastest followed by dependency, composition,

and aggregation, the average C.P.U. time are 23785.88, 27449.76,

28478.24 and 28788.18, at 0.0 level of significance. For

calculation found that functional programming is the fastest,

followed by aggregation, composition, and dependency, the

average C.P.U. time are 26982.68, 29311.86, 29377.50 and

29397.30, at 0.0 level of significance. For sorting found that

functional programming is the fastest, followed by aggregation,

composition, and dependency, the average C.P.U. time are

17925.20, 18408.36, 21641.68 and 22861.14, at 0.0 level of

significance.

Index Terms: Association, Dependency, Composition,

Aggregation, Relationship Between Class

I. INTRODUCTION

 In the real-world relationship between dependency and

association, are interchangeable. The software developer

could write the code in both dependency and association

styles and come up with the same results, except for the fact

that the execution time is still in question. Which method of

code-writing will be the fastest? Therefore, intelligent

software should know how to react accordingly when

real-world situations change. It should provide the best

practices for software performance. Software developers

follow design concepts like a blueprint and rarely consider the

best way to write the code. Therefore, designers should be

aware of when to use dependency and association.

Revised Manuscript Received on July 20, 2019.

Ngamsantivong Thavatchai, Faculty of Applied Science, King

Mongkut’s University of Technology North Bangkok, Thailand

Ratanavilisagul Chiabwoot, Faculty of Applied Science, King

Mongkut’s University of Technology North Bangkok Department, Thailand.

II. RELATED LITERATURE

A. UML

 Unified Modeling Language (UML) is the language of

identifying, specifying, and documenting system and software

artifacts. Therefore, the class diagram and relationships are

the main focus of this study.

B. Dependency

 Webster’s Dictionary defines dependency as something

dependent on something else. In UML, dependence

represents a relationship between a client and a supplier. In

which a change in the specifications of the supplier may affect

the client. It represents a line of dashes (----), and the arrow

provides the direction. For instance, if A is dependent on B

(A--- > B) and then if B changes, A has to change too.

In UML, Class A is dependent on Class B, as represented in

Fig. I.

 Fig. 1: Dependency relationship

C. Association

Associations represent structural relationships between

objects of different classes or information that must preserve

for some duration of time. It is not only characterized by

procedural dependency relationships. It represents a line (

), and the arrow indicates the direction.

 Fig. 2: Association relationship

One object has a permanent association with another object.

There are two categories of associations; aggregation and

composition. An aggregation is a stronger form of a

relationship, in which a relationship exists between itself and

its parts. The aggregate has an aggregation association with its

constituent parts. A hollow diamond was attached to the end

of an association path on the side of the aggregate (the whole

) to indicate aggregation. A composition is a form of

aggregation with strong ownership and coincident lifetimes

on the part of the aggregate. When the whole is removed, the

part is also removed. The part may be removed (by the whole)

before the whole is removed. A solid filled diamond ()

was attached to the end of an association path (on the “whole

side”) to indicate composition.

Transformation of Dependency and Association

in UML Design Class

Ngamsantivong Thavatchai, Ratanavilisagul Chiabwoot

Transformation of Dependency and Association in UML Design Class

386

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:J107108810S19//2019©BEIESP

DOI: 10.35940/ijitee.J1071.08810S19

D. Interchangeable relationships in real-world

situations

As previously mentioned, in real-world situations,

connections can be interchangeable. For instance, A and B,

have a friendly relationship. After a while, A and B develop a

husband-wife relationship, as shown in Fig 3.

 Fig. 3: Interchangeable relationship

E. Composition and Aggregation in Coding

In Object-Oriented Analysis and Design, an association

relationship consists of composition and aggregation. The

composition is a strong type of relationship. For instance, A

composed of B, which means that A could not exist if B did

not exist. In coding language, it is as follows:

 Class A {

 A () ;

 B _ref = new B ();

 …

 }

In terms of aggregation, this relationship is not strong.

Therefore Class A could exist even though Class B does not

exist. The code should be: -

 Class A {

 A () ;

 B _ref ;

 }

F. Analysis of Variance

The ANOVA or Analysis of Variance is a statistical tool

used to identify the mean and the differences between three or

more sample groups. The ANOVA computed by using the

formula below.

 Mean Square Between / Mean Square Within or

III. CASE STUDY

This research created four situations and the execution of

each relationship; the first sent the message, the second

showed the string, the third calculation, and the last was

sorting. An example of the output of execution illustrated in

Fig 4.

A. Dependency class diagram

 The researcher created three classes; Basic, Dependency,

and Code. The basic class is the main class and includes

strings, messages, sorting, and calculation. The Dependency

 Fig. 4: Execution output

class demonstrated the relationship between Basic and

Dependency. The Coding class was used to perform the

execution of the program.

 Fig. 5: Dependency class diagram

B. Aggregation class diagram

 The result is similar to that found in Fig. 5. There were

three classes created for the purpose of this research, known

as Basic, Aggregation, and Code. The function and Code

classes executed the same tasks as the participants in Fig. 5.

The only change was the Aggregation class, which showed the

relationship between the Aggregation class and functional

programming.

 Fig. 6: Aggregation class diagram

C. Composition class diagram

 In the previous example, the researcher replaced the

Aggregation class with the Composition class. It changed the

relationships in the Composition class while the rest remained

the same.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-10S, August 2019

387

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number:J107108810S19//2019©BEIESP

DOI: 10.35940/ijitee.J1071.08810S19

 Fig. 7: Composition class diagram

D. Normal class diagram (Functional Program)

 In the last case, the researcher moved all of the

functionality in terms of dependency, aggregation, and

composition into the main function and created none

objected-oriented programming.

 Fig. 8: None objected oriented programming

IV. RESEARCH FINDINGS

From the executable program, the timestamps recorded the

execution before and after of each variable type in all cases.

A. Message execution time

 The computation of the messages indicated a relationship

between the Aggregation, Composition, Dependency, and

functional show in Table 1.

 Table 1: Message execution time

The results revealed that Aggregation was the fastest class

(17891.70), followed by Composition (18532.66) and

Dependency (19.336.76). The functional program did not

include because it was not relevant in terms of computation.

In real-life situations, developers could not write all of the

code, only in the main function.

B. String execution time

 Concerning string execution times, the results

demonstrated that Dependency was the fastest (27449.76),

followed by Composition (28478.24) and Aggregation

(28788.19). The dependency relationship was the fastest,

perhaps because the other two relationships took time to

create the object.

 Table 2: String execution time

C. Calculation execution time

 Aggregation (29311.86) was the fastest class in terms of

calculation, followed by Composition (29377.50), and

finally, Dependency (29397.30). The results are shown

below, as follows.

 Table 3: Calculation execution time

D. Sort execution time

 In terms of sorting, the aggregation (18408.36) relationship

was the fastest way to execute, followed by composition

(21641.68) and dependency (22861.14). The results show in

Table 4.

 Table 4: Sorting execution time

V. CONCLUSION

An Analysis of Variance was employed to compare the

average calculation times. The results are shown below, as

follows:

 Table 5: ANOVA of Aggregation, Composition, and

Dependency

Table 5 indicates a significant difference regarding the

average execution times of messages toward aggregation,

composition, and dependency. The more effective way to

design the system to execute messages is the use of aggregate,

composition, and dependency.

There were significant differences between the average

string execution time of concerning aggregation,

composition, and dependency. Therefore, the designer should

use dependency, composition, and aggregation.

Transformation of Dependency and Association in UML Design Class

388

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:J107108810S19//2019©BEIESP

DOI: 10.35940/ijitee.J1071.08810S19

There are significant differences in the average execution

time of calculation concerning aggregation, composition, and

dependency. The best way to design the system to execute

calculation was also to utilize aggregation, composition, and

dependency.

There were also significant differences in terms of the

average execution time of sorting toward aggregation,

composition, and dependency. The best way to design the

system to execute calculation was to employ aggregation,

composition, and dependency.

Therefore, functional programming was the fastest but not

relevant for this study. The designers and developers should

not just consider real-life situations but also the fastest way to

develop computer systems.

ACKNOWLEDGMENT

This work was supported financially by King Mongkut’s

University of Technology, North Bangkok, Grant Number:

KMUTNB-61-GOV-A-08.

The researchers are thankful to the anonymous referees for

their valuable suggestions.

REFERENCES

1. Craig Larman, “Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and Iterative Development,” 3rd

Edition Pearson Education, 2005.

2. Hans-Erik Eriksson Others, “UML 2 Toolkit,” OMG Press Advisory

Board xix 2003.

3. Scott W. Ambler,”The Elements of UML(TM) 2.0,” Style Cambridege

University Press 2005.

4. Scott “W. Amber, “The Object Primer 3rd Edition: Agile Model Driven

Development with UML 2,” CambCambridge University Press, 2004.

5. Association vs. Dependency vs. Aggregation vs. Composition

https://nirajrules.wordpress.com/2011/07/15/association-vs-dependen

cy-vs-aggregation-vs-composition/

6. DependencyAndAssociation

https://martinfowler.com/bliki/DependencyAndAssociation.html

7. Difference between association and dependency?

https://stackoverflow.com/questions/1230889/difference-between-ass

ociation-and-dependency

8. Relationship types

https://www.ibm.com/support/knowledgecenter/SS5JSH_9.1.1/com.i

bm.xtools.modeler.doc/topics/rreltyp.html

9. What is the difference between dependency and association in UML

https://www.quora.com/Whats-the-difference-between-Dependency-

Association-Aggregation-and-Composition-In-Class-Diagrams-in-U

ML

AUTHORS PROFILE

Assoc. Prof. Ngamsantivong Thavatchai received a

BA. in Teaching Mathematics from Chulalongkorn

University, Thailand and a Master’s Degree in

Educational Technology from Technological University

of the Philippines. During newly graduated was sent

trained on computerized information systems in many countries such as

West-Germany, Italy, Japan, and Australia. The author of many textbooks

in Thai such as UML, OOP, SPSS. At present research on IoT, Fuzzy logic,

and software engineering.

Dr. Rantanavilisagul Chaibwoot received a Ph.D. in

Electrical Engineering from King mongkut’s institute of

technology ladkrabang. I research in field Artificial

Intelligence, Natural language processing, Machine

learning, Searching Technique, Web Programming, Computer Network,

Multimedia, Animation, and the author of “Optimization and Searching

Algorithm”.

