Mapping of Quality Standards

Hind Dahar, Ounsa Roudies

Abstract: Quality insurance creates a leverage effect in the global market competition, in particular for software development processes. Thus, companies are brought to use several standards and benchmarks of good practices in management and control of information systems. However, implementing several standards within the same company is difficult and time consuming. In this paper, we propose a Model Driven Engineering approach of building a common repository. It is focused on the common metamodel building. The transformation rules are formalized and illustrated by CMMI model.

Keywords: About four key words or phrases in alphabetical order, separated by commas.

I. INTRODUCTION

The competition into the global market is based on quality development. This requires companies to use standards and benchmarks of good practices in management and control of information systems. Several standards cover the main activities of IT (information technology) systems such as ISO 9001[1], CMMI [2] and ITIL[3]. Each one has its own strengths but can’t satisfy the collection of IT system requirements independently of others [4]. For example, ITIL ensures the post-production quality, while CMMI improves the maturity level of company’s processes.

The problem remains in the implementation of several standards within the same company. Several authors believe that this issue is due to heterogeneity of standards that is manifested in their entities and their processes structures [1] [2] [3] [4]. It can also appear in terms of their terminology, size or complexity level [5]. For instance, heterogeneity prevents organizations from interpreting the components of several standards [1] [2] [3] [4]. To solve this problem, they aim to build combinations of best practices, in order to assist quality experts in improving, and optimizing their efforts. However, these combinations can lead to deconstruct models to meet business needs, which makes it difficult to work in multi-model environments [5] [6].

Trying to remedy the inefficiency of the simultaneous use of several standards, we propose a solution focusing on the Mapping of quality standard approach. It is bolstered by Model Driven Engineering (MDE). It aims to align several standards in order to facilitate their integration and to minimize efforts related to their simultaneous usage in the IT field. Furthermore, as appeared in figure 1, the methodology comprises of two phases: Initialization and Use.

Fig. 1. Phases of the mapping approach

To illustrate our model and show its feasibility, we write the rules transformation from CMMI to the common repository by ATL language. Then, we visualize some instances of the CMMI model and the result of these instances in the common repository.

The rest of the paper is organized as follows. The second section describes the building process of a common repository and its theoretical foundation. The third section focuses on the result of the building method. As an experiment, we present in the fourth section the transformation rules from CMMI to our common repository. We finally conclude the paper and share the future works we plan to carry on.

II. BACKGROUND

Our approach focuses on two totally different areas, namely quality standards and the MDE approach. Therefore, before going into the details of our proposal, in this section, we present the necessary background. First, we introduce some quality standards, namely ISO 9001, CMMI and ITIL. Next, we introduce the Model driven engineering approach and describe its main properties used in our approach, namely, meta-models, transformations, and Atlas transformation language.

A. Quality standards

In this overview, we selected three popular quality standards: ISO 9001, CMMI, and ITIL.

ISO 9001 norm comprises a minimum of specific requirements that aim at showing the skills of an organization. These requirements ensure the conformity of the product to the requirements of customers, laws and regulations. The current version considered dates from 2015 [7].

CMMI is created by the Software Engineering Institute.
(SEI) at Carnegie Mellon University and adopted by the DOD and several American institutions, it has established itself as a standard in the IT field. CMMI identifies three areas of interest, which are CMMI for Development (CMMI-DEV); CMMI for Services (CMMI-SVC) that is dedicated to services management and CMMI for acquisition (CMMI-ACQ). We are interested in CMMI-DEV, that was adopted in 2014. CMMI is a model consisting of a set of best practices that play the role of a guideline for the improvement as well as the assessment of the maturity process within a company [10] [11].

ITIL was created following a call for projects from the UK Ministry of Commerce and established itself as a standard for the delivery of services. ITIL, Information Technology Infrastructure Library, is an efficient methodology in conveying excellent IT. It is a reference of best practices in the quality management of information systems, it possesses an IT infrastructure orientation that focuses on IT production [4]. In this paper, the version 3 of ITIL released in 2013 is considered [12].

B. MDE

MDE (Model Driven Engineering) is a famous approach to deal with the complexity of platforms and the incapability of third generation languages to reduce this complexity and express the domain concepts effectively. MDE technologies combine DSLM (Domain-specific modeling languages) and transformation engines [12].

Meta-models define the relationships among domain concepts and precisely specify the key semantics and constraints associated with these domain concepts.

A model transformation, in model-driven engineering, is a robotized method for altering and creating models[13].

III. PIVOT MM BUILDING METHOD

Our idea is to analyze existing standard structures and concepts in order to build a common repository. It is a type of horizontal mapping of quality standards. It allows transforming the structures of standards into a unified target structure.

We assume that the analysis of leaders quality standards is sufficient to propose a general structure of quality standards, the construction of the common repository went through four stages summarized in Fig2.

1st Step: Selection of quality standards leaders
2nd Step: Designing a meta model of each leader
3rd Step: Analysis of common classes of leaders meta model
 1. Extraction of common quality concepts
4th Step: Design a common repository

In the first step, we select the quality standards leaders. The first criterion is popularity and use in IT companies. Among them, we select those that are most representative of their category in order to be able to deduce a solid structure from the quality repository that can manage different types of quality standards.

The second step aims to analyze each leader in order to highlight their main concepts and capture them thus a metamodel.

Finally, the analysis of the three leaders makes it possible to extract the common concept and to establish the mapping between the leaders meta-models. It benefits from the juxtaposition of standards to build a rigid repository. It also identifies concepts that are structurally different but play the same role of quality control regarding the company, i.e. that have shared intentions to solve the problem of heterogeneity generated by their co-deployment. Subsequently, we unify similar concepts and common structures in a common repository. According to MDE, this repository is described by a unified Meta-model that takes into account all the concepts and attributes and keeps all the information related to the standards.

IV. BUILDING THE PIVOT MET

A. Step 1

A literature review led us to identify the following list of the most popular quality standards in use in IT field. Based on the analysis, we select the three most representative standards: ISO 9000, CMMI and ITIL. These three quality standards cover different activity sectors. Unlike ISO 9001, which concerns organizational processes in general, ITIL and CMMI are dedicated to information technology. These standards highlight the different aspects related to challenges faced by existing approaches, namely, heterogeneity, redundancy, etc.

B. Step 2

In this section, we describe the metamodels we propose to model the three standards CMMI, ISO 9001 and ITIL. ISO 9001: Fig. (3), presents the ISO 9001 meta-model. Its components are organized in articles. We distinguish two types of articles, elementary articles and compound articles. An elementary article contains a list of requirements. Whilst, compound articles are subdivided into several articles. Articles are identified by an identifier (idArticle) and a label (label-Article). A requirement characterizes a need to be satisfied in order to obtain ISO 9001 certification. It is identified by an identifier (idRequirement), a label (labelRequirement) that contains the requirement text, and a requirement validity (validityR) which determines whether the requirement is valid or not.

Fig. 2. Method of building pivot model
Fig. 3. ISO 9001 metamodel

Fig. (4). illustrates the CMMI meta-model. CMMI is composed of five maturity levels, each one is identified by an identifier (idM) that presents the number of the maturity level, and a label (labelM) that contains its name. It presents a set of process areas that are identified by an identifier (idProcess) containing their name abbreviation, and a label (labelProcess) that is the name of the process area. Let us notice that these treatment areas are limited for those specific to the maturity level in question. For example, we will not add the process area corresponding to level 2 to maturity. Process area is associated with goals to be achieved. We distinguish two types of goals. Generic goals belong to all process areas of one level while specific goals are associated to one specific process area. Goals are identified by an identifier (idGoal), a label (labelGoal) that is the goal text and a goal type (type) that specifies if the goal is specific or generic. The generic and specific goals are associated respectively with generic practices and specific practices that are identified by an identifier (idPractice), a label (labelPractice) that contains the practice, and a type (typeP) that it’s depending on the goal type (type).

C. Step 3

This step is supported by the analysis of the meta model of the three selected leaders. It helps to extract common quality concepts and establish the mapping between them, as shown in Table 1.

Table- 1: Mapping of concepts of the three leaders

<table>
<thead>
<tr>
<th>ISO 9001</th>
<th>CMMI</th>
<th>ITIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound article</td>
<td>Maturity level</td>
<td>Life Cycle Phase</td>
</tr>
<tr>
<td>Elementary article</td>
<td>Process area</td>
<td></td>
</tr>
<tr>
<td>Requirement</td>
<td>Goal</td>
<td>ITIL process</td>
</tr>
<tr>
<td>Practice</td>
<td>Practice</td>
<td>Activity</td>
</tr>
</tbody>
</table>

The table is composed of three columns, each with a leader standard to note ISO 9001, CMMI and ITIL. The lines contain the classes of leaders who present the same concept. For example, at line 3, the concept of requirement of ISO 9001 is similar to the role of the practice in CMMI and activity in ITIL. The article concept of ISO9001 has no correspondence at the level of genericity.
D. Step 4

![Fig. 6. Common repository metamodel]

Fig. (6). presents the Meta model of this repository. The common repository consists of class Standard identified by the abbreviation (idS) and the name presented as the label of the class (labelS), and the standard validity (validityS). Each standard is composed by a set of rubrics. It enables to subdivide the standard into several domains or specialties. It is defined by an identifier (idRubric) and a label (labelRubric). The type of the rubric (typeRubric) changes from one standard to another. For example "article" for ISO 9001, "PA" (process area) for CMMI and life cycle for ITIL. In addition, Requirements express the need to be satisfied, in order to obtain certification of a standard. It is identified by an identifier (idRequirementR), a label (labelRequirementR) and a validity (validityRR).

V. TRANSFORMATIONS RULES

A. Transformation process

Fig. (7). presents the transformation process. The mapping between two quality standards is performed thru the mapping of each standard with the common repository. Let us consider a new standard. The preliminary step is to build its meta model. Then, according to MDE, we need to write transformation rules: from standard meta-model to repository meta-model.

![Fig. 7. Transformation process]

B. Case study: CMMI

The validation of the common repository is carried out by the transformation from CMMI to a common repository.

Table II presents the transformation rules established from the CMMI to the common repository. The first column of the table presents the source meta-model classes, which is CMMI meta-model. The second column presents the target classes of the common repository meta-model. Each box in this column contains the class of the common repository model that corresponds to the CMMI class of the same line. For example, the Practice class is transformed to the Requirement class. The third column contains the correspondence between the source classes attributes and target classes attributes, for example, the identifier of the Requirement class (idRequirementR) takes the value of the identifier of the Practice class (idPractice), its label (labelRequirementR) takes the value of the practice class label (labelPractice).

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>id-s := CMMI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>label-s := Capability maturity model integration validity-s :</td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>id-r: id-g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>label-r : label-g type-r : type-g</td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>id-rp: id-p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>label-rp : label-p type-rp : type-p</td>
<td></td>
</tr>
</tbody>
</table>

The figure 8 visualizes the transformation rules that must be established between the two meta-models CMMI and Common repository.
C. Experiments

In order to experiment this transformation, we choose an instantiation of the CMMI level 4. It contains two area processes: Organizational Process Performance (OPP) and Quantitative Project Management (QPM).

Table-III: Level 4 of CMMI

<table>
<thead>
<tr>
<th>Process area</th>
<th>Goal</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPP</td>
<td>- SP 1.1 Establish Quality and Process Performance Objectives</td>
<td>- SP 1.2 Select Processes</td>
</tr>
<tr>
<td></td>
<td>- SP 1.3 Establish Process Performance Measures</td>
<td>- SP 1.4 Analyze Process Performance and Establish Process Performance Baselines</td>
</tr>
<tr>
<td></td>
<td>- SP 1.5 Establish Process Performance Models</td>
<td></td>
</tr>
<tr>
<td>QPM</td>
<td>- SP 1.1 Establish the Project’s Objectives</td>
<td>- SP 1.2 Compose the Defined Processes</td>
</tr>
<tr>
<td></td>
<td>- SP 1.3 Select Subprocesses and Attributes</td>
<td>- SP 1.4 Select Measures and Analytic Technique</td>
</tr>
<tr>
<td></td>
<td>- SP 2.1 Monitor the Performance of Selected Subprocesses</td>
<td>- SP 2.2 Manage Project Performance</td>
</tr>
<tr>
<td></td>
<td>- SP 2.3 Perform Root Cause Analysis</td>
<td></td>
</tr>
</tbody>
</table>

We have created a transformation module via ATL. It (ATLAS Transformation Language) is a model change language. It was started in the field of Model-Driven Engineering (MDE), ATL gives approaches to create a set of objective models from a set of source models [9].

Figure 10 presents the transformation modules of the CMMI model to the common repository. The module is named CmmiToRepository, the input of the module presents the CMMI model and the output described the result of the transformation of the CMMI model. The module contains three transformation rules: standards, requirement and rubric. Each of the rules allows to instantiate a class of the output model from the CMMI model. It determines the class source and the corresponding attributes.

```java
module CmmiToRepository;
create OUT : MM from IN : MM;

rule standard{
  from i2 : M1ProcessArea
to 02 : MM1Standard{
    idS = 'CMMI',
    labels <- 'Capability Maturity Model Integration',
    rubrics <- MM1Goal.allInstancesFrom('IN')
  }
}

rule rubric{
  from I : MM1Goal
to 0 : MM1Rubric{
    idRubric <- I.idGoal,
    labelRubric <- I.labelGoal,
    requirement8 <- I.requirements,
    typeRubric <- I.type
  }
}

rule requirement{
  from II : MM1Practice
to 01 : MM1Requirement{
    idRequirement <- II.idPractice,
    labelRequirement <- II.labelRequirement,
    validityR <- II.validityP
  }
}
```

Fig. 9. Transformation rules
The result is shown in Figure 10 and Table IV, it shows the output of the transformation. The content of the CMMI model is presented under the structure of the common repository.

![Fig. 10. repositoryTransformation result](image)

Table IV: Transformation result

<table>
<thead>
<tr>
<th>Standard</th>
<th>Rubric</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPP. SG 1 Establish Quality and Process Performance Objectives</td>
<td>OPP. SP 1.1</td>
<td>- Establish quality and process performance objectives</td>
</tr>
<tr>
<td>OPP. SG 1 Establish Process Performance Measures</td>
<td>OPP. SP 1.3</td>
<td>- Establish Process Performance Measures</td>
</tr>
<tr>
<td>OPP. SG 1 Analyze Process Performance Baseline</td>
<td>OPP. SP 1.4</td>
<td>- Analyze Process Performance Baseline</td>
</tr>
<tr>
<td>OPP. SG 1 Establish Process Performance Models</td>
<td>OPP. SP 1.5</td>
<td>- Establish Process Performance Models</td>
</tr>
<tr>
<td>QPM. SG 1 Composes the Defined Processes</td>
<td>QPM. SP 1.2</td>
<td>- Composes the defined processes</td>
</tr>
<tr>
<td>QPM. SG 1 Select Sub-processes and Attributes</td>
<td>QPM. SP 1.3</td>
<td>- Select Sub-processes and Attributes</td>
</tr>
<tr>
<td>QPM. SG 1 Select Measurements and Analytical Techniques</td>
<td>QPM. SP 1.4</td>
<td>- Select measurements and analytical techniques</td>
</tr>
<tr>
<td>QPM. SG 1 Manage project performance</td>
<td>QPM. SP 2.2</td>
<td>- Manage project performance</td>
</tr>
<tr>
<td>QPM. SG 2 Performance Models</td>
<td>QPM. SP 2.1</td>
<td>- Perform the performance of selected sub-processes</td>
</tr>
<tr>
<td>QPM. SG 2 Perform Root Cause Analysis</td>
<td>QPM. SP 2.3</td>
<td>- Perform Root Cause Analysis</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

The research discussed in this paper, related to solving the problem of heterogeneity and inconsistency of quality standards, is based on an MDE approach. A common repository meta-model is built based on the mapping of a set of popular standards. It plays the role of mediator between two quality standards. This allows the agile alignment of multiple Quality standards. Introducing a new standard implies building its meta-model, and writing the transformation between model and the common repository one. The method offers flexibility and ease of use to analysts and modellers to adapt and contextualize quality standard models based on each other’s data. In addition, the use of several standards for the modeling of the common repository model allows to remain compliant with the majority of the best practices used in information systems engineering.

REFERENCES

Title of the Paper

AUTHORS PROFILE

Hind Dahar graduated as an engineer in information technology from the National Institute of Statistics and Applied Economics in Rabat, Morocco. She has worked as a quality engineer in several multinational organizations. She is currently preparing her PhD in software quality at the Mohammedia School of Engineering in Rabat, Morocco. Her area of interest is alignment of quality standards.

Ounsa Roudies is full Professor since 1990 at the Computer science Department of Mohammedia School of Engineering (EMI), Mohammed V University in Rabat, Morocco. Prof. Roudies is head of Siweb research team (Information System and Web). In particular, Prof. Roudies is interested by Reuse and requirements engineering issues. She is chief-editor of e-TI, the electronic Journal of Information Technology (www.revue-eti.net). Besides, she was head of Computer Engineering Department at EMI, and then she was in charge of Software engineering degree and doctoral degree (DESA and UFR DSA-TAL LN). Senes Garcia received her PhD in Accounting at the University of Granada. She is a Lecturer at the Department of Accounting and Finance, University of Granada. Her research interests are related to cultural, institutional and historic accounting and in environmental accounting. She has published research papers at national and international journals, conference proceedings as well as chapters of books.