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On The Metric Index of Oxide Networks

R. Nithya Raj, F. Simon Raj

Abstract : Let w;be a vertex of a connected simple graph Gand
(v4,v2) be a pair of vertices in G. letd(v4,v;) be the distance
between v; and v, A vertex w;is said to resolve v; and v, if
d(w;,vy) #d(w;,v,). A set of vertices W of G is called a
settling set of Gif every pair of vertices (vi, v]-) resolved by atleast
one vertices w; € W. A settling set of G with least cardinality is
called metric premise of G. The cardinality of metric premise is
called metric index of G. In this paper metric index of oxide
network is investigated.

Catchphrases: Metric premise ,Metric index ,Oxide network,
Interconnection Network.

l. INTRODUCTION

The metric indexof a graph was first investigated by Harry
and Melter [1] They acclimated properties of the metric
dimension of trees. Melter and Tomescu [2] studied the
metric index problems for grid graphs, khuller et.al
comprehensive melter and Tomescu’s Results. They have
exhibited the metric index of dimensional d of a network
graph is d [3]. The metric index of bipartite graph is an NP
complete [4].Slater][ 5] and later [6] contributed another
name for metric premise as settling set. Slater baptized the
quantity of component in a settling set of the graph as land
mark of the graph. He clarify the utilization of metric
premise in loran and Sonar station Instated of metric
premise Chartand et.al used the word of least settling
[7].The metric index problem investigated for leaves and
net graph [3], Petersen graph [8], Honeycomb Network
,Hexagonal system [9],Circullent and Harry graphs[10],
Enhanced Hyper solid shapes [11],Silicate stars
[12],Triangular oxide network [13 ],stat of david networks
[14], In 2014Dachang Xu [15] et.al given the conclusion the
metric dimension of Hex Derived Network is either 3 or 4.
In 2019 Zehui shao [16] et.al verified the metric index of
Hex derived network is 4 by using vector coloring
scheme.Themetric dimension have many other applications
such as robot route ,design acknowledgement [3].Network
revolution and check [17]. In this section, we elucidate
about the oxide network. This Oxide network drawn from
removing all silicon nodes from the silicate network of
dimension w. In polymer and pharmaceutical industries are
running by using the application of oxide network[18]. | The
number of vertices and edges in a oxide networks of
dimension w is9w? + 3w and 18w? respectively [13,19].
and other specification of this oxide network having vertices
of degree 2 and 4 only. By using this X Y and Z channel
coordinate system any vertex (x;,y;,zxy in the Oxide
network satisfies the condition y; = x; + z.

Oxide Network :
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Figure 1: Oxide Network of Dimension 5

Proposed methodology.

In this paper we use graph coordinate system to prove the
main result.

The distance between any two nodes u = (x;,y,2;) and
v = (X3, ¥,, Z,) in the oxide networks
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is equal to

1
{E{lxz —x1| + |y, —y1l + |z, — 21| + 2} if uwand v lies on the same vertex channel

1
E“xz —x1| + |y = y1l + |22 — 21 [}

In Figure 1, the distance between edge channels a(-3,7,10)
and b(10,7,-3) are 13, the distance between vertex channel

otherwise

¢(2,9,7) and edge channel d(5,-5,-10) is 17, the distance
between vertex channels e(-6,3,9) and f(-6,-9,-3) are 13.

Flow Chart.
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Main Result
Theorem
Let G be a Oxide network of dimension w,

then dim(¢) = {2 © 7}

3 w=2
Proof:

Any pair of vertices in the oxide network will
come under one of the categories discussed below
the lemma from (1-6). Therefore any pair of
vertices in the oxide network can be resolved by
M = {a,B,y}. Hence the metric dimension of
oxide network is 2 for w =1 and metric
dimension of oxide network is 3 for w > 2. We
prove this Theorem we need the following lemma.
Lemma 1:

Let A={ u,(—r—1,-1,r)/2<r<2w-1}
and B={v.(—r—1,-r, 1) /2<r < 2w -1},
u; € Aand v; € B then {a, B} is not a resolving
set for (u;, v;).

Proof:

Let a=2w-12w,1)and B = Qw —
1,—1,—2w) where w is the dimension of oxide
network

Letu = (x1,¥1,21)& v = (x3,¥,,2,) be any two
points in OX(w).
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1
d(u,v) =§{|x1 = x|+ |y1 = y2l + 121 — 221}
1
d(u;, a) = E{l—r— 1-2w+ 1|+ |-1 - 2w]
+|r—1{}
1
=E{|—(r+1)—2w+1| + |14+ 20|+ |r—-1{}

= {l-C+D-20+1+20+1+7-
1|}(since r — 1 = 1 implies r is positive)

1
=E{|—(r+ 1) -2w+ 1]+ 20w + 1}

1
d(vj,a) = E{I—(r +1)-2w+ 1|+ |- - 2w|

+ |1 -1}
= %{l—(r+ 1) -2w+ 1|+ |r+ 20|}
=d(u; a)
d(u;, p) = %{I—(r +1) - 2w+ 1|+ |-1+1]
+ |r + 2wl}

1
=E{|r+2w| + |r + 20|}
=|r+ 2w|
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1 =d(w, )
d(vy, B) = E{l_(r 1) - 20 +1]+ |- +1] Using equation 1, we can find d(u;, )& d(v;, B).
+ 11+ 2w} Here 1w, =(Q@2r,20—-12w—-1-2r), pf=

Qw-1,-1,-2w)
1
d(u, ) = 5{12r —20 + 1|+ 20 = 1+ 1]
+ 20 —1-2r + 2w}

1
=E{|r+2w|+|r—1|+|1+2w|}

1
=E{|r+2w|+|r—1+1+2a)|}

1 1
=|r+ 2wl 1
= d(u;, p) =5 {120 = 2r = 1] + 20| + [40 — 2r — 11}
Hence the lemma. 1
Lemma 2: =§{|4w—2r—1|+|4a)—2r—1|}
I{_et(Zrz -120—-1-2r)/0<r<w-28& >2}C= = 4w — 2r — 1]}
gl T ==Y ©= To find d(v;,B), here v, = (2r+ 1,2w,2w —

= wQ@r+12020-2r-1)/0<r<w-28&w=>2} 2r—1),=Qw—-1-1,-2w)

E 1

— Qr,—-Qo-1-20,-Qo-1/0<r<w-28&0>20Wn ) =7{2r+1-2w + 1|+ 20 + 1|
F + 20— 2r— 1+ 2wl}

= {v,Q2r+1,-Qw—-1-2r),-2w)/0<r<w-2&w =2} 1

w€C, v,€ED, u, €E&wv, €F, then {a,p} is not a =={|12r — 2w + 2| + |20 + 1|
resolving set for (u;, v,)&u,, v,.). 2

Proof + 4w — 2r — 1|}

= — = — — — 1
Leta = (20 =120, D& f = 20 = 1,~1,-20) w2 — 214 120 + 1]
d(ui,a)=E{|x1—x2|+|y1—y2|+|21—22|} 2
1 + 4w — 2r — 1[}

= - _1_ — _ 1
Here u; (Zr,Zwl 12w —1-2r), a = 2w —12w,1) _ —{IZa) C2r— 24 20+ 1] + 4w — 21 — 1|}
d(uy @) = 5 {127 = 20 + 1] + [20 — 1 = 20| 2

1
+ 20 —1-2r—1J} =§{|4a)—2r—1|+|4w—2r—1|}
1
=§{|2r—2w+1|+|—1|+|2w—2r—2|} = 4w — 2r — 1|
1 = d(ul'.B)
=—{2w—-2r—-1 1 2w —2r —2 . . .
Zl{l ©=2r =1+ |1l +[20 = 2r - 2|) Using equation 1, we can find d(u,, )& d(v,, @)
=—{2w—2r -1+ 1|+ 20 — 2r — 2|} where
2= 1{|2w v+ 20— 2r— 20) u=(2r,-Qw-1-2r),-Qw-1) , a=
2 Q2w —-12w,1)
Distance between any two points v;& a lie on same vertex 1
channel is d(u,, a) = E{lZT —2w + 1|
_1! _ _ _
d(;ita)_z{lxl x2|+|y1 y2|+|Zl ZZ|+|2|} +|_2(A)+1+2T—2(1)|
Here v, =Qr+12w,20—-2r—-1) , a= 1 tl-20+1-1}
Qw-12w,1) =E{|2r—2w+1|+|—4w+2r+1|+|—2w|}

1
d(v;, a) =§{|2r+ 1-2w+ 1|4+ |20 — 2w|
+ 20 —2r—1—1| + |2}
1
=§{|2r—2w+2| + 20w — 2r — 2| + |2]}

1
=E{|2w—2r—1| + 4w — 2r — 1| + |2w]}
1
=§{|2w—2r—1+2w|+|4w—2r—1|}

1
1 =—{|l4w — 2r — 1| + |4w — 2r — 1]}
=§{|2w—2r—2|+|2a)—2r—2|+|2|} 2

1 = |[4w — 2r — 1]
=5 {20 = 2r =2+ 2| + 20 - 2r - 2|3 Then v, = (2r +
1 1,-Qw —2r —
= E{lZw = 2r| + |20 — 2r — 2|}
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1),—2w), a = Q2w —1,2w,1) Let G = {u(-2r2w—-1-2r,2w—1)}, H=

1 B (v (-Q2r+1),2w—1-2r,2w)},
dor,@) = {l2r +1 =20 +1| I =f{u,(-2r,—Qw—-1),-Qw —-1-2r)} |

i ::;“’ * ilr +1- 20 J = {v(-@r + 1), —20, - Q2w — 1 - 2r))}
1 @ } where 0<r<w-2 & w=2, uy €G,v €
= §{|2r — 2w+ 2| + |—4w + 2r + 1| H,u, € I,v, €], then {y,n} is not a resolving set
+ 20 + 1]} for (u;, v)&(uy, vp).
1 Proof:
=—{|2w — 2r — 2| + |4w — 2r — 1| We know that if u &v not lie on the same vertex
2
+ 20 + 1]} channel then
1
1 dw,v) =={lx; — x| + [y1 =y + 121 — 2,1}
= — — — _ _ 2
—2{|2w 2r—=2+4+ 20w+ 1| + [4w — 2r — 1|} 1
1 and if u&v lie on the same vertex channel then
= E{|4w —2r —1| + 4w — 2r — 1[} d(u,v) = %{|x1 = x|+ |y1 = yal + 121 — 22| +
= |4w — 2r — 1| 21}—2
=d(u,, ) Using equation 1, find d(u;, y)& d(v;,y) where
Using equation 1, we can find d(u,, ) u = (=2r,20 —1-2r,20 — 1),y
u.=(2r,—-Qw-1-2r),-Qw-1) , B= =(—Qw-1),—2w,-1)
1
(2 =1, -1, —20) du,y) = 5 {1=2r +20 — 1]
d(ur,ﬁ)=§{|27‘—2w+1| + 20 —1—2r + 20|
+ 2w+ 1+ 2r +1| . + 20 =1+ 1}
+ |20+ 1+ 20} = {120 —2r = 1] + 4 — 2r — 1] + |20]}

1
=={12w—2r—1|+ 2w —2r— 2|+ |1 1
2{I I+ |+ 110} =E{|2w—2r—1+2w|+|4w—2r—1|}

1
=—{2w—-2r—1+4+1|+ |20 —2r — 2 1
2{| | +1 3 =§{|4w—2r—1|+|4w—2r—1|}

1
=§{|2a)—2r|+|2w—2r—2|} = 4w — 2r — 1|
Using equation 2, find d(v,, 8) d(v,y) = 1{|_2r — 142w —1|
where v, = (Q2r+1,-Qw —2r — 1), —2w) , 2
B=QRw-1-1-2w) + 20w — 2r — 1 + 2w|
1 + 2w + 1|}
d(v., B) = §{|2T +1-2w+1| where v, = (—Q2r + 1),20w — 2r — 1,2w) , y =
+|2w+2r+1+1]| (—(Zw—l),l—Zw,—l)
. + =20 + 20| + [2]} d(vy,y) = 5 {20 = 2r = 2 + |40 — 2r — 1|
=E{|2r—2w+2|+|—2w+2r+2|+[2]} + 2w + 1|}
1 1
=§{|2w—2r—2|+|2w—2r—2|+[2]} =§{|2w—2r—2+2w+1|+|4a)—2r—1|}
1 1
= {120 —2r =2+ 2| + 20 — 2r — 2]} =5 {40 —2r = 1] + |40 — 2r — 1}
1 = 4w — 2r — 1|
=§{|2w—2r|+|2w—2r—2|} = d(u,y)
= d(u,, B) Using equation 1, find d(u;, ) where
~{a,B} is not a resolving set for u =(—2r2w—1-2r2w—1), n =
(u;, )& (u,, v,.). Hence proved. (—Qw —1),1,2w)
Lemma 3:
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1
d(u;,n) = E{l—Zr + 2w — 1|

+ 20 —2r—1—1]
+ 2w —1-2wl|}

1
=§{|2w—2r—1|+|2w—2r—2|+|—1|}
1
=§{|2a)—2r—1+1|+|2w—2r—2|}

1
= E{lZa) —2r|+ 2w — 2r — 2|}

Using equation 2, find d(v;,n) where
v = (—Q2r+1),20 — 2r — 1,2w),
(-Cw —1),1,20)

1
d(v,n) = E{l—Zr -1+ 2w —1]|

+ 20 —-2r—-1—-1|+ 2w — 2w|
+ [2[}

1
=E{|2w—2r—2| + |20 — 2r — 2| + |2}

’]"l =

1
=§{|2w—2r—2+2|+|2w—2r—2|}

1
= E{IZw —2r|+ 2w — 2r — 2|}

= d(ulﬂ 77)
Using equation 1, find d(u,, y) where
U = (=2r,—Qw—-1),-Qw —1-2r)),
(-Qw—-1),—2w,—1)

’}/:

1
d(u,,y) = E{l—Zr + 2w — 1]

+ 2w+ 1+ 2w|
+|-2w+ 14 2r + 1|}

1
= {20 = 2r =1 + 1] + | =20 + 27 + 2|}
1
=E{|2w—2r—1+1|+|2w—2r—2|}

1
= E{lZw —2r|+ 2w — 2r — 2|}
Using equation 2, find d(v,, y) where

v =(=Q2r+1),-2w,-Q2w-1-2r),y

=(—-Qw-1),—-2w,—-1)
1

d(v,.,y) = E{l—Zr —142w—1|
+ |—2w + 2w|
+]-2w+1+2r +1| + 2}

1
=§{|2w—2r—2| + |—2w + 2r + 2| + |2]}
1
=§{|2w—2r—2+2|+|—2w+2r+2|}

1
= E{IZw —2r|+ 2w — 2r — 2|}
= d(urry)
Using equation 1, find d (u,,n)& d(v,,n) where
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U, = (-2r,—Qw - 1),—-2w — 1 -27)),
(—Qw—-1),1,2w)

1
d(uy,n) =5 {1-2r+20 - 1|+ |-20 + 1 - 1]
+ |20+ 1+ 2r - 20|}

T’:

1
= {120 —2r =1 + |-20| + | -4 + 2r + 1}
1
=§{|2w—2r—1+2w| + 4w — 2r — 1]}

=%{|4w—2r— 1] + |[4w — 2r — 1|}
= 4w — 2r — 1|
d(v.,n) = %{|—2r —14+2w—-1|+|-2w —1|
+ |20+ 14+ 2r —2w|}

where v, =(—Q2r+1),-2w,-QCw-1-
zr))'n = (—(2(1) - 1)' 1;2(1))

1
d(v.,n) = E{lz‘“ —2r—2|+ 2w + 1]
+ |—4w + 2r + 1|}
1
=E{|2w—2r—2+2w+1|+|4w—2r—1|}

1
= > {140 —2r = 1| + 40 — 2r — 1]}

= |4w — 2r — 1|
= d(u,n)

Hence the lemma.
Lemma 4
Let S, = {w;,(r +1,r,-1)/2 <r < 2w — 1}
S, ={vi(r+1,1,-r)/2<r <2w-1}
where u; € S; and v; € S, then {y,n} is not a
resolving set for (u;v;) where y = (—QRw —
1),—2w,—1)andn = (—Q2w — 1),1 ,2w)
Proof:

The distance between u;and y is

1
d(u;,y) = §{|r+ 142w —1| 4+ |r+ 2w|
+ -1+ 1}

= Y20+ 71| + 20 + 7}

= |22w+r|
The distance between v;and y is
d(v;,y) = %{Ir +14+2w—1]+ |1+ 2w|
+|-r+ 1|}
= i{IZw + 7|+ 2w + 1| +
|r — 11}
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= ~{2o+1/+20+1]} (since r—-1>1

implies r is positive)
= d(ui' Y)
The distance between wu; and 7 is

1
d(u;,n) = E{|r+ 142w —1|+|r—1]
+|-1-2w|}
1
= §{|2w+r| +r—1]+ 20w + 1|}

1
= E{lZw +r|+ 2w+ 7|}

= 2w + 1|
The distance between v; and n is

1
d(v;,n) = E{Ir +14+2w—1|+|1-1]
+ |-r — 2w|}
1
= E{IZw +7r|+ 2w + 1|}

= 2w + 7]
= d(ui! 77)
Hence the Lemma.
Lemma 5:
If {a, B} is not resolving u and v then
both {y} and {n } must resolve u and v.
Proof:
By using lemma 2, {a,B} is not a resolving
set for
Q) u =u; and v =v; for the same value of
r.
(i) u = u, and v =v, for the same value of
r
Now we have to show that {y} and {n } must
resolve u and v. From lemma 2 we have
u = (2r,2w — 1,20 — 1 —2r)
v= Q2r+12w,2w—2r—1)
u= 2r,—Qw—-1-2r),—2w — 1)

v, = 2r+1,—-Qw—-1-2r),—2w) where
0<r<w—-2&w=2
Also we have = (2w —1),—2w,-1), n =

(—Qw—-1),1,2w)
The distance between w;and y is
d(u,y) = %{er +20—1|4+ 2w — 1+ 2w|
+ 2w —1—2r + 1|}

= {20 +2r — 1| + |40 — 1] +
2w — 27|}

= {40 — 1] + |40 — 1]}

= 4w — 1|

The distance between v;and y is
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1
d(v,y) = E{|2r+ 142w -1+ 20w + 20|
+ 2w —1-2r +1[}
1
= E{IZw +2r| + |[4w| + |2w — 27|}

1
= {40l + 40])

= |4w]
# d(u,y)
The distance between w;and 7 is

1
d(u,n) = §{|2r+ 20 — 1| + 2w — 1 — 1]
+ 20 —1-2r —2wl}
1
= §{|2r+2w — 1|+ 2w — 2| + [2r + 1]}

1
= E{|2r+2w—1|+|2w+2r—1|}

= 2w + 2r — 1|
The distance between v;and 7 is

1
dwyn) = 5{l2r +1+20 -1+ 20 - 1|
+ 20 = 2r — 1 - 2wl}
= ~{12r + 20| + 20 — 1] +
|12r + 1|}
1
= E{Z 2w + 27|}

+* d(ul, T])
The distance between w,.and y is

1
d(uy,y) = S{2r + 20 - 11+ 20 -1 -1
+ 2w+ 14 2r + 2wl}
1
=E{|2w+2r— 1|+ 12r+ 1] + 2w — 2|}

1
= {20 +2r — 1] + |20 + 2r — 1]}

= 2w + 2r — 1]
The distance between v,.and y is

1
d(v,,y) = §{|2r+ 142w —1]
+|-2w+2r + 1+ 20|
+ | 2w + 1|}
1
= E{IZw +2r|+2r+ 1| + |20 — 1]}

= §{|2w + 21| + |20 + 27}

= |2w + 2r]|
# d(u,,y)
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The distance between w,.and n is
1
d(u,,m) = E{IZT + 2w — 1]

+|-2w+1+2r—1|
+|-2w+1—-2w|}

1
= E{|2r+ 2w — 1| + 2w = 27| + |[4w — 1|}

1
= E{|4a) — 1| + 4w — 11}

= 4w — 1]
The distance between v,.and n is

1
d(v,,n) = E{IZr +1+2w—1]

+|-2w+2r+1-1|
+ | 2w — 2w|}

1
= E{lZw + 21|+ 20 = 27| + |4w|}

1
= > {l40] + 40}
= [4w|
* d(u.,n)
Hence the Lemma.
Lemma 6:
If {y,n}is not resolving u and v then both
{a} and {B} will resolve u and v.
Proof:
By using Lemma 3 we will get {y,n} is not
resolve by u and v.
Enough To Prove: {a} and {8} will resolve u and
v. Where u and v denoted by
w = (=2r2w—-1-2r2w—-1)
(—@2r+1),2w —2r — 1,2w)
U= (-2r,-Qw—-1),-Qw —-1-2r)), v =
(-@2r+1)—2w,—(2w —1-2r))
a=(Q2w-1), 2w, 1) and
1),-1, —2w)
The distance between u; and «a is

1
d(u,a) = E{I—Zr — 2w + 1]

+ 2w —1—2r — 2w|
+ 20 —1—1]}

v =

B =(Q2w-

1
=E{|2w+2r— 1]+ [2r + 1]
+ 2w — 2|}
1
= E{|2w+2r— 1|+ 2w + 2r — 1|}

={2w + 2r — 1|}
The distance between v; and « is
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1
d(v,a) = E{l—Zr—1—2w+1|
+ 20w —1—2r — 2w]|
+ 2w — 1|}
= %{IZw +2r|+2r+ 1| +
2w — 1|}
= §{|2w+2r| + 2w + 27}
# d(u;,a)
The distance between u;and g is
1
d(u,B) = E{|—2r—2w+1|
+ 20 —1—-2r+1|
+ 2w — 14+ 2w}

1
= E{IZw +2r — 1|+ |20 = 21| + 4w — 1]}

1
= §{|4w — 1] + |[4w — 1|}
= 4w — 1|
The distance between v;and g is
1
div,B) = E{|—2r —1-2w+1]
+ 20— 2r — 1+ 1|
+ 2w + 2w|}
1
= E{IZa) +2r| 4+ 2w — 27| + |4w|}

1
= S{l4w| + 40|}
= |4w|

* d(ulﬂ B )
The distance between u,.and « is

1
dlu,a) = E{l—Zr — 2w+ 1]

+ | 2w+ 1—-2w|
+ |-2w+ 14+ 2r — 1|}

1
=E{|2w +2r — 1| + 4w — 1| + 2w — 27|}

1
= §{|4w — 1] + |[4w — 1|}
= 4w — 1]
The distance between v,.and « is
1
d(v,a) = §{|—2r —1-2w + 1|
+ |—2w — 20|
+ |-2w+ 1+ 2r — 1|}
1
= E{lZw +2r| + [4w| + |20 — 27|}

1
= {40 + 14w}

= |4w|
= d(u,,a)
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The distance between u,.and f is
1
dlu,B) = E{l—Zr — 2w + 1]

+ | 2w+ 1+1|
+|-2w+ 14+ 2r 4+ 2wl}

1
=§{|2w+2r—1| + 2w = 2| + |2r + 1|}

1
= §{|2w+2r—1| + 2w + 2r — 1|}

= 2w + 2r — 1]
The distance between v, and g is

1
dv,B) = §{|—2r —1-2w+1|+|-2w+ 1]
+ |20+ 14+ 2r+ 20|}
1
= E{lZw +2r|+ 20 — 1| + |2r + 1]}

= %{IZw +2r|+ |2w + 27|}
= |2w + 2r|

# d(u,B)

Hence the Lemma.

Discussion :In this paper we have presented distance
between the vertex of the Oxide network and metric index
of the Oxide network.
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