On The Metric Index of Oxide Networks

R. Nithya Raj, F. Simon Raj

Abstract: Let \(w \) be a vertex of a connected simple graph \(G \) and \((v_1, v_2) \) be a pair of vertices in \(G \). Let \(d(v_1, v_2) \) be the distance between \(v_1 \) and \(v_2 \). A vertex \(w \) is said to resolve \(v_1 \) and \(v_2 \) if \(d(w, v_1) \neq d(w, v_2) \). A set of vertices \(W \) of \(G \) is called a settling set of \(G \) if every pair of vertices \((v_i, v_j) \) is resolved by at least one vertex \(w_j \in W \). A settling set of \(G \) with least cardinality is called metric premise of \(G \). The cardinality of metric premise is called metric index of \(G \). In this paper metric index of oxide network is investigated.

Catchphrases: Metric premise, Metric index, Oxide network, Interconnection Network.

I. INTRODUCTION:

The metric index of a graph was first investigated by Harry and Melter [1]. They acclimated properties of the metric dimension of trees. Melter and Tomescu [2] studied the metric index problems for grid graphs, khuller et al. comprehensive melter and Tomescu’s Results. They have exhibited the metric index of dimensional \(d \) of a network graph is \(d \) [3]. The metric index of bipartite graph is an NP complete [4]. Slater [5] and later [6] contributed another name for metric premise as settling set. Slater baptized the quantity of component in a settling set of the graph as landmark of the graph. He clarify the utilization of metric premise in loran and Sonar station. Instated of metric premise Charta et al. used the word of least settling [7]. The metric index problem investigated for leaves and net graph [3], Petersen graph [8], Honeycomb Network, Hexagonal system [9], Circulant and Harry graphs [10], Enhanced Hyper solid shapes [11], Silicate stars [12], Triangular oxide network [13], Stat of david networks [14]. In 2014 Dachang Xu [15] et al. given the conclusion the metric dimension of Hex Derived Network is either 3 or 4. In 2019 Zehui shao [16] et al. verified the metric index of Hex derived network is 4 by using vertex coloring scheme. The metric dimension have many other applications such as robot route, design acknowledgement [3]. Network revolution and check [17]. In this section, we elucidate about the oxide network. This oxide network drawn from removing all silicon nodes from the silicate network of dimension \(\omega \). In polymer and pharmaceutical industries are running by using the application of oxide network [18]. In the number of vertices and edges in a oxide networks of dimension \(\omega \) is \(9\omega^2 + 3\omega \) and \(18\omega^2 \) respectively [13,19]. and other specification of this oxide network having vertices of degree 2 and 4 only. By using this X Y and Z channel coordinate system any vertex \((x_i, y_j, z_k)\) in the oxide network satisfies the condition \(y_j = x_i + z_k \).

Oxide Network:

Proposed methodology:

In this paper we use graph coordinate system to prove the main result.

The distance between any two nodes \(u = (x_1, y_1, z_1) \) and \(v = (x_2, y_2, z_2) \) in the oxide network

\[
\text{Distance}(u, v) = |x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|
\]
On The Metric Index of Oxide Networks

is equal to

\[
\frac{1}{2}\left\{ |x_2 - x_1| + |y_2 - y_1| + |z_2 - z_1| + 2 \right\} \quad \text{if } u \text{ and } v \text{ lies on the same vertex channel}
\]

\[
\frac{1}{2}\left\{ |x_2 - x_1| + |y_2 - y_1| + |z_2 - z_1| \right\} \quad \text{otherwise}
\]

In Figure 1, the distance between edge channels \(a(-3,7,10)\) and \(b(10,7,-3)\) are 13, the distance between vertex channel \(c(2,9,7)\) and edge channel \(d(5,5,-10)\) is 17, the distance between vertex channels \(e(-6,3,9)\) and \(f(-6,9,-3)\) are 13.

Flow Chart.

Main Result

Theorem

Let \(G\) be a Oxide network of dimension \(\omega\), then \(\dim(G) = \left\{ \begin{array}{ll} 2 & \omega = 1 \\ 3 & \omega \geq 2 \end{array} \right.\)

Proof:

Any pair of vertices in the oxide network will come under one of the categories discussed below the lemma from (1-6). Therefore any pair of vertices in the oxide network can be resolved by \(M = \{\alpha, \beta, \gamma\} \). Hence the metric dimension of oxide network is 2 for \(\omega = 1\) and metric dimension of oxide network is 3 for \(\omega \geq 2\). We prove this Theorem we need the following lemma.

Lemma 1:

Let \(A = \{u_r(-r - 1, -1, r)/ 2 \leq r \leq 2\omega - 1\}\) and \(B = \{v_r(-r + 1, r, 1)/ 2 \leq r \leq 2\omega - 1\}\), \(u_i \in A \) and \(v_i \in B\) then \(\{\alpha, \beta\}\) is not a resolving set for \((u_i, v_i)\).

Proof:

Let \(\alpha = (2\omega - 1, 2\omega, 1)\)and \(\beta = (2\omega - 1, -1, -2\omega)\) where \(\omega\) is the dimension of oxide network

Let \(u = (x_1, y_1, z_1)\)\& \(v = (x_2, y_2, z_2)\) be any two points in \(OX(\omega)\).

\[
d(u, v) = \frac{1}{2}\{ |x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2| \}
\]

\[
d(u, \alpha) = \frac{1}{2}\{ |r - 1 - 2\omega + 1| + |1 - 2\omega| + |r - 1| \}
\]

\[
= \frac{1}{2}\{ |-(r + 1) - 2\omega + 1| + |1 + 2\omega| + |r - 1| \}
\]

\[
= \frac{1}{2}\{ |-(r + 1) - 2\omega + 1| + |2\omega + 1 + r - 1| \}
\]

\(I(\text{since } r - 1 \geq 1 \text{ implies } r \text{ is positive})\)

\[
= \frac{1}{2}\{ |-(r + 1) - 2\omega + 1| + |2\omega + r| \}
\]

\[
d(v_1, \alpha) = \frac{1}{2}\{ |-(r + 1) - 2\omega + 1| + |1 - 2\omega| + |r - 2\omega| \}
\]

\[
= \frac{1}{2}\{ |-(r + 1) - 2\omega + 1| + |r + 2\omega| \}
\]

\[
d(u_i, \alpha) = \frac{1}{2}\{ |-(r + 1) - 2\omega + 1| + |1 - 2\omega| + |r - 2\omega| \}
\]

\[
= \frac{1}{2}\{ |r + 2\omega| + |r + 2\omega| \}
\]

\[
d(u_i, \beta) = \frac{1}{2}\{ |-(r + 1) - 2\omega + 1| + |-1 + 1| + |r + 2\omega| \}
\]

\[
= \frac{1}{2}\{ |r + 2\omega| \}
\]
\[d(v_i, \beta) = \frac{1}{2} \left[-(r + 1) - 2\omega + 1 + |-r + 1| + |1 + 2\omega| \right] \]
\[= \frac{1}{2} \left[|r + 2\omega| + |r - 1| + |1 + 2\omega| \right] \]
\[= \frac{1}{2} \left[|r + 2\omega| + |r - 1 + 1 + 2\omega| \right] \]
\[= \frac{1}{2} \left[|r + 2\omega| + |r + 2\omega| \right] \]
\[= |r + 2\omega| \]
\[= d(u_i, \beta) \]

Hence the lemma.

Lemma 2:

Let \(C = \{u_i(2r, 2\omega - 1, 2\omega - 1 - 2r) / 0 \leq r \leq -2 \omega \geq 2 \} \)
\(D = \{v_i(2r + 1, 2\omega - 2r - 1) / 0 \leq r \leq -2 \omega \geq 2 \} \)
\(E = \{u_i(2r - 1, -2\omega + 2r - 1), -2\omega - 1 / 0 \leq r \leq -2 \omega \geq 2 \} \)
\(F = \{v_i(2r + 1, -2\omega + 1 - 2r), -2\omega / 0 \leq r \leq -2 \omega \geq 2 \} \)

\(u_i \in C \), \(v_i \in D \), \(u_i \in E \), \(v_i \in F \), then \((\alpha, \beta) \) is not a resolving set for \((u_i, v_i)\).

Proof

Let \(\alpha = (2\omega - 1, 2\omega, 1) \) & \(\beta = (2\omega - 1, -1, -2\omega) \)
\[d(u_i, \alpha) = \frac{1}{2} \left[|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2| \right] \]
\[\rightarrow 1 \]

Here \(u_i = (2r, 2\omega - 1, 2\omega - 1 - 2r), \alpha = (2\omega - 1, 2\omega, 1) \)
\[d(u_i, \alpha) = \frac{1}{2} \left[|2r - 2\omega + 1| + |2\omega - 1 - 2\omega| \right] \]
\[+ |2\omega - 1 - 2r| \]
\[= \frac{1}{2} \left[|2r - 2\omega + 1| + |-1| + |2\omega - 2r - 2| \right] \]
\[= \frac{1}{2} \left[|2\omega - 2r - 1 + 1| + |2\omega - 2r - 2| \right] \]
\[= \frac{1}{2} \left[|2\omega - 2r - 1 + 1| + |2\omega - 2r - 2| \right] \]
\[= \frac{1}{2} \left[|2\omega - 2r| + |2\omega - 2r - 2| \right] \]

Distance between any two points \(v_i \) & \(\alpha \) lie on same vertex channel is
\[d(v_i, \alpha) = \frac{1}{2} \left[|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2| + |2| \right] \]
\[\rightarrow 2 \]

Here \(v_i = (2r + 1, 2\omega, 2\omega - 2r - 1) \), \(\alpha = (2\omega - 1, 2\omega, 1) \)
\[d(v_i, \alpha) = \frac{1}{2} \left[|2r + 1 - 2\omega| + |2\omega - 2\omega| \right] \]
\[+ |2\omega - 2r - 1 - 1| + |2| \]
\[= \frac{1}{2} \left[|2r - 2\omega + 2| + |2\omega - 2r - 2| + |2| \right] \]
\[= \frac{1}{2} \left[|2\omega - 2r - 2| + |2\omega - 2r - 2| + |2| \right] \]
\[= \frac{1}{2} \left[|2\omega - 2r - 2 + 2| + |2\omega - 2r - 2| \right] \]

Using equation 1, we can find \(d(u_i, \beta) \) & \(d(v_i, \beta) \). Here \(u_i = (2r, 2\omega - 1, 2\omega - 1 - 2r) \), \(\beta = (2\omega - 1, -1, -2\omega) \)
\[d(u_i, \beta) = \frac{1}{2} \left[|2r - 2\omega + 1| + |2\omega - 1 + 1| \right] \]
\[+ |2\omega - 1 - 2r + 2\omega| \]
\[= \frac{1}{2} \left[|2r - 2\omega + 1| + |2\omega + |4\omega - 2r - 1| \right] \]
\[= \frac{1}{2} \left[|2\omega - 2r - 1 + 2\omega| + |4\omega - 2r - 1| \right] \]
\[= \frac{1}{2} \left[|4\omega - 2r - 1| + |4\omega - 2r - 1| \right] \]
\[= |4\omega - 2r - 1| \]

To find \(d(v_i, \beta) \), here \(v_i = (2r + 1, 2\omega, 2\omega - 2r - 1) \), \(\beta = 2\omega - 1, -1, -2\omega \)
\[d(v_i, \beta) = \frac{1}{2} \left[|2r + 1 - 2\omega + 1| + |2\omega + 1| \right] \]
\[+ |2\omega - 2r - 1 + 2\omega| \]
\[= \frac{1}{2} \left[|2r - 2\omega + 2| + |2\omega + 1| \right] \]
\[+ |4\omega - 2r - 1| \]
\[= \frac{1}{2} \left[|2\omega - 2r - 2| + |2\omega + 1| \right] \]
\[+ |4\omega - 2r - 1| \]
\[= \frac{1}{2} \left[|2\omega - 2r - 2 + 2\omega + 1| + |4\omega - 2r - 1| \right] \]
\[= \frac{1}{2} \left[|4\omega - 2r - 1| + |4\omega - 2r - 1| \right] \]
\[= |4\omega - 2r - 1| \]
Then \(v_r = (2r + 1, -(2r - 2r - 1), -2\omega) \)
\[
\alpha = (2\omega - 1, 2\omega, 1)
\]
\[
d(v_r, \alpha) = \frac{1}{2} \left\{ \left| 2r + 1 - 2\omega + 1 \right| + \left| -2\omega + 2r + 1 - 2\omega \right| + \left| -2\omega - 1 \right| \right\}
\]
\[
= \frac{1}{2} \left\{ \left| 2r - 2\omega + 2 \right| + \left| -4\omega + 2r + 1 \right| + \left| 2\omega + 1 \right| \right\}
\]
\[
= \frac{1}{2} \left\{ \left| 2\omega - 2r - 2 \right| + \left| 4\omega - 2r - 1 \right| + \left| 2\omega + 1 \right| \right\}
\]
\[
= \frac{1}{2} \left\{ \left| 2\omega - 2r - 2 + 2\omega + 1 \right| + \left| 4\omega - 2r - 1 \right| \right\}
\]
\[
= \frac{1}{2} \left\{ \left| 4\omega - 2r - 1 \right| + \left| 4\omega - 2r - 1 \right| \right\}
\]
\[
= \frac{1}{2} \left\{ \left| 4\omega - 2r - 1 \right| \right\}
\]
\[
= d(u_r, \alpha)
\]
Using equation 1, we can find \(d(u_r, \beta) \)
\[
u_r = (2r, -(2\omega - 1 - 2r), -(2\omega - 1))
\]
\[
\beta = (2\omega - 1, -(2\omega - 1), -2\omega)
\]
\[
d(u_r, \beta) = \frac{1}{2} \left\{ \left| 2r - 2\omega + 1 \right| + \left| -2\omega + 2r + 1 \right| + \left| -2\omega + 1 \right| \right\}
\]
\[
= \frac{1}{2} \left\{ \left| 2\omega - 2r - 1 \right| + \left| 2\omega - 2r - 2 \right| + \left| 1 \right| \right\}
\]
\[
= \frac{1}{2} \left\{ \left| 2\omega - 2r - 1 \right| + \left| 2\omega - 2r - 2 \right| + \left| 2\omega - 2r - 2 \right| \right\}
\]
\[
= \frac{1}{2} \left\{ \left| 2\omega - 2r \right| + \left| 2\omega - 2r \right| \right\}
\]
\[
= \frac{1}{2} \left\{ \left| 2\omega - 2r \right| \right\}
\]
\[
\therefore \{ \alpha, \beta \} \text{ is not a resolving set for } (u_r, v_r). \text{ Hence proved.}
\]

Lemma 3:
Let \(G = \{ u_r(-2r, 2\omega - 1 - 2r, 2\omega - 1) \} \),
\[
H = \{ v_i(-(2r + 1), 2\omega - 1 - 2r, 2\omega) \},
\]
\[
I = \{ u_r(-(2r - 2\omega - 1), -2\omega - 1 - 2r) \} \),
\]
\[
J = \{ v_r(-2r + 1, -2\omega - (2\omega - 1 - 2r)) \}
\]
where \(0 \leq r \leq \omega + 2 \), \(u_i \in G, v_i \in H, u_r \in I, v_r \in J \), then \(\{ \gamma, \eta \} \) is not a resolving set for \((u_i, v_i)\&(u_r, v_r)\).

Proof:
We know that if \(u \& v \) not lie on the same vertex channel then
\[
d(u, v) = \frac{1}{2}\left\{ \left| x_1 - x_2 \right| + \left| y_1 - y_2 \right| + \left| z_1 - z_2 \right| \right\}
\]
\[
\rightarrow 1
\]
and if \(u \& v \) lie on the same vertex channel then
\[
d(u, v) = \frac{1}{2}\left\{ \left| x_1 - x_2 \right| + \left| y_1 - y_2 \right| + \left| z_1 - z_2 \right| + \left| 2 \right| \right\} \rightarrow 2
\]
Using equation 1, find \(d(u_i, \gamma) \)& \(d(v_i, \gamma) \)
where
\[
u_i = (-2r, 2\omega - 1 - 2r, 2\omega - 1), \gamma = (-2\omega - 1, -2\omega - 1)
\]
\[
d(u_i, \gamma) = \frac{1}{2}\left\{ \left| -2r - 2\omega - 1 \right| + \left| 2\omega - 1 - 2r + 2\omega \right| + \left| 2\omega - 1 \right| \right\}
\]
\[
= \frac{1}{2}\left\{ \left| 2\omega - 2r - 1 \right| + \left| 4\omega - 2r - 1 \right| + \left| 2\omega \right| \right\}
\]
\[
= \frac{1}{2}\left\{ \left| 2\omega - 2r - 1 \right| + \left| 4\omega - 2r - 1 \right| + \left| 2\omega - 2r - 1 \right| \right\}
\]
\[
= \frac{1}{2}\left\{ \left| 2\omega - 2r - 1 \right| \right\}
\]
\[
\therefore d(u_i, \gamma) = \frac{1}{2}\left\{ \left| 2\omega - 2r - 1 \right| \right\}
\]
\[
\therefore (u_i, v_i) \text{ is not a resolving set for } (u_i, v_i). \text{ Hence proved.}
\]
Using equation 2, find \(d(v_1, \eta) \) where
\[
v_1 = (-2r + 1, 2\omega - 2r - 1, 2) \quad \eta = (-2\omega - 1, 1, 2\omega)
\]
\[
d(v_1, \eta) = \frac{1}{2} \left[-2r - 1 + 2\omega - 1 \right] + \left[2\omega - 2r - 1 - 1 \right] + \left[2\omega - 2r - 2 \right] + \left[-1 \right]
\]
\[
= \frac{1}{2} \left[2\omega - 2r - 1 + |2\omega - 2r - 2| + |2\omega - 2r - 2| \right]
\]
\[
= \frac{1}{2} \left[2\omega - 2r - 1 + |2\omega - 2r - 2| + |2\omega - 2r - 2| \right]
\]

Using equation 1, find \(d(u_r, \gamma) \) where
\[
\gamma = (-2\omega - 1, -2\omega, -2\omega - 1, -2\omega - 2r)
\]
\[
d(u_r, \gamma) = \frac{1}{2} \left[-2r + 2\omega - 1 \right] + \left| 2\omega + 2r + 2 \right| + \left| -2\omega + 1 + 2r + 1 \right|
\]
\[
= \frac{1}{2} \left[2\omega - 2r - 1 + |1| + |2\omega + 2r + 2| + |2\omega - 2r - 2| \right]
\]
\[
= \frac{1}{2} \left[2\omega - 2r - 1 + |2\omega - 2r - 2| \right]
\]

Using equation 2, find \(d(v_r, \gamma) \) where
\[
v_r = (-2r + 1, -2\omega, -2\omega, -2\omega - 1, -2\omega - 2r) \quad \eta = (-2\omega - 1, 1, 2\omega)
\]
\[
d(v_r, \gamma) = \frac{1}{2} \left[-2r + 2\omega - 1 \right] + \left| 2\omega + 2r + 2 \right| + \left| -2\omega + 1 + 2r + 1 \right| + \left| 2\omega - 2r - 2 \right| + \left| 2\omega - 2r - 2 \right|
\]
\[
= \frac{1}{2} \left[2\omega - 2r - 1 + |2\omega + 2r + 2| + |2\omega - 2r - 2| \right]
\]
\[
= \frac{1}{2} \left[2\omega - 2r - 1 + |2\omega + 2r + 2| + |2\omega - 2r - 2| \right]
\]

Hence the lemma.

Lemma 4

Let \(S_1 = \{ u_i(r + 1, r, -1)/2 \leq r \leq 2\omega - 1 \} \)
\(S_2 = \{ v_i(r + 1, 1, -r)/2 \leq r \leq 2\omega - 1 \} \)

where \(u_i \in S_1 \) and \(v_i \in S_2 \) then \(\{ \gamma, \eta \} \) is not a resolving set for \((u_i, v_i) \) where \(\gamma = (-2\omega - 1, -2\omega, -1) \) and \(\eta = (-2\omega - 1, 1, 2\omega) \)

Proof:

The distance between \(u_i \) and \(\gamma \) is
\[
d(u_i, \gamma) = \frac{1}{2} \left[2\omega + r + 2 \right] + \left| 2\omega + r \right|
\]
\[
= \frac{1}{2} \left[2\omega + r \right] + \left| 2\omega + r \right|
\]

The distance between \(v_i \) and \(\gamma \) is
\[
d(v_i, \gamma) = \frac{1}{2} \left[2\omega + r - 1 \right] + \left| 2\omega + r - 1 \right|
\]
\[
= \frac{1}{2} \left[2\omega + r \right] + \left| 2\omega + r \right| + \left| 2\omega - 1 \right|
\]
\[
= \frac{1}{2} \left[2\omega + r \right] + \left| 2\omega + r \right|
\]

\(r - 1 \geq 1 \)

implies \(r \) is positive.

\[
d(u_i, \gamma)
\]
On The Metric Index of Oxide Networks

The distance between \(u_i \) and \(\eta \) is

\[
 d(u_i, \eta) = \frac{1}{2}\{|r + 1 + 2\omega - 1| + |r - 1|
 + |-1 - 2\omega|
\]
\[
 = \frac{1}{2}\{|2\omega + r| + |r - 1| + |2\omega + 1|
\]
\[
 = \frac{1}{2}\{|2\omega + r| + |2\omega + r|
\]
\[
 = |2\omega + r|
\]

Hence the Lemma.

Lemma 5:

If \(\{\alpha, \beta\} \) is not resolving \(u \) and \(v \) then both \(\{\gamma\} \) and \(\{\eta\} \) must resolve \(u \) and \(v \).

Proof:

By using lemma 2, \(\{\alpha, \beta\} \) is not a resolving set for

(i) \(u = u_i \) and \(v = v_i \) for the same value of \(r \).

(ii) \(u = u_r \) and \(v = v_r \) for the same value of \(r \)

Now we have to show that \(\{\gamma\} \) and \(\{\eta\} \) must resolve \(u \) and \(v \). From lemma 2 we have

\[
 u_i = (2r, 2\omega - 1, 2\omega - 1 - 2r)
\]
\[
 v_i = (2r + 1, 2\omega, 2\omega - 2r - 1)
\]
\[
 u_r = (2r, -(2\omega - 1 - 2r), -(2\omega - 1))
\]
\[
 v_r = (2r + 1, -(2\omega - 1 - 2r), -2\omega)
\]

where \(0 \leq r \leq \omega - 2 \) and \(\omega \geq 2 \)

Also we have \((-2\omega - 1, -2\omega, -1) \), \(\eta = (-2\omega - 1, 1, 2\omega) \)

The distance between \(u_i \) and \(\gamma \) is

\[
 d(u_i, \gamma) = \frac{1}{2}\{|2\omega + 2r - 1 + 2\omega - 1 + 2\omega|
 + |2\omega - 1 - 2r + 1|
\]
\[
 = \frac{1}{2}\{|2\omega + 2r - 1| + |2\omega - 1| + |4\omega - 1|
 + 2\omega - 2r
\]
\[
 = \frac{1}{2}\{|4\omega - 1| + |4\omega - 1|
 = |4\omega - 1|
\]

The distance between \(v_i \) and \(\gamma \) is

\[
 d(v_i, \gamma) = \frac{1}{2}\{|2r + 1 + 2\omega - 1| + |2\omega + 2\omega|
 + |2\omega - 1 - 2r + 1|
\]
\[
 = \frac{1}{2}\{|2\omega + 2r + |2\omega + 2\omega|
 + |2\omega - 1 - 2r + 1|
\]

The distance between \(u_i \) and \(\eta \) is

\[
 d(u_i, \eta) = \frac{1}{2}\{|2\omega + 2r - 1 + 2\omega - 1| + |2\omega - 1 - 2r + 1|
\]
\[
 = \frac{1}{2}\{|4\omega + |4\omega|
 = |4\omega|
 \neq d(u_i, \gamma)
\]

The distance between \(v_i \) and \(\eta \) is

\[
 d(v_i, \eta) = \frac{1}{2}\{|2\omega + 2r + |2\omega - 1 - 2r - 2\omega|
\]
\[
 = \frac{1}{2}\{|2\omega + 2r + |2\omega - 1 - 2r - 2\omega|
\]
\[
 = \frac{1}{2}\{|2\omega + 2r + |2\omega - 1 - 2r - 2\omega|
\]
\[
 = |2\omega + 2r|
\]

The distance between \(v_r \) and \(\gamma \) is

\[
 d(v_r, \gamma) = \frac{1}{2}\{|2\omega + 2r + |2\omega - 1 - 2r - 2\omega|
\]
\[
 = \frac{1}{2}\{|2\omega + 2r + |2\omega - 1 - 2r - 2\omega|
\]
\[
 = |2\omega + 2r|
\]
\[
 \neq d(u_i, \gamma)
\]

The distance between \(u_r \) and \(\gamma \) is

\[
 d(u_r, \gamma) = \frac{1}{2}\{|2r + 2\omega - 1| + |2\omega - 1| + |2\omega + 2\omega|
 + |2\omega - 1 - 2r + 1|
\]
\[
 = \frac{1}{2}\{|2\omega + 2r + |2\omega - 1 - 2r + 1|
\]
\[
 = \frac{1}{2}\{|2\omega + 2r + |2\omega - 1 - 2r + 1|
\]
\[
 = |2\omega + 2r|
\]
\[
 \neq d(u_i, \gamma)
\]

The distance between \(u_r \) and \(\eta \) is
\[d(u_r, \eta) = \frac{1}{2} \{ |2r + 2\omega - 1| + |2r + 1 + 2r - 1| + |2r + 1 - 2\omega| \} \]
\[= \frac{1}{2} \{ |2r + 2\omega - 1| + |2\omega - 2r| + |4\omega - 1| \} \]
\[= \frac{1}{2} \{ |4\omega - 1| + |4\omega - 1| \} = |4\omega - 1| \]

The distance between \(v_r \) and \(\eta \) is
\[d(v_r, \eta) = \frac{1}{2} \{ |2\omega + 2r + 1 + 2\omega - 1| + |2\omega + 2r + 1 - 2\omega| \} \]
\[= \frac{1}{2} \{ |4\omega| + |4\omega| \} = |4\omega| \]
\[\neq d(u_r, \eta) \]

Hence the Lemma.

Lemma 6:
If \(\{ \gamma, \eta \} \) is not resolving \(u \) and \(v \) then both \(\{ \alpha \} \) and \(\{ \beta \} \) will resolve \(u \) and \(v \).

Proof:
By using Lemma 3 we will get \(\{ \gamma, \eta \} \) is not resolve by \(u \) and \(v \).

Enough To Prove: \(\{ \alpha \} \) and \(\{ \beta \} \) will resolve \(u \) and \(v \). Where \(u \) and \(v \) denoted by
\[u_l = (-2r, 2\omega - 1 - 2r, 2\omega - 1), \quad v_l = (-2r + 1, 2\omega - 2r - 1, 2\omega) \]
\[u_r = (-2r, -(2\omega - 1), -(2\omega - 1 - 2r)), \quad v_r = (2\omega - 1, 2\omega, 2\omega) \]
\[\alpha = ((2\omega - 1, 2\omega, 1)) \quad \text{and} \quad \beta = ((2\omega - 1, 1, -I, -2\omega)) \]

The distance between \(u_l \) and \(\alpha \) is
\[d(u_l, \alpha) = \frac{1}{2} \{ |-2r - 2\omega + 1| + |2\omega - 1 - 2r - 2\omega| + |2\omega - 1 - 1| \} \]
\[= \frac{1}{2} \{ |2\omega + 2r - 1| + |2r + 1| + 2\omega - 1 \} \]
\[= \frac{1}{2} \{ |2\omega + 2r - 1| + |2\omega + 2r - 1| \} = |2\omega + 2r - 1| \]

The distance between \(v_l \) and \(\alpha \) is
\[d(v_l, \alpha) = \frac{1}{2} \{ |-2r - 2\omega + 1| + |2\omega - 1 - 2r - 2\omega| + |2\omega - 1| \} \]
\[= \frac{1}{2} \{ |2\omega + 2r - 1| + |2\omega + 2r - 1| \} = |2\omega + 2r - 1| \]

The distance between \(u_r \) and \(\alpha \) is
\[d(u_r, \alpha) = \frac{1}{2} \{ |2\omega + 2r + 1| + |2r + 1 + 2r - 1| + |2r + 1 - 2\omega| \} \]
\[= \frac{1}{2} \{ |2\omega + 2r + 1| + |2\omega + 2r + 1| \} = |2\omega + 2r + 1| \]

The distance between \(v_r \) and \(\alpha \) is
\[d(v_r, \alpha) = \frac{1}{2} \{ |2\omega + 2r + 1| + |2r + 1 + 2r - 1| + |2r + 1 - 2\omega| \} \]
\[= \frac{1}{2} \{ |2\omega + 2r + 1| + |2\omega + 2r + 1| \} = |2\omega + 2r + 1| \]

The distance between \(u_l \) and \(\beta \) is
\[d(u_l, \beta) = \frac{1}{2} \{ |-2r - 2\omega + 1| + |2\omega - 1 - 2r - 2\omega| + |2\omega - 1 - 1\} \]
\[= \frac{1}{2} \{ |2\omega + 2r - 1| + |2\omega + 2r - 1| \} = |2\omega + 2r - 1| \]

The distance between \(v_l \) and \(\beta \) is
\[d(v_l, \beta) = \frac{1}{2} \{ |-2r - 2\omega + 1| + |2\omega - 1 - 2r - 2\omega| + |2\omega - 1| \} \]
\[= \frac{1}{2} \{ |2\omega + 2r - 1| + |2\omega + 2r - 1| \} = |2\omega + 2r - 1| \]

The distance between \(u_r \) and \(\beta \) is
\[d(u_r, \beta) = \frac{1}{2} \{ |2\omega + 2r + 1| + |2r + 1 + 2r - 1| + |2r + 1 - 2\omega| \} \]
\[= \frac{1}{2} \{ |2\omega + 2r + 1| + |2\omega + 2r + 1| \} = |2\omega + 2r + 1| \]

The distance between \(v_r \) and \(\beta \) is
\[d(v_r, \beta) = \frac{1}{2} \{ |2\omega + 2r + 1| + |2r + 1 + 2r - 1| + |2r + 1 - 2\omega| \} \]
\[= \frac{1}{2} \{ |2\omega + 2r + 1| + |2\omega + 2r + 1| \} = |2\omega + 2r + 1| \]
On The Metric Index of Oxide Networks

\[d(u_r, \beta) = \frac{1}{2} \{\lvert -2r - 2\omega + 1 \rvert + \lvert -2\omega + 1 + 2r + 2\omega \rvert \} \]

\[= \frac{1}{2} \{\lvert 2\omega + 2r - 1 \rvert + \lvert 2\omega - 2 \rvert + \lvert 2r + 1 \rvert \} \]

Hence the Lemma.

Discussion: In this paper we have presented distance between the vertex of the Oxide network and metric index of the Oxide network.

REFERENCES

5. Slater P.J, 1975,Leaves of Trees, Congr.Number 1,14,549-559
11. G.M. Magson,X.Yang, Xianoping 1999,Honeycomb tori are Hamiltonian "Information Processing letters." 72(3-4) 99-103

AUTHORS PROFILE

R. Nithya Raj received BSc, MSc, Mphil, degrees in 2008, 2010, and 2013 respectively from R.V.G Arts College, SIVET College and Madras Christian College Chennai, Affiliated to University of Madras. He joined Hindustan group of Institutions in July 2017. He has 6 years of teaching experience in Engineering Colleges. Currently he is doing Ph.D in Graph Theory at Hindustan Institute of Technology and Science.

F. Simon raj received BSc, MSc, Mphil, degrees in 2002, 2004, and 2006 respectively from Loyola College, Chennai, Affiliated to University of Madras. He joined in Hindustan group of Institutions in September 2005. He has 14 years of teaching experience in Engineering Colleges. His research interests are Graph Theory applications and Graph algorithms. Currently He is guiding 3 research scholars in HITS.