Proposed Methodology to Investigate the Metro Operation, Socio-Economic Impact, and its Revenue Using Automatic Ticket Machine Outputs

Mai M Eldeeb, Akram S kotb, Hany S Riad, Ayman A. Ashour

Abstract: Automatic Ticket Machine outputs give the daily passengers’ traffic which entry from any station to exit to all stations in alphabetic arrangements. To utilize these important data for analyzing the phenomena and concluding the important predicted recommendations, a methodology was proposed within the present research paper. This method has the advantage to determine the O-D matrix for the metro passengers using its networks. The proposed methodology can be applicable to analyze, investigate, and predict the metro passenger traffic under different scenarios. To make Automatic Ticket Machine outputs in practices change the Entry-Exit Matrix from alphabetic arrangements into arranged Entry-Exit Matrix according to successive stations. The obtained results concluded the actual operation system on the platform, within the metro doors and into metro cars. In addition to investigate the socio-economic impact for metro stations finally, the corresponding revenue by applying different scenarios for every zone can be predicted.

Keywords: Automatic Ticket Machine; Revenue; Socio-Economic Impact; Metro Operation; passenger intensity.

I. INTRODUCTION

There are many methods to determine and observing a crowded spatial scene and detecting and tracking the motion of any moving object in the scene such as people, animals, or vehicles. Examples of such environments are shopping malls or concourses in airports or railway stations where hundreds of objects move around. To travel through such an environment any object must be identified and his motion must be tracked in order to discover and avoid potential collisions.[1] The problem becomes more difficult, when the sensor is not stationary but also moves around while observing the environment. The motion detection and tracking problem is studied in the context of a research project which is concerned with the development of guidance for an intelligent wheelchair MAid [2]. This guidance system should enable the wheelchair to maneuver autonomously in a shopping mall or a railway station and cross an area with many moving people. E. Prassler, et al [3]. Proposed a method for detecting and tracking the motion of a large number of moving objects in crowded environments, such as concourses in railway stations or airports. Unlike many methods for motion detection and tracking, the 2D range images were used from a laser rangefinder to achieve the real-time capability of this approach. The time-variance of an environment is captured by a sequence of temporal maps, which was denoted as time stamp maps. A time stamp map is a projection of a range image onto a two dimensional grid, where each cell which coincides with a specific range value was assigned a time stamp. Based on this representation the two very simple algorithms for motion detection and motion tracking were obtained. The approach was successfully applied to a set of range images recorded in the waiting hall of a train station during the morning rush-hour.

Katsuyuki NAKAMURA, et, al [4]. Studied the feasibility for analyzing and visualizing passenger flows using laser scanners in a railway station. A network of laser scanners is located on different places and scan pedestrian's feet at a horizontal plane above the ground. Motion trajectories are extracted from the laser points on moving feet. Thus it can find the pattern of passenger flows and its change with time. Through three experiments in railway stations, it was concluded that the proposed method is efficient in examining user behavior even in the crowded stations.

Mai M El Deeb et, al [5]. Studied the optimal operation interaction for GCUM 1st and 2nd lines by proposing a methodology based on field survey of travel time, passenger waiting time, actual headway, alighting and boarding passengers to determine the actual passenger intensity on platform, passenger intensity into train and headway, to determine the ideal operation and the minimum operational costs. Using four alternatives (divide the line into definite links, change headway, overflow of some through stations and uses of suitable metro units) under 5 restrictions (Passenger intensity into train, Passenger exchange time at metro door, Passenger intensity on platform, headway at the end of links and Factor of safety for metro headway) and without any additional capital costs, the results show a lowest cost for both rolling stock capital costs and operation costs. Many engineering consultant [6], [7] studied the passenger traffic fluctuation at railway stations, determined their needs and suggested the improvement.

* Correspondence Author
Mai Moaz Eldeeb, civil department, higher technological institute 10th of Ramadan city, Egypt (Ph.D. Ain Shams university faculty of engineering)
mai.moaz@hti.edu.eg

Akram soltan kotb, construction building, faculty of engineering and technology Arab academy for science, technology and maritime transport, Cairo, Egypt aksvltn@aedt.edu

Hany Sobhy Riad Civil Eng. Dept. Ain Shams University Cairo, Egypt
hany.ryad@eng.asu.edu.eg

Mohamed Ayman Ashour, architecture Eng. Dept. Ain Shams University Cairo, Egypt
ayman.ashour@eng.asu.edu.eg

Revised Manuscript Received on September 08, 2019.

©BEIESP

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
II. PROPOSED METHODOLOGY

Within the following steps, the Automatic Ticket Machine (ATM) inputs can be applicable to analyze, investigate, and predict the metro passenger traffic under different scenarios.

a) Entry- Exit Matrix obtained by Automatic ticket machine (ATM) in alphabetic arrangements, as shown in figure (1)

```
Exit ABBASSIA AIN PASHA AIN HELWAN AIN SHAMS
AIN HELWAN 67 50 574 206
AIN SHAMS 58 132 113 1032
AL SHOADAA 113 91 850 6161
DAR EL-SALAM 490 247 796 545
EL MAADI 252 180 1234 1613
EL DEMERDASH 12 12 103 4073
EL MALEK EL-SALEH 122 70 619 787
EL MARG 0 0 0 0
EL ZAHRAA 170 130 427 773
EZBET EL NAKHL 103 279 221 2076
```

Figure (1) an example of a part of Entry- Exit Matrix obtained by Automatic Ticket Machine (ATM)

b) Rearrange the Entry- Exit Matrix according to successive stations for first, second, and third lines respectively. Figure (2) shows an example of a part of the re-arranged stations.

```
1 | HELWAN | AIN HELWAN | WADI HOF | HADAYE Q HELWAN | MAASARA
---|--------|------------|---------|-----------------|--------
1s | 2278   | 607        | 1795    | 4186            | 4795
2s | 643    | 574        | 269     | 823             | 1085
3s | 1774   | 290        | 449     | 391             | 425
4s | 4524   | 965        | 571     | 761             | 1714
5s | 6868   | 1159       | 830     | 3050            | 1740
6s | 372    | 94         | 19      | 161             | 226
7s | 1961   | 271        | 228     | 1022            | 1241
8s | 1046   | 228        | 101     | 473             | 350
```

Figure (2) an example of a part of the re-arranged stations

c) Ignore the internal traffic within any station as its users are not considered as metro passengers.

Consequently, all the diagonal entry- exit matrix elements becomes zeros and the total entry and exit passengers must be reduced by this values, as shown in figure(3)

```
1 | HELWAN | AIN HELWAN | WADI HOF | HADAYE Q HELWAN | MAASARA
---|--------|------------|---------|-----------------|--------
1s | 92490  | 607        | 422     | 91              | 427    | 425
2s | 91847  | 14285      | 586     | 360             | 1250   | 1510
3s | 91444  | 13678      | 19829   | 370             | 1394   | 1634
4s | 89670  | 13587      | 19243   | 11034           | 1786   | 2059
5s | 89509  | 13297      | 19106   | 10665           | 37391  | 2098
```

Figure (3) O-D Passenger ignoring the internal traffic within any station as its users are not considered as metro passengers

d) replace the zero diagonal entry- exit matrix elements by the sum of the entry passengers at any station as shown in figure (4)

```
1 | HELWAN | AIN HELWAN | WADI HOF | HADAYE Q HELWAN | MAASARA
---|--------|------------|---------|-----------------|--------
1s | 92490  | 607        | 422     | 91              | 427    | 425
2s | 91847  | 14285      | 586     | 360             | 1250   | 1510
3s | 91444  | 13678      | 19829   | 370             | 1394   | 1634
4s | 89670  | 13587      | 19243   | 11034           | 1786   | 2059
5s | 89509  | 13297      | 19106   | 10665           | 37391  | 2098
```

Figure (4) replace the zero diagonals for any station by the sum of entry passengers

e) Estimate the non-records values for the stations which their automatic ticket machine outputs had no records by the aid of the actual field data on 2017 as shown in figure (5a, 5b) respectively.
f) Calculate the passengers’ intensity on the waiting platform zone for each station, table (1) gives an example for waiting passenger intensity at the up direction and the down one.

Table 1 an example for waiting passenger intensity for up and down directions

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>53</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghamra</td>
<td>2414</td>
<td>281</td>
<td>732</td>
<td>166</td>
</tr>
<tr>
<td>El-Demerdash</td>
<td>888</td>
<td>103</td>
<td>101</td>
<td>48</td>
</tr>
<tr>
<td>Mansheiet El-Sadr</td>
<td>478</td>
<td>31</td>
<td>96</td>
<td>48</td>
</tr>
<tr>
<td>Kobri El-Kobba</td>
<td>2119</td>
<td>149</td>
<td>576</td>
<td>175</td>
</tr>
<tr>
<td>Hammat El-Kobba</td>
<td>1032</td>
<td>110</td>
<td>379</td>
<td>79</td>
</tr>
</tbody>
</table>

Waiting passenger intensity /m² = (boarding passenger/train) / (waiting zone width *platform length).

Waiting zone equals 2.5 m for all lines; the platform length equals 200 m for 1st line and equals 180m for 2nd and 3rd lines.

g) Calculate the minimum passengers’ exchange time at each station table (2) gives an example to estimate the minimum stop time for each station.

Table (2) an example to estimate the minimum stop time for each station

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>53</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helwan</td>
<td>2414</td>
<td>281</td>
<td>732</td>
<td>166</td>
</tr>
<tr>
<td>AinHelwan</td>
<td>888</td>
<td>103</td>
<td>101</td>
<td>48</td>
</tr>
<tr>
<td>Helwan University</td>
<td>478</td>
<td>31</td>
<td>96</td>
<td>48</td>
</tr>
<tr>
<td>Wadi Hof</td>
<td>2119</td>
<td>149</td>
<td>576</td>
<td>175</td>
</tr>
<tr>
<td>Tura El-Asment</td>
<td>1032</td>
<td>110</td>
<td>379</td>
<td>79</td>
</tr>
</tbody>
</table>

t stop (sec.) = (1.5 opening door + ((Alighting + Boarding passenger) * 0.5) / (4 doors / car * n cars / train)+1.5 closing door)

Where:

n= 9 cars for 1st line, and 8 for 2nd and 3rd lines.

h) Calculate the passengers’ intensity into cars as shown in table (3).

Table (3) passenger intensity into cars

<table>
<thead>
<tr>
<th></th>
<th>HELWAN</th>
<th>AIN HELWAN</th>
<th>HELWAN UNIVERSITY</th>
<th>WADI HOF</th>
<th>passenger intensity / m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>SARAY EL-KOBBA</td>
<td>9355</td>
<td>1465</td>
<td>3448</td>
<td>1674</td>
</tr>
<tr>
<td>28</td>
<td>HADAYEK EL-ZEITOUN</td>
<td>7470</td>
<td>1443</td>
<td>3392</td>
<td>1657</td>
</tr>
<tr>
<td>29</td>
<td>HELMIET EL-ZEITOUN</td>
<td>6521</td>
<td>1041</td>
<td>3154</td>
<td>1419</td>
</tr>
<tr>
<td>30</td>
<td>MATARIA</td>
<td>6073</td>
<td>788</td>
<td>1671</td>
<td>671</td>
</tr>
</tbody>
</table>

Passenger /day= [trips at off peak * cars/ train (seats + (standing area m2 * passenger intensity / m2 at off peak)]

+ [trips at peak * cars/ train (seats + (standing area m2 * passenger intensity /m2 at peak)] as shown in table (4). Where:

Trips at off peak = 46 trains/ day
Trips at peak = 194 trains/ day.
Proposed Methodology to Investigate the Metro Operation, Socio-Economic Impact, and its Revenue Using Automatic Ticket Machine Outputs

greater Cairo metro for the three lines.

<table>
<thead>
<tr>
<th>Line</th>
<th>units/train</th>
<th>Cars/unit</th>
<th>Unit 1, 2</th>
<th>Unit 3</th>
<th>Standing area (m²)</th>
<th>Seats</th>
<th>Elec. system</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>3</td>
<td>3</td>
<td>MC - M</td>
<td>MC</td>
<td>33.93</td>
<td>34.7</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T - MC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>2</td>
<td>4</td>
<td>N1 - T</td>
<td>N2</td>
<td>26.68</td>
<td>27.44</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. APPLICATIONS

Table (5) summarizes the operating time for the 3 lines during a working hours/day and the corresponding trip/direction. To obtain the maximum passengers on peak hours, the following equation can be used:

\[x = \frac{H_{om} \times N_{om} + H_{p} \times N_{p} + H_{on} \times N_{on}}{H_{om} \times N_{om}} \]

Where:
- \(x \) = ratio between passenger at peak hours and the average passenger within daily working hours.
- \(H_{om} \) = headway at off peak morning
- \(H_{p} \) = headway at peak hours.
- \(H_{on} \) = headway at off peak night
- \(N_{om} \) = trips at off peak morning
- \(N_{p} \) = trips at peak hours.
- \(N_{on} \) = trips at off peak night.

Table (5) the operating time for the 3 lines and the corresponding trip/direction

<table>
<thead>
<tr>
<th>line</th>
<th>off peak</th>
<th>peak</th>
<th>off peak</th>
<th>Total trip/direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>from</td>
<td>to</td>
<td>from</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>5.15</td>
<td>5.35</td>
<td>5.4</td>
<td>18.55</td>
</tr>
<tr>
<td>trips/direction</td>
<td>3</td>
<td>194</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>from</td>
<td>from</td>
<td>from</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>5.15</td>
<td>6.00</td>
<td>6.05</td>
<td>23.45</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>321</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>from</td>
<td>from</td>
<td>from</td>
<td>to</td>
</tr>
<tr>
<td></td>
<td>5.15</td>
<td>6.32</td>
<td>6.37</td>
<td>21.28</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>178</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

A. Check the train operation.

Waiting passenger intensity on the platform Zone:

From table (1), one can draw up the relation between the boarding intensity in passengers / meters square of the waiting zone on the platform at peak hours for all stations as shown in figure (6)

Figure (6) boarding passenger intensity on the platform at the peak hour for all stations

a) Passengers’ Exchange Time

From table (2), one can draw up the Passengers’ Exchange Time at peak hours for all stations as shown in figure (7)

Figure (7) the Passengers’ Exchange Time at peak hours for all stations

b) Intensity into Cars

From table (3), one can draw up the Passengers intensity at peak hours for the 1st, 2nd, and 3rd lines as shown in figure (8.a), (8.b) and (8.c) respectively

Figure (8.a) Passengers intensity at peak hours for the 1st line.
Despite of ticket price increase since July 2018, the metro network is still the preferable mode of transport due to applying the intelligent card and three-month tickets. The metro represents the most rapid public transport especially for long trips, so the metro passenger users who travel for a long and short distance are still using it while passengers for medium distance left it. Table (6) gives the decrease rate of the passengers for 2017 to 2018.

Table (6) decrease rate of the passengers for 2017 to 2018

<table>
<thead>
<tr>
<th></th>
<th>1st line</th>
<th>2nd line</th>
<th>3rd line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>passengers * 10^6</td>
<td>revenue * 10^6</td>
<td>passengers * 10^6</td>
</tr>
<tr>
<td>1st zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.59</td>
<td>1.76</td>
<td>0.27</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.43</td>
<td>1.30</td>
<td>0.18</td>
</tr>
<tr>
<td>2nd zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.30</td>
<td>1.48</td>
<td>0.12</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.20</td>
<td>0.99</td>
<td>0.05</td>
</tr>
<tr>
<td>3rd zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.10</td>
<td>0.72</td>
<td>0.23</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.29</td>
<td>2.01</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Table (7.a) the actual passengers and corresponding revenue for the 3 zones.

<table>
<thead>
<tr>
<th></th>
<th>1st line</th>
<th>2nd line</th>
<th>3rd line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>passengers * 10^6</td>
<td>revenue * 10^6</td>
<td>passengers * 10^6</td>
</tr>
<tr>
<td>1st zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.67</td>
<td>2.00</td>
<td>0.27</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.49</td>
<td>1.47</td>
<td>0.18</td>
</tr>
<tr>
<td>2nd zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.25</td>
<td>1.27</td>
<td>0.10</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.17</td>
<td>0.85</td>
<td>0.05</td>
</tr>
<tr>
<td>3rd zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UP</td>
<td>0.10</td>
<td>0.72</td>
<td>0.23</td>
</tr>
<tr>
<td>DOWN</td>
<td>0.29</td>
<td>2.01</td>
<td>0.04</td>
</tr>
</tbody>
</table>
IV. CONCLUSION

Automatic Ticket Machine outputs give the daily passengers’ traffic which entry from any station (column) to exit to all stations (row) in alphabetic arrangements. To utilize these important data for analyzing the phenomena and concluding the important predicted recommendations, a methodology was proposed within the present research paper. The obtained results concluded the actual operation system on the platform, within the metro doors and into metro cars.

a) Waiting passenger intensity on the platform Zone

Referring to table (1) and figure (7) the average passenger on the up and down platform was found 0.33 and 0.29 pass/m² respectively. Despite the passenger intensity on the platform was around the permissible specifications. There was some high intensity on Alshohadaa and Elsadat platform for the 1st line. Due to the passenger behavior who doesn’t respect the waiting zone width and not gathering uniformly along the train length, so an apparent high passenger density on the platform was recorded.

b) Passengers’ Exchange Time

Referring to table (2) and figure (8) an average stop time = 8.5, and 7.89 sec. for up and down direction respectively, except in Alshohadaa on the down direction and Elsadat for up direction which had 14, 21 sec respectively.

c) Intensity into Cars

Referring to table (3) and figures (9.a), (9.b), (9.c) For 1st line: passenger intensity into cars was less than 2 pass/m² from Maadi to Helwan in the both directions up and down, then on the up direction, the passenger intensity continually increased till it was around 7 pass/m² at Kobri Elkobba station to Elmataria station where a little decrease to be 5 pass/m² at Ezbet Elnakhl, and 3 pass/m² at Elmarg. On the other side on the down direction, the passenger intensity into cars varied within 6 – 7 pass/m²

- For 2nd line: the passenger intensity into cars was not exceeding 4.7pass/m² and 2.7pass/m² for up and down directions respectively.
- For the 3rd line: the passenger intensity was found less than 3pass/m² for up and down directions.

d) Investigate the socio-economic impact for metro stations

One can conclude that the decrease rate of metro passengers on 2017 comparing with the corresponding month with 2018 is less than decreasing rate of July 2018. While the ticket increased from 1L.E to be 2 L.E for all travel distances from January 2018 to June 2018. A large increase on July 2018 has happened (3L.E for first 9 stations, 5L.E from 10 to 16 stations and 7 L.E for more than 16 stations). So the passenger decrease was very large at summer vacations to be constant during education semester.

e) Predicting the daily revenue under different scenarios

Applying different scenarios on the passengers for every zone and the corresponding revenue, one can conclude that the revenue when the 1st zone becomes 10 stations instead of 9 stations will increase by 0.91%, 0.93% for 1st line up and down directions respectively.

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2018</th>
<th>decreasing rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>68981369</td>
<td>68004294</td>
<td>-1%</td>
</tr>
<tr>
<td>March</td>
<td>81208101</td>
<td>77276325</td>
<td>-5%</td>
</tr>
<tr>
<td>April</td>
<td>69598879</td>
<td>72607394</td>
<td>4%</td>
</tr>
<tr>
<td>May</td>
<td>71216107</td>
<td>65347177</td>
<td>-9%</td>
</tr>
<tr>
<td>June</td>
<td>57401297</td>
<td>54764265</td>
<td>-5%</td>
</tr>
<tr>
<td>July</td>
<td>63611194</td>
<td>56988257</td>
<td>-12%</td>
</tr>
<tr>
<td>August</td>
<td>62817941</td>
<td>51738279</td>
<td>-21%</td>
</tr>
<tr>
<td>September</td>
<td>59542343</td>
<td>55231783</td>
<td>-8%</td>
</tr>
<tr>
<td>October</td>
<td>73887863</td>
<td>66312286</td>
<td>-11%</td>
</tr>
<tr>
<td>November</td>
<td>72938537</td>
<td>64397428</td>
<td>-13%</td>
</tr>
<tr>
<td>December</td>
<td>74009603</td>
<td>65343072</td>
<td>-13%</td>
</tr>
<tr>
<td>January</td>
<td>73845988</td>
<td>69003077</td>
<td>-7%</td>
</tr>
</tbody>
</table>

Table (7.a) gives the actual passengers for the three zones in up and down directions and the corresponding revenue

- **Sensitivity study:** Applying the sensitivity study to determine the effect of changing station zones to be 10 stations instead of 9 for zone 1 and 6 stations for zone 2. assume that 1/7 passengers of the 2nd zone up direction (=0.04) will be as passengers of the first zone. These passengers will be increased by .59*106 / .3*106 = 1.97, thus the attractive traffic to the first zone become = .59+0.04*1.97= .67 passengers.

- **% Revenue increase** = (3.27=3.24)/3.24= .93%.

Assume that 1/7 passengers of the 2nd zone down direction (=0.028) will be as passengers of the first zone. These passengers will be increased by 0.3*106 / 0.1*106 =2, thus the attractive traffic to the first zone become = .43 *106 +0.028*3=.49 *106 passengers.

- **% Revenue increase** = (3.32-3.29)/3.29= .9%.
V. RECOMMENDATION

a) Waiting passenger intensity on the platform Zone.
It is recommended to give instructions for metro passengers' users to uniformly distribute along metro length within the waiting platform width.

b) Passengers’ Exchange Time
It is preferable to put platform signs indicating the boarding and alighting zones and controlling the passenger behavior by giving immediate penalty.

It is observed that some passengers still let the metro doors opening by force, so an instant violation is required.

c) Intensity into Cars
For 1st line, it was noticed that the trip from Maadi to Helwan (up and down) was smaller than the standard intensity on the off peak hour (3pass/m²), so it is advised to double the headway for trips between Elmarg to Maadi.

d) Investigate the socio-economic impact for metro stations.

The effect of ticket price increase has a great value from 2L.E to 3 zones ticket. For the same conditions, so it is recommended to study deeply this effect before deciding the increase.

REFERENCES:

5. Mai M Eldeeb, Akram S Qotb, Hany S Riad, Ayman M Ashour “Optimal operation interaction (passenger/train/platform) for Greater Cairo Underground metro (GCUM) 1st and 2nd line”.

HANY SOBHY RIAD
Nationality : Egyptian, Specialization : Railway and Transportation Planning, Position : railway expert, Actual Profession: Professor of Railway Engineering at Faculty of Engineering – Ain Shams University – Cairo – Egypt, Year of birth : 4 March 1948 , Address: 3 Staff members of Ain Shams University Apartments – Demerdash – Abbasia – Cairo – Egypt E-mail Address: hanysohbyr@yahoo.com
Mobile Phone: +2 01117557275
Telephone : +2 26823976

KEY QUALIFICATION

AUTHORS PROFILE

Mai Moaz Eldeeb
Civil engineering, Msc, teching assitstant higher technological institute, Asharya, Egypt, Address: Address: 93 Hafez Ramadan St. from Ahmed Fahkry st., Nasr City, Cairo, Egypt.
E-Mail: mai.moaz@hti.edu.eg, eng_maimoaz@hotmail.com
Place of birth: Cairo-Egypt
Date of birth: November 21, 1984
Languages: Arabic and English
Education Qualifications:

M.Sc. in Civil Engineering, Department of Civil Engineering, Faculty of Engineering, AlAzhar University, Egypt, March 2015.
Thesis Title: “Strengthening of reinforced concrete elements using carbon fibers reinforces polymers fabric”

B.Sc. in Civil Engineering, Department of Civil Engineering, Faculty of Engineering, Higher Technological Institute (Excellent with honor, 90.4%), Egypt, August 2006.
Project Management Professional PMP, preparation course

Akram Soltan koth, construction and building engineering department, associate professor, Arab academy for science technology and maritime transport, Sheraton, Egypt, aksoltan@aast.edu
Associate Professor of Transportation & Railway Engineering, Arab Academy for Science & Technology & Maritime Transport, College of Engineering & Technology, Construction & Building Engineering Dept., Cairo, Egypt.
Member of the JOINT RAILWAY EXPERTS TEAM between AFRICAN UNION and PEOPLE’S REPUBLIC OF CHINA for AFRICA INTEGRATED HIGH SPEED TRAIN INITIATIVE
Executive Director of the Center of Engineering Consultant at the College of Engineering and Technology (Cairo Branch), Arab Academy for Science & Technology & Maritime Transport
Research areas: Transportation and Traffic Engineering, Railway Engineering, Railway Noise and Vibration, Traffic Noise, and Highway engineering
