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Abstract, This work deals with the analytical solution of the rise 

temperature history on the back face of the unfired clay bricks 

related to the theoretical model of flash method, was calculated 

using Duhamel theorem. The local sensitivity analysis of the 

obtained solution shown that the sensitivity coefficients related to 

the thermal diffusivity and the adiabatic limit temperature meets 

the beck criterion for low time range, so these tow parameters can 

be simultaneously estimated with a good accuracy in this time 

range. Due to the slow convergence of the analytical solution in 

short times, the procedure for estimating the thermophysical 

properties is relatively slow. The theoretical analytical solution 

has therefore been replaced by an equivalent solution whose 

convergence speed was improved using the Wynn Epsilon method. 

The apparent thermal diffusivity and the adiabatic limit 

temperature of samples were then estimated by fitting measured 

rise temperature with the equivalent analytical solution. It is 

interesting to note the good agreement between the theoretical 

model with predicted values of parameters and the experimental 

data.  

Keywords : Thermophysical properties, The flash method, 

Analytical solution; Numerical solution; Earthen materials.  

I. INTRODUCTION 

At the international level, the building sector is one of the 

main energy consumers with around 28% of final energy 

consumption [1] and contributes around a third of CO2 

emissions [1]. As a result, reducing energy costs in this sector 

is a major challenge to energy strategies in many countries. 

In the following, we present a brief survey of studies 

published in recent years concerning the measurement of the 

thermophysical properties of building materials, with a 

special attention put on methods for the thermal diffusivity 

identification from flash method. Chihab et al [2] 

investigated the adiabatic limit temperature and the thermal 

diffusivity of unfired clay brick by using a numerical inverse 

estimation. In this study a global minimization algorithm is 

used and the theoretical model of flash method is calculated 

using a semi analytical solution.  In the work of Michele 

Dondi et al [3] the thermal conductivity of clay brick was 

determined                         and correlated with the 

compositional, physical and microstructural properties of the 
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raw materials. El Azhary et al [4] tried to valorize agricultural 

residues such as wheat straw in the manufacture of 

construction materials. In particular they showed that the 

addition of straw improve significantly the thermal properties 

of unfired clay brick. Stefania Liuzzi et al [5]-[6] examined 

the improvement of the thermal properties of earthen brick 

mixed with olive fibers. Chihab et al [7] studied  the effect of 

clay consistency on the thermal properties of the composite 

material clay_straw. 

The majority of studies concerning the thermal diffusivity 

estimation are investigated using a numerical theoretical 

solution. In this research, The thermal diffusivity is estimated 

by solving analytically the transient heat conduction equation 

using Duhamel theorem under time-dependent convection 

boundary conditions of flash model. 

The present work deals with the study of thermophysical 

properties of raw brick walls made from earth collected in 

three different sites in Morocco. 

II. EXPERIMENTAL APPROACH  

A. Samples preparation 

Three different raw clays extracted from three Moroccan 

sites (clay of Marrakech (CM), clay of Tamansourt (CT) and 

clay of Essaouira (CE)) were studied. 

The Atterberg limit test and particle size analysis were 

carried out to determine the geotechnical and the physical 

properties of the raw material. Particle size distribution was 

determined using a sieving test according to standard NF P 

94-056[8]. Figure 3 shows the grain size distribution for the 

clay used. Consistency limits were determined using a 

standard method NF P94-052.1[9] and NF P94-051[9] for 

measuring liquid and plastic limits, respectively. Table 1 

illustrates the Atterberg limits obtained for raw clay. 

Plasticity index was also reported on this table.  

 

Table-I: The Atterberg limits of the three raw clays 

used  

sample 

Atterberg  Limits 

Liquidity 

Limit(%) 

Plasticity 

Limit(%) 

Plasticity      

Index(%) 

 Clay (CM) 
 

37 23 14 

 Clay (CT) 65 25 40 

 Clay (CE) 46 26 20 

 

The mineralogy of each clay was characterized using 

X-Ray Diffraction analysis. The results are in figure 1. The 

samples are generally composed of: quatrz, calcite,  
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dolomite and clay minerals (Kaolinite, Illite, and 

Vermiculite). 

. 

 

Fig. 1. X-Ray Diffraction of raw clay (a: CM),(b: CT),(c: 

CE) 

Three samples were then prepared ( Fig 2). The water to 

clay ratio was kept equal to 28%.The samples were then dried 

in an oven at 70°C during three days and packed in plastic 

films to avoid any moisture contamination. 

 

       

Fig. 2. Studied samples (a) CT, (b) CE, (c) CM 

 

   
Fig. 3. Grain size curves of the three clays 

III. THERMAL DIFFUSIVTY  ESTIMATION  BY  

THE FLASH METHOD  

This method is mainly used to estimate the thermal 

diffusivity of materials. Its basic principle is described in the 

Figure 4. The front face of the sample is exposed to a strong 

heat pulse and the variation of the rise temperature with time 

is measured at the rear face. Temperature with time is 

measured at the rear face using a thermocouple type K. 

 

 

Fig. 4. Schematic of the flash method    

A. Mathematical model 

In order to have one dimension heat conduction across the 

sample, its lateral sides were isolated. We assume that the 

absorbed energy at the front face is uniform and the initial 

temperature T0 is equal to  the ambient one. The rise 

temperature T is then governed by the following system (1).  
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Where a is the thermal diffusivity and λ is the thermal 

conductivity, h1 and h2 are the global heat exchange 

coefficients on both sides of the sample, [g(t)=Q0.×f(t)] is the 

finite pulse with duration td, Q0(W/m2)is the finite amount 

of heat absorbed at the front boundary (x=0) and f(t) is the 

time dependence of the heat generation. We notice that we 

have nonhomogeneous boundary conditions and they are 

time functions (g(t)) so the resolution of system (1) cannot be 

done directly using the method of separation of variables. In 

the literature many authors have solved this system by the 

method of the Laplace transform [2],[4],[7],[10]. The 

thermogram of the temperature on the back face is then 

recovered by inverting theoretically or numerically the 

obtained solution in the Laplace space. In this paragraph we 

develop a new analytical solution based on Duhamel's 

theorem  according which the solution T(x, t) can be 

expressed as:  

( ) ( )
=


 = −   
 

t

0

T x ,t R x ,t , d
t

                                (2)                                                                         

Where R (x, t, μ) is the solution of the auxiliary system (3) 

and  is a parameter. 
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The system (3) can be reduced to a problem with 

homogeneous boundary conditions by assuming that R(x, t, 

μ) has the following from: 

 

( ) ( ) ( )R x, t, U x, t, M x, t, =  +                                       (4)                                                                                

 

Where U(x, t, μ)  is an arbitrary function  satisfying  the 

two boundary conditions (5): 
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We take for U(x,t,μ) the following form : 
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A  and  B can be calculated using the boundary conditions 

(5)  

For x=0:  
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Replacing Eq. (4) in (7) conduct to : 
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Then the function M(x, t, μ)  must be the solution of the 

problem: 
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Resolution of system (9) by the Variable Separation 

Method: 

 

( ) ( ) ( ) =  M x ,t , A x , C t                                                (10)                                                                             

 

Replacing Eq.(10) in the system (9) leads to the following 

equations: 
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f  is a constant because the two functions A(x,μ) and  C(t) 

depend on one of  x, μ  and the other on t. 
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The superposition principle allows to write the general 

solution of equation (8) in the form: 
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With : 
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( ) ( ) ( )n n n n nA x, a .Cos f .x b .Sin f .x = +
                

(11)
             

 

 

For  x=0: 
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elacing Eq. (A.12) in (A.11) conduct to :
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an can be calculated by using  orthogonality properties of 

the normalized eigenfunctions An(x) Eq.(15): 
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We obtain: 
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cn can be calculated using the initial condition :  
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We develop the calculation of integral in Eq.(18) we obtain : 
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Assuming a square shape of the heat pulse g(t), the 

temperature on the back side of the sample is finally given by 

the following new expression : 
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  e is the thickness of the sample, 0
ma

Q
T

ce
=


is the 

adiabatic limit temperature, c is the specific heat , ρ is the 

density, 1
i1

h e
b =


2

i2

h e
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  

are the Biot numbers. 

Where the eigenvalues fn are solutions of the 

transcendental equation: 
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                                                           B. Local sensitivity analysis  

Four unknown parameters are involved in the theoretical 

model namely Tma, a, bi1 and bi2. 

The four parameters will be estimated simultaneously from 

measured and theoretical model of flash method.  

The theoretical involves four unknown parameters namely 

Tma, a, bi1 and bi2. These parameters will be estimated. 

However, the analysis of their sensitivities coefficients must 

be carried out before, in order to identify which parameters 

can be simultaneously predicted with a reasonable accuracy. 

The main condition to estimate simultaneously all parameters 

is that their sensibility coefficients must be different from 

zero and linearly independent ( Beck criteria[11]). Moreover 

the central idea, beyond the sensitivity analysis, is to 

determine the time interval in which the model is very 

sensitive to a small change of the parameter to be inferred. 

For a given parameter the relative coefficients of 

sensitivity   is defined as: 

 

With 1,2,3,4


= =


k

k

h
k

T
k




 
Where ηk is the unknown parameters (η1=a, η2=Tma 

,η3=bi1,η4=bi2). All of the above derivatives was performed 

analytically using Mathematica 11.3 language. 

Figure 5 shows an example of the variation of the relative 

coefficients of sensitivity with time. 

 

 

Fig. 5. Relative coefficients sensitivity curves (bi1=0.2   

bi2=0.1 e=0.01m  a=10-7m2/s  Tma=1°C) 

We can see that the model is more sensitive to the change 

in a and Tma . Their sensitivity coefficients meets the beck 

criteria[11] for low time range (t<350s). So a and Tma can be 

simultaneously determined with a good accuracy in this time 

range. We also notice that the model is very weakly sensitive 

to bi1 and bi2.Their sensitivity coefficients are both very 

small and correlated over most of the time interval. As a 

result, these tow later parameters cannot be estimated with a 

good accuracy. 

The analytical series solution converges very slowly 

especially at low times making the estimation procedure of 

parameters very time consuming. To improve the 

convergence, the original solution was transformed using  the 

speeding technique  of  Wynn's  Epsilon [12]. 

The method provides an efficient algorithm for 

implementing transformations of the form: 
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is the partial sum of a sequence  
 k k
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

 that is useful for 

improving series convergence. 
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 The basic definitions of the Epsilon algorithm are given as 

follows: 
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For j = 1,2,. . . then we calculate the new estimates by: 
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The elements with even index provide approximations of 

the limit S of the series to transform, while the elements with 

an odd index are only auxiliary quantities, which diverge if 

the whole process converges. For the same number of terms 

(n=120) figures 3 and 4 show that the average Central 

Processing Unit (CPU) time consumed is very long for the 

analytical solution without convergence acceleration 

compared with CPU time needed for the transformed series. 

The Wynn's Epsilon method improve significantly the 

computational efficiency by a ratio of  35 for this example 

with a similar accuracy. 

 

 

 

 

Fig. 6. Comparison between the analytical solution with 

and without convergence acceleration (bi1=0.0007  

bi2=0.0007 e=0.02m  a=8×10-7m2/s  Tma=1.3°C) 
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Fig. 7. comparison between the analytical solution with 

and without convergence acceleration (bi1=1 bi2=1.5 

e=0.02m a=3×10-7m2/s Tma=1.3°C) 

           C. Comparison with solution derived from the Laplace 

transform technique 

The validation of the analytical solution has been carried 

out with  a semi analytical solution using numerical inversion 

of  Laplace transform. 

The Laplace transform of  system (1). allows expressing 

the Laplace transform    of the rise temperature as: 

( )
 

( ) ( )
( ) ( ) ( )

ma i1 i2

2

ma

2
i1 i2

i1 i2
2

e
T .F p

a

b .b A p e
b b B p A p

e,T ,a,b ,

p
e

b ,p

a
p

a

 =
 
 
 + + +
 
 
     

(26)                                                                                             

                   

(12)  

 

with: ( ) ( )
2 2e e

A p Sinh p and B p Cosh p .
a a

   
= =   

   
   

 

 

( )
p.td

d

1 e
F p .

p.t

−
−

= is the Laplace transform of f (t) . 

 

Gaver -Stehfest’s algorithm [13] approximates the solution 

in the reel space using the following equation : 

 

  

 

 

 

 

 

 

 

 

 

Fig. 8. Comparison between the analytical and numerical 

solutions (bi1=3.34  bi2=3 e=0.02m  a=5×10-7m2/s  

Tma=1.2°C) 
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The coefficients Vj are given by the relation : 
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The  figures 8 and 9 show the curves  given  by  the new  

analytical solution and  the solution obtained  by numerical 

inversion using  Gaver -Stehfest method. As we can see there 

is  a good agreement between the two solutions. 

D. Local Minimization Procedure 

The optimal values of the Tma, a bi1 and bi2 are sought so 

as to minimize the quadratic distance M between Tth and the 

experimental thermogram  Eq.(29) 

( )
N

2

ma i1 i2 exp j th ma i1 i2 j

( j 1)

e,T ,a,b ,b T (t ) T (e,T ,a,b ,b , t )
=

  = −        (29)                                                                                              

 

A local minimization can be used to estimate the unknown 

parameters. The Principal Axis Algorithm of Brent) [14] was 

then chosen. It is derivative-free algorithm and it needs two 

distinct starting conditions for each parameters. 

For the thermal diffusivity, the starting conditions are 

calculated using the Parker’s formula (Eq.30). [15] 

  ( )= 
Par ker Par ker

a a ,1.1 a
 

 

While the starting conditions of the adiabatic limit 

temperature (Tma) are calculated by 

 

( )= 
ma max ex max ex

T T ,1.1 T  

Where 

=
2

Par ker

1 / 2

e
a 0.1388

t
                                                          (30) 

                              

e is the sample thickness and t1/2  is the time up to reaching 

half of the maximum Tmaxex of the experimental 

thermogram
ex

T on the rear face. 

It is worth mentioning that for a model with heat loss at rear 

and front faces of sample (bi1≠0 and bi2≠0) we have  


ma max imum

T T

 An approach based on the results deviation and the 

computational efficiency is discussed in order to compare a 

local minimization (Principal axis method of Brent 

algorithm) [14] with a global minimization (Nelder Mead ) 

[16] used in previous work [2]. 
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IV. RESULT AND DISCUSSION 

It is noticed that the thermal diffusivity and the adiabatic 

limit temperature in table II were estimated using the 

analytical solution combined with Wynn's Epsilon method to 

calculate the theoretical model of flash method and a local 

minimization procedure (Principal axis method of Brent). 

The experiment has been repeated three times on the same 

sample for flash method and hot steady plate in order to 

determine the experimental relative measurement deviation, 

and then to take the mean value from the three experiments as 

result of the thermal properties characterization. 

The relative measurement deviation is defined as:  

 

−


m

m

E E
100

E
 

Where m
E

 is the average value of the thermal properties 

and E is the estimated value of the thermal properties. The 

deviation gives quite acceptable results. (maximum deviation 

of about 2% for the thermal diffusivity). The apparent 

densities are easily calculated knowing the dimensions and 

masses of the dry samples. As evident from Table 1 that the 

clay (CM) has the highest density of 

1890.256kg/m3.While,the clay (CE) has the lowest ones. 

According to the results of Table II, it is noticed that the 

adiabatic limit temperature increases with the decrease of 

density. In addition, the clay (CM) has the lowest value of the 

adiabatic limit temperature which means that it has the 

highest value of volumetric capacity (ρ.c). 

 

 

 

 

 

Table- II: The thermal diffusivity and the adiabatic limit temperature of the two types of unfired clay brick  

Sample Test 

Estimated 

diffusivity     
a×10-7[m2.s-1] 

Measurement 

deviation (%) 

Estimated 

Tma [°C] 
ρ [kg/m3] 

Clay 

(CT) 

1 3.290 1.300 1.036 

1616.83 

2 3.261 0.300 1.004 

3 3.194 1.720 0.989 

Mean 

value 
3.250 _ 1.009 

Clay 

(CE) 

1 3.013 0.060 1.049 

1616.16 

2 3.020 0.160 1.041 

3 3.014 0.030 1.082 

Mean 

value 
3.015 _ 1.060 

  

 
Clay 

(CM) 

 1 3.641 1.470 0.970 

1890.25 

2 3.618 0.800 0.913 

 
 3 3.506 2.000 0.964 

 Mean 

value 
3.588 _  0.949 

      

Table- III: Comparison between local and global minimization algorithms  

Sample Test 

Local 

minimization 
Present work 

a×10-7[m2.s-1] 

Gocal 

minimization 
[2] 

a×10-7[m2.s-1] 

Deviation 
[%] 

Local 

minimization 
Present work 

Tma [°C] 

Gocal 

minimization 
[2] 

Tma [°C] 

 

Deviation  
[%] 

Clay 

(CT) 

1 3.290 3.284 0.18 1.036 1.034 0.19 

2 3.261 3.264 0.09 1.004 1.000 0.39 

3 3.194 3.197 0.09 0.989 0.985 0.4 

Clay 
(CE) 

1 3.013 3.005 0.26 1.049 1.0468 0.2 
2 3.020 3.009 0.36 1.041 1.041 0 

3 3.014 3.003 0.37 1.081 1.081 0 

 
Clay 

(CM) 

 1 3.641 3.659 0.49 0.970 0.964 0.62 

2 3.618 3.625 0.19 0.913 0.908 0.5 

 3 3.506 3.508 0.05 0.964 0.965 0.1 

 

Table III presents a comparison between local and global 

minimization algorithms to estimate the thermal diffusivity 

and the adiabatic limit temperature of the two types of unfired 

clay bricks. It can be readily shown in table III that the two 

algorithms give similar results but the global minimization 

algorithm converge more slowly. Regarding the 

computational efficiency as manifested by the needed CPU 

times of the two algorithms in table IV we can see that (CPU) 

time consumed is very long for the global minimization 

algorithm (CPU t=40.177s) compared with CPU time 

consumed for the local minimization algorithm (only CPU 

t=1.737s). We can conclude that the local minimization 

procedure is more interesting for our problem (flash method) 

because it is can give a similar results as the global 

minimization and it is can be converge very quickly. 
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Table-IV: The computational efficiency of several 

estimation procedures of flash method 

Sample Test 

Local 

minimization 
Present work 

CPU time(sec) 

Global 

minimization 
[2] 

CPU time(sec) 

Clay 

(CT) 

1 1.825 39.561 

2 1.716 38.129 

3 1.872 38.501 

Clay 
(CE) 

1 2.010 38.137 

2 1.669 39.855 

3 1.622 41.820 

  
 

Clay 

(CM) 

 1 1.684 41.917 

2 1.622 42.120 

  3 1.620 41.558 

_ 
Mean 

value 
1.737 40.177 

 

The estimated parameters are then injected into the 

theoretical model in order to compare it with the 

experimental data. Figures 9,10 and 11 present the predicted 

and measured temperature at rear face for the three types of 

unfired clay brick. It is interesting to note the good agreement 

between the theoretical model with predicted values of 

parameters and experimental data. 

 

Fig. 9. Comparison between the theoretical and 

experimental data(CM) 

 

Fig. 10. Comparison between the theoretical and 

experimental data(CE) 

 

Fig. 11. Comparison between the theoretical and 

experimental data(CT) 

V. CONCLUSION 

This work presents theoretical and experimental 

investigations to evaluate the thermophysical properties of 

earthen walls mad from three types of unfired clay bricks. 

From the results, it can be noted the conclusions below : 

1) .An analytical solution is used to estimate the thermal 

diffusivity and the adiabatic limit temperature.  

2). Whynn's Epsilon method improves significantly the 

computational efficiency and the numerical integration speed 

of the analytical solution of flash model with almost similar 

accuracy. 

3). A local minimization is more interesting as a global 

minimization to estimate a and Tma  from the flash method. 

4). Increases in density causes an increase in the thermal 

diffusivity of samples 
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