Probabilistic Earthquake Scenarios in Bangladesh Based on Magnitude and Depth Parameters

Samsunnahar Popy, Syful Islam

Abstract: Geographical and tectonic settings of Bangladesh make it susceptible to seismic hazard. Besides, historical evidence says that numerous earthquakes with very large magnitude occur in this region. Currently, the Indian plate is gradually moving in the northeast and subduce beneath the Eurasian Plate. So, geologist suspects that a terrible earthquake with greater than eight (>8) magnitude is inevitable in this highly populated region. Therefore, assessing the integrated vulnerability of earthquake in this region is a prime concern for most of the geologists. In this paper, we performed a rigorous assessment of the earthquake’s vulnerabilities by analysing the historical earthquakes from the last 118 years (1901-2018) that occurred in Bangladesh and the surrounding regions (20.65° N to 28.00° N latitude and 87.00° E to 93.75° E longitude). Moreover, we also perform probability-based distribution analysis to show the intrinsic relationship among various parameters, especially earthquake magnitude and depth. Here, the necessary data are collected from the USGS (United States Geological Survey).

Keywords: Earthquake, frequency, magnitude, vulnerability.

I. INTRODUCTION

Bangladesh has been treated as one of the worst countries in the world in terms of natural disasters, hitting a large number of people within the past decade. A person living in the Asia Pacific region is four times riskier than the ones in Africa and 25 times than in Europe or North America [1]. The settings of geography and the numerous anthropogenic features make this area vulnerable to devastating natural disasters. Due to the fact, Bangladesh is frequently suffering from catastrophic cyclones, storm surges, floods, riverbank erosion, tornados, cold wave, and drought. Among the earthquake is the most vulnerable one. The historical record of seismicity in Bangladesh and closely located areas indicate the high risk of earthquake. Since Bangladesh is geographically located close to the plate margins of Eurasian and Indian plates.

The area of this country is bounded by the Shillong Plateau; the Himalayan Arc and the Dauki fault system in the north, Indian shield to the west, the Indo-Burma ranges to the east and Bay of Bengal to the south that makes the country a complex geographical position. So, there is history of occurrences of many strong and devastating earthquakes in Bangladesh. Presently, the plate of India is moving gradually in the north-east at a speed of almost 6 cm/year and the plan of Eurasia is moving to the north at 2 centimetres per year [2].

II. TECTONICS AND GEOLOGY

Bangladesh is located at the intersection of three plates: the Eurasian Plate, the Indian Plate and the Burma Platelet [3]. The main part of the Bangladeshi region is occupied by one of the largest delta which is formed by the Ganges Brahmaputra-Meghna river system. Bangladesh geology is closely related to its tectonic evolution which started during the late Cretaceous period when the Indian plate moving northward and collided with the Eurasian plate.

A. Tectonic Evolution in Bangladesh

India was a large island about 225 million years ago; located with the Australian coast and separated from Asia by the Tethys Ocean. After detaching from the supercontinent 110 Million years ago, Gondwana landmass (the Indian plate) started moving to the drift in northward towards the Asian region. During the late cretaceous period, the plate of India collided with the plate of Eurasia and formed the Tibetan Plate and the Himalaya Mountains, which are still rising [2]. After that at the end of the Eocene time, the second collision between the Indian plate and Eurasian plate occurred and the guls became shallow. The third collision, which occurred in Middle Miocene, created the

There exist five major fault zones in and around Bangladesh. Threatened earthquake disaster inside Bangladesh may be expected from these active seismic zones. Depending on the previous geological survey record, at least 691 earthquakes have experienced by Bangladesh which are of minor-to-moderate magnitudes from 1901 to 2018. The earthquake of great India in 1897 with a magnitude of 8.7 Mw affected almost the whole Bangladesh area. Currently, the experts related to earthquake study are considering the recent earthquakes of ranges low to the medium magnitude as an advance alarm for Bangladesh for a potentially disastrous earthquake in the near future. Moreover, experts are also suspecting that if an earthquake with a magnitude of 7.0 on the Richter scale occurs in large cities of Bangladesh, there would be a major human tragedy and economic disaster. A good number of case study and researches have been performed on the earthquake in Bangladesh. In this analysis, we have assessed the risks of earthquakes in Bangladesh by adopting some statistical analysis to analyse the earthquakes that were generated in Bangladesh and closer area of last 118 years ranging from 20.65° N to 28.00° N latitude and 87.00° E to 93.75° E longitude.
thick pile sediments of Sylhet, Chittagong, and Assam. The fourth and fifth collisions mainly caused vertical movements. The plateau of Shillong and Hills formed a horst and Dinajpur shield a graben at the time of the fourth collision. The red clay tablelands are uplifted by the fifth collision [5].

B. Tectonic plates current condition related to Bangladesh

The plate of India is most dynamic even after a long period. The Himalayas levels are gradually rising higher by more than 1 cm/year as India continually moving northwards into Asia, which indicates the occurrences of shallow-focus earthquakes in the region. Various scientific groups now undertake GPS studies to investigate the movement of the Indian plate. A survey based on GPS measurement of velocities and crustal deformations in the Indian subcontinent was published by Sridevi Jade which reveals that 2500 km stretch of the Himalayan arc from Kashmir to Arunachal Pradesh is about 1-2 cm/year, whereas, southern peninsular India moves as a rigid plate with a constant velocity. The research also shows that the plate of India moved at a rate of 14.9 cm/yr. during 40 million years ago and gradually it reduced and currently, the Indian plate is moving in the northeast at a speed of approximately to 5.5 cm/yr [6]. Comparatively the Eurasian plate is a slow-moving plate than Indian plate. It is important to note that the plate of the East-Asia is moving to the north gradually almost 2 centimetres/year. The continuous and gradual motion of the Indian plate towards the north-east direction and faces a heavy obstacle at the Eurasian boundary; led to the underthrusting of Northern Indian plate beneath Eurasia and convergence of the Himalayas. The convergence finally led to the accumulation of enormous strain that consequently made this area as seismically hazardous regions on the Earth.

III. EARTHQUAKE VULNERABILITY OF BANGLADESH

Nowadays, geologist thinks that megaquakes alongside the Himalayas Region aren’t possible event but inevitable as the Indian Plate continues to push north below the Eurasian Plate. Earthquakes occur along the fault line and tectonically unstable area. The general tectonics of the Bangladesh and adjacent place is vulnerable for most the frequent and habitual earthquakes. The Shillong plateau located in the north of the country and its neighbouring region has high seismic status. Considering geology and tectonic Bangladesh and neighbourhood five tectonic blocks can be identified which has the potential for giving way to devastating earthquakes zone named as Bogra, Tripura, Shilong, Dauki and Assam. All of these can potentially produce earthquakes of a magnitude greater than seven (>7).

Here fig and table represent the frequency of earthquake along this five-fault zone. Among them, the most active seismic zone is Assam fault zone, where minor to great total 379 number of earthquakes and maximum magnitude was 7.2m felt in the last 118 years. Tripura fault zone (one of the states of India) which is very close to Bangladesh is characterized by the high concentration of earthquake events where a total of 268 numbers of earthquakes felt. Among these fault zones, Dauki Fault has a history of creating high-magnitude seismic activities [7]. The Dauki fault zone along the Meghalaya-Bangladesh is a 300 km long north dipping reverse-fault. It has a major role in deforming the surrounding areas. A number of epicentres fall on or close to this fault and some of them were of damaging character. This fault has become inactive but it is still considered as one of the major threats for the earthquake in Bangladesh. In the last 118 years, a total of 37 earthquakes and maximum 7.1m occur here.

Fig. 1. Boundary of the plate between Indian and Eurasian, Akhter, S.H.(2010).

Fig. 2. Five active seismic zones in Bangladesh and its surrounding region with their frequency of earthquakes.
The coastal fault zone is very much vulnerable for creating a destructive tsunami for Bangladesh. Recently, a northeast-southwest trending fault named as Bogra fault has been discovered, to the northwest part of Bangladesh. This fault is located to the west of the Jamuna River and south of Rangpur, Rajshahi. Comilla are vulnerable to earthquake disaster. Based on the analysis, the Bangladesh region can be divided into three earthquake potential zones.

Zone-1: Sylhet Mymensing is with the possible magnitude of 7 on the Richter scale.
Zone-2: Comilla, Chittagong, Dhaka, and Tangail are with the potential magnitude of 6 on the Richter scale.
Zone-3: rest of the country with the other possible earthquakes.

Bogra town. Bogra fault is a gravity fault deposited by alluvium is susceptible to earthquakes. For the existence of the geological boundary of the plate and the fault lines threatened serious earthquake disaster inside. So much of the country, including Sylhet, Chittagong, Dhaka, Mymensing, Earthquakes occur along faults, so to study earthquake risk in Bangladesh Michael Steckler, a geophysicist and his team of structural geologists studied the active faults in and around Bangladesh [8]. Geologist states that Megathrust faults can occur at subduction zones, and gradually, one plate is moving under another plate due to earth's tectonic plates are colliding with each other. These faults can potentially produce the largest earthquakes, reaching and even exceeding 9.0 magnitudes [9]. The study carried by, a geophysicist Michael Steckler and his team revealed that a massive hidden fault buried under millions of tons of sediment beneath Bangladesh, parts of Myanmar and east India could realize an earthquake of magnitude 8.2 to 9.0. Bangladesh lies in the world largest delta drained by Ganges and Brahmaputra rivers.

The rivers are most important for hundreds of millions of people living in this region. The flow of two massive rivers carried massive amount of sediment from upland and finally deposits these in this floodplain region. The geology below the Ganges Delta obscured due to the constant overlaying of sediments. These millions of tons of sediment that pile up in the delta region of these rivers that creates another danger of earthquake, in addition to the potentially devastating megathrust fault. In an earthquake, the shaking will cause the sandy ground to behave like a liquid in a process known as liquefaction. This makes the shaking even more devastating to buildings built on this sandy ground.

For experimental purpose, earthquake experts installed some highly precise and sensitive GPS devices throughout India, Bangladesh and Myanmar in 2003-2014. Combining data with the existing GPS data obtained from Myanmar, India and the measurements indicate that the east part of Bangladesh and a bit of the eastern part of India are moving diagonally into the west part of Myanmar at a rapid clip—46 millimetres per year, or about 1.8 inches. As a result, distance from Myanmar to Bangladesh is being shortened by 17 millimetres/year. One plate is driving under the other deep beneath the surface in an area encompassing Bangladesh, eastern India and parts of Myanmar. [10]. (Bangladesh, North-East India, Nepal, and Myanmar) make the region vulnerable to frequent earthquakes. The history of earthquakes in Bangladesh and surrounding areas indicates that many severe earthquakes with considerably large magnitude greater than 7.0 (Richter) have occurred in this landmass in the past. More than 100 earthquakes vibrated Bangladesh during the 20th century.

Table-I: Five active seismic zone in Bangladesh

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Fault zone</th>
<th>Number of earthquakes</th>
<th>Maximum (Magnitude)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bogra fault zone</td>
<td>8</td>
<td>5.2</td>
</tr>
<tr>
<td>2</td>
<td>Tripura fault zone</td>
<td>268</td>
<td>6.2</td>
</tr>
<tr>
<td>3</td>
<td>Dauki fault zone</td>
<td>37</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>Assam fault zone</td>
<td>379</td>
<td>7.2</td>
</tr>
<tr>
<td>5</td>
<td>coastal fault zone</td>
<td>14</td>
<td>5.8</td>
</tr>
</tbody>
</table>
Probabilistic Earthquake Scenarios in Bangladesh Based on Magnitude and Depth Parameters

Table-II: List of the biggest earthquakes >6 magnitude that have occurred in this region from 1901 to 2018. (United States Geological Survey, 1901-2018)

<table>
<thead>
<tr>
<th>Date</th>
<th>Place</th>
<th>latitude</th>
<th>longitude</th>
<th>Depth</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>18th Sep 2011</td>
<td>Sikkim, India</td>
<td>27.73</td>
<td>88.16</td>
<td>50.00</td>
<td>6.90</td>
</tr>
<tr>
<td>21th Sep 2009</td>
<td>Bhutan</td>
<td>27.33</td>
<td>91.44</td>
<td>14.00</td>
<td>6.10</td>
</tr>
<tr>
<td>21th Nov 1997</td>
<td>India-Bangladesh border region</td>
<td>22.21</td>
<td>92.70</td>
<td>54.40</td>
<td>6.10</td>
</tr>
<tr>
<td>08th May 1997</td>
<td>India-Bangladesh border region</td>
<td>24.89</td>
<td>92.25</td>
<td>34.90</td>
<td>6.00</td>
</tr>
<tr>
<td>30th Dec 1984</td>
<td>India-Bangladesh border region</td>
<td>24.64</td>
<td>92.89</td>
<td>22.60</td>
<td>6.00</td>
</tr>
<tr>
<td>06th May 1984</td>
<td>Manipur, India region</td>
<td>24.26</td>
<td>93.55</td>
<td>33.00</td>
<td>6.00</td>
</tr>
<tr>
<td>19th Nov 1980</td>
<td>Sikkim, India</td>
<td>27.39</td>
<td>88.75</td>
<td>17.00</td>
<td>6.10</td>
</tr>
<tr>
<td>22th Jan 1964</td>
<td>Myanmar-India border region</td>
<td>22.31</td>
<td>93.59</td>
<td>70.00</td>
<td>6.20</td>
</tr>
<tr>
<td>14th Dec 1955</td>
<td>Myanmar-Bangladesh border region</td>
<td>21.82</td>
<td>92.66</td>
<td>35.00</td>
<td>6.20</td>
</tr>
<tr>
<td>23th Feb 1954</td>
<td>Bhutan</td>
<td>27.67</td>
<td>91.61</td>
<td>15.00</td>
<td>6.20</td>
</tr>
<tr>
<td>16th Aug 1950</td>
<td>Arunachal Pradesh, India</td>
<td>27.49</td>
<td>92.80</td>
<td>15.00</td>
<td>6.00</td>
</tr>
<tr>
<td>15th Aug 1950</td>
<td>Meghalaya-Assam region, India</td>
<td>25.34</td>
<td>92.94</td>
<td>25.00</td>
<td>6.00</td>
</tr>
<tr>
<td>21th Jan 1941</td>
<td>Bhutan</td>
<td>27.17</td>
<td>91.86</td>
<td>15.00</td>
<td>6.60</td>
</tr>
<tr>
<td>02nd July 1930</td>
<td>Meghalaya, India region</td>
<td>25.93</td>
<td>90.18</td>
<td>15.00</td>
<td>7.10</td>
</tr>
<tr>
<td>09th Sep 1923</td>
<td>Bangladesh</td>
<td>24.94</td>
<td>90.72</td>
<td>15.00</td>
<td>6.80</td>
</tr>
<tr>
<td>08th July 1918</td>
<td>Bangladesh</td>
<td>24.60</td>
<td>90.85</td>
<td>15.00</td>
<td>7.20</td>
</tr>
<tr>
<td>03rd Dec 1915</td>
<td>Bhutan</td>
<td>27.70</td>
<td>91.64</td>
<td>15.00</td>
<td>6.50</td>
</tr>
</tbody>
</table>

Table-III: Frequency of occurrence of earthquakes

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Magnitude</th>
<th>Number of occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>>8</td>
<td>0</td>
</tr>
<tr>
<td>Strong</td>
<td>7-7.9</td>
<td>02</td>
</tr>
<tr>
<td>Moderate</td>
<td>6-6.9</td>
<td>14</td>
</tr>
<tr>
<td>Light</td>
<td>5-5.9</td>
<td>112</td>
</tr>
<tr>
<td>Minor</td>
<td>4-4.9</td>
<td>516</td>
</tr>
<tr>
<td>Very Minor</td>
<td>3-3.9</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>2-2.9</td>
<td>0</td>
</tr>
</tbody>
</table>

Recently, seismic activity was found to be increased in Bangladesh. Also, we don’t find information related to the earthquakes around 500 years ago except a few historical evidences which are not adequate to specify the actual intensity or magnitude of the earthquakes occurred. There are many evidences of severe earthquakes felt in Chittagong, Sylhet, and Dhaka in the year ranges from 1548 to 1869. Among them, The Cachar Earthquake of January 10, 1869, with epicentre in the northern border Jaintia Hill of Assam caused great damage in Assam. In Bangladesh vibrational was felt all over the country and the major damage occurred only in the eastern parts of the Sylhet district. The earthquake that occur at July 14, 1885, caused unignorable damages in Sirajganj, Jamalpur, Bogra, Sherpur, Mymensingh region with estimated magnitude of 7.0 in the Richter scale. The earthquake that occur in India at 1897 with a magnitude of 8.1 and an whose distance was only 230 km north of Dhaka caused severe damages in the region located near to Dhaka. Moreover, the earthquakes in Dhaka region causes possibility of earthquake in the region located near this region.

The 1918 Srimongal earthquake (M=7.6) had its epicentres within Bangladesh, it caused considerable damage locally, significant parts of Bangladesh. It was perhaps the cause of the most significant and most widespread earthquake damages. The 1762 Chittagong earthquake, also a local earthquake with estimated magnitude M=7.5. In recent years, small to moderate earthquakes are regularly occurring with epicentres in neighboring India and Burma (some within the country) which are being felt in many parts of the country, particularly in the northeast Sylhet and southeast Chittagong region. In our current research, we take an attempt to assess the seismicity of Bangladesh 20.65° N to 28.00° N latitude and 87.00° E to 93.75° E longitude. The region under study has a similar geological process, similar historical development and socio-economic and demographic conditions, etc., are vital parameters in the whole process of seismic hazard studies in the region. In our study, considering the earthquakes with the magnitude level 6 and above since these earthquakes are strong enough to damage various manmade infrastructures and to cause the loss of lives for human and animals. Table ii: shows the date, place name, epicentre (latitude and longitude), depth, the magnitude of selected earthquake >6 magnitude which affects significantly in this study area. In the last 118 years, seventeenth major earthquakes (> 6) have occurred in this region. Out of the 17th earthquakes, two (viz. 1930 and 1918) had their magnitude >7. Two earthquakes (VIZ.1918, 1923) had their epicenters within Bangladesh.
three (1984, 1997, 1997) had their epicenters in the
India-Bangladesh border region and the rest of them were
very close to Bangladesh. According to Hagiwara, the
classification the earthquakes that occurred can be done
based on the magnitude, as follows: magnitude Classification
7 M ≤ 8 are major earthquakes, 5 M < 7 are moderate
earthquakes, 3 ≤ M < 5 are small earthquakes, 1 M < 3 are
micro earthquakes and M < 1 are categorized as
ultra-microearthquakes [5]. The major earthquakes that
affected Bangladesh and caused severely damaged; most of
these epicentres were located in the boundary between
Bangladesh and India. Table iii shows the number of
occurring earthquakes in Bangladesh and their surrounding
areas are really large. Earthquakes which have lower
magnitudes (ms 4.0 to ms 5.0) are larger in numbers and bear
less threat for human civilization. There are few numbers of
earthquakes with higher magnitudes (ms ≥ 6.0) but they are
very destructive for any country. Bangladesh faced a large
number of earthquakes in past and still continued. Figure 3
shows the number of occurrences of earthquake versus year.
The frequency of earthquakes in past from 1991 to 1970 was
less but in recent time after 1980 the number of occurrences is
increasing in a very alarming rate. So now a day’s earthquake
became a matter of big concern.

IV. ANALYSIS OF EARTHQUAKE DATA

Now we will analyze the earthquakes those generated in
between 20.65° N to 28.00° N latitude and 87.00° E to 93.75°
E longitude for the last 118 years (1901-2018). In this
analysis, the areas we have considered covered the region of
Bangladesh and its very nearly located regions. The data
necessary for this analysis are extracted from the USGS
(United States Geological Survey). Our data contains the
depth, magnitude of the earthquakes, time of occurrences and
some other related information’s. For our statistical analysis,
we have considered earthquakes that occurred from 1901 to
2018. We observed from figure 5, most of the earthquake
occurred in this region were ranged
Probabilistic Earthquake Scenarios in Bangladesh Based on Magnitude and Depth Parameters

 longitude. Finally, in Fig. 7 shows the best fit distribution followed by earthquake depth parameter. From the figure, we found gennrom distribution is best fitted with sum of squared error 0.011305 while other distributions have the higher fitting error.

V. CONCLUSION

By analysing the historical data, the result indicates that the past earthquake event was frequent but less devastating. On the other hand, earthquake occurrences are increasing significantly. As the two most important plate are seducing each other, so the possibility of great earthquakes is increased. Hence, the government of Bangladesh should put much interest to manage this disaster.

REFERENCES

19. Ali M.H., “ Earthquake Database and Seismic Zoning of Bangladesh.”, Department of Civil Engineering, BUET, Dhaka, BD.

AUTHORS PROFILE

Samsunnahar Popy is currently working as a lecturer in the department of environmental science and disaster management (ESD), of Bangabandhu Sheikh Mujibur Rahman Science and Technology University (BSMRSTU), Bangladesh. She has completed her B.Sc. and M.Sc. from Department of Geography and Environment of Jahangir nagar university. In B.Sc (Hons.), level she achieve Prime minister gold medal for securing first position in the faculty. She is passionate to perform modern research on earthquake. Her research interest is earthquake and disaster management.

Syful Islam is currently working as a lecturer in the department of computer science and telecommunication engineering (CSTE), of Noakhali Science and Technology University (NSTU), Noakhali, Bangladesh. He has completed his B.Sc. (Engg.) in computer science and telecommunication engineering (CSTE) from the same department where he is currently appointed. He secure first position in his department as well as in the faculty of engineering and technology. He achieve prime minister and president gold medal for achieving highest result in the university. Currently, he his pursuing his higher study in Japan with MEXT scholarship. His research interest include networking, cloud computing and data mining.