
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-11, September 2019

2713

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K21710981119/19©BEIESP

DOI: 10.35940/ijitee.K2171.0981119

Journal Website: www.ijitee.org

Abstract: Fog computing is one of the enabling computing

technology which primarily aims to fulfill the requirements of the

Internet of Things (IoT). IoT is fast-growing networking and

computing sector. The scalability of users, devices, and

application is crucial for the success of IoT systems. The load

balancing is an approach to distribute the load among computing

nodes so that the computing nodes are not overloaded. In this

paper, we propose the priority-based request servicing at fog

computing centers. We particularly address the situation when the

fog node in fog computing center (FCC) receives more workload

than their capacity to handle it. The increased workload is shifted

to nearby fog nodes rather than to the remote cloud. The proposed

approach is able to minimize the offloading the high priority

request to other nodes by 11% which proves the novelty of our

proposed.

Keywords : Internet of Things, Middleware, Scalability, Load

balancing,

I. INTRODUCTION

The Internet of things (IoT) is one of the prominent

technology in computer science in this decade [1]. The

emergence of IoT has led to changes in many existing

Internet protocols (e.g. Web sockets), the emergence of new

protocols (e.g. CoAP), new computing paradigm (e.g. fog

computing), many more changes in vertical and horizontal

aspects of networking as well as computing field. The IoT has

yet to bloom in its full potential. IoT also has stimulated a lot

of research and development in the area of computer

network. The horizon of computing has reached to every kind

of objects we come across in our daily life such as home,

office, farm, city, energy grid, forest, etc. making each of

them smart (the first-class citizen of the Internet).

From software engineering perspective following are

requirements of IoT based systems: interoperability, security,

scalability, extensibility, data management. For the smooth

growth of IoT based systems/application, the

researchers/designers must address these issues. The

middleware is the well-known answer to these requirements

Manuscript published on 30 September 2019.
*Correspondence Author(s)

Dilip Rathod*, Research Scholar, Dept. of Computer Science and

Engineering, Research Center: Shri Guru Gobind Singhji Institute of
Engineering and Technology, Under SRTM University, Nanded,

Maharashtra, India. Email: rathod.dt@gmail.com
Girish Chowdhary, Professor and Director, School of Computational

Science, Swami Ramanand Teerth Marathwada (SRTM) University,

Nanded, Maharashtra, India. Email:girish.chowdhary@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

of Internet of Things [2]. Middlewares has been used in many

fields of distributed computing, and in a variety of ways since

they were introduced e.g. Java RMI, CORBA. Middlware in

IoT context is layer of software sits between edge IoT

network and end IoT Applications. In this paper, we extend

our work on the scalability requirement of IoT Middleware

[3]. We particularly address the situation when the fog node

in fog computing center (FCC) receives more workload than

their capacity to handle it. Based on the growth rate we are

witnessing IoT [4]; this will be a common scenario. The

increased workload is shifted to nearby fog nodes rather than

to the remote cloud. The processing of requests near the edge

of IoT network helps in avoiding the communication delay

with remote cloud data center. Our contribution in this paper

is to use priority queueing model for processing of incoming

service request. The high priority (latency sensitive) requests

are processed first followed by low priority (delay tolerant)

requests. The results of implementation prove the novelty of

our proposed approach which is able to minimize the

offloading the high priority request to other nodes

The paper is organized as follows. The existing work on load

balancing among fog nodes is briefly discussed in section 2.

Section 3 describes the hierarchical architecture of IoT which

includes sensors, fog computing nodes, and cloud data center

as main components. Our contribution using priority

queueing is detailed in section 4. The implementation details

and results obtained are given section and section 6 concludes

the paper.

II. RELATED WORK

The existing work on load balancing mainly considers

shifting the computational burden to the cloud data center.

The issue arises in when fog node is unable to handle the

latency-sensitive request and need to offload it to cloud. This

will cause to SLA violation. There are only a few works [5]

[6] [7] [8] which addresses the issue of offloading

latency-sensitive request to nearby fog center which helps in

minimizing response introduced because of communication

delay with the remote cloud. Authors in [5] uses random walk

techniques for horizontal load balancing. Two types of

workload is considered in [6] namely: lightweight and

heavyweight. The response time is calculated based on it.

Game theoretical approach to load balancing is applied in [7].

The load balancing among fog nodes is mainly used for

minimizing energy consumption and mobility support in [8].

Our work differs

Load Balancing of Fog Computing Centers:

Minimizing Response Time of High Priority

Requests
Dilip Rathod, Girish Chowdhary

http://www.ijitee.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.K2171.0981119&domain=www.ijitee.org

Load Balancing of Fog Computing Centers: Minimizing Response Time of High Priority Requests

2714

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K21710981119/19©BEIESP

DOI: 10.35940/ijitee.K2171.0981119

Journal Website: www.ijitee.org

Fig 1: Fog computing based IoT architecture

with the existing work, we not only try to load balance the

increased workload at certain fog node by offloading it to

nearby fog nodes but also process every incoming service

request based on its priority and load type. Our proposed

sensitive to load of fog nodes as well as priority of IoT

service request.

III. FOG COMPUTING MODEL

The architecture of cloud fog based IoT middleware is as

shown in Fig. 1. There are three layers namely: IoT layer, fog

computing layer and cloud layer. IoT device generates

data/observations. IoT device includes sensors and actuators.

These devices are resource-constrained in terms of

computation, memory, networking capability and battery

operated. The fog computing layer does intermediate

processing and also fulfill the latency-sensitive requests. Fog

computing centers consists of one or more fog nodes which

have high computing capacity compared to IoT devices and

are geographically located near the edge of the IoT network.

The cloud layer process computationally intensive jobs do

data analytics and storage. All the value added services the

IoT user may demand are provisioned by cloud such as

analyzing trends and pattern in data, predictive analytics,

understanding data and improve the system operation. The

machine learning is increasingly applied on IoT data. The

machine learning jobs are computationally intensive and are

carried out in cloud data center.

Our idea in this paper is when any of the fog nodes become

overloaded due to increased arrival rate. The arrival rate is

greater than capacity of fog node to handle it. The excess load

can be shared with nearby fog nodes rather than offloading

requests to the remote cloud. Due to geographical proximity,

transmission delay between fog nodes is very less compared

to cloud.

Fig. 2: State transition diagram priority queue

IV. LOAD BALACING OF FOG COMPUTING

CENTERS

A. Priority Queue

Queueing theory is a widely used technique for modeling

and analyzing the performance of distributed systems [8].

The fog nodes process the data generated by sensors. The

arrival rate of data (service request) follows Poisson

distribution. The service rate of fog as well as cloud nodes are

exponentially distributed. When service request arrive fog

node start processing it. If service arrive and the fog node is

busy, the request is put into queue. The requests in the queue

are processed in certain order based on demand of

application. IoT application are diverse in nature. The

processing the request on first come first serve (FCFS) order

may lead to violation of latency demanded by application.

We assign a priority to every request as specified in Service

Level Agreement (SLA). In this paper, we pick the service

request from queue based on its priority. Four types of

requests are considered namely: high priority lightweight

request (based on the size of payload), high priority

heavyweight, low priority lightweight and low priority

heavyweight requests. The state transition diagram for

M/M/1/3 priority queue is as shown in Fig. 2. There is one

server and queue capacity is a maximum of 3 requests. The

balance equations for all the states are given below.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

The incoming service request will find the server is busy. The

request has to wait in queue for service is given below.

 (11)

 (12)

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-11, September 2019

2715

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K21710981119/19©BEIESP

DOI: 10.35940/ijitee.K2171.0981119

Journal Website: www.ijitee.org

 (13)

 P0 = Pb+Pm_deadline (14)

Po is probability of offloading request, Pm_deadline is probability

of missing deadline.

For M/M/1/3 priority queue when the number of request

waiting for service in the queue of either type or both type is

3. The queue is full. The requests arriving request any further

will need offloading.

The end-to-end latency is the sum of communication

latency, service time and queueing delay as given below.

 (15)

B. Load balancing

Processing as well as arranging the request waiting for

service in the queue for servicing based on its priority give an

edge over FCFS processing of the request. The high priority

requests are processed first, and arranged in the front part of

the queue. This leads to the amount of time high priority

request has to wait in queue is minimized. Also, the

probability of high request offloaded because the queue is full

is reduced. The existing work on load balancing [5], [6], [7],

and [8] does not consider the priority of request for

processing it.

Our idea about load balancing is as shown in Fig. 3. Load

balancing is the process of distributing load almost uniformly

among all the nodes managed by load balancing unit. We use

fog controller for load balancing. The load balancing is

achieved among autonomously function fog nodes. The fog

nodes may be heterogeneous in their in terms of computing

capability, memory size, etc. The fog controller (FC)

maintains the table of all fog nodes involved in load

balancing along with their processing capacity, number of

servers, queue length, and utilization. The fog nodes send

their status at every interval called update interval, to fog

controller. There are two fog controllers primary and

secondary. The main task of load balancing is done by the

primary fog controller (PFC). The secondary fog controller

(SFC) acts as a backup and will be used if PFC fails. Use of

fog controller helps in the number of message update

message exchanged compared to a distributed approach.

Fig. 3: Collaborative Load balancing among fog nodes

Thus reliving individual fog nodes from the task of load

balancing. Thus helps to reduce the computational

complexity of the algorithm. The steps followed by

individual fog node and fog controller are given in following

subsection.

C. Algorithm

Part I: Fog Node

Step 1: Register with fog controller using their fog id,

service arrival rate, processing capacity,

number of servers, queue length and utilization.

Step 2: At every update, interval sends update message

containing arrival rate queue length and

utilization.

Step 3: If the utilization is above threshold or queue is

full, set Offloading flag to TRUE.

Step 4: If offloading is required to get the list of lightly

loaded fog nodes from PFC

Step 5: If offloading list is non-empty the excess

arriving request will be forwarded to lightly

loaded nodes otherwise to cloud.

Step 6: Set Offloading flag to false.

Part II: Fog Controller

Step 1: Create Fog_Table containing fields fog id,

service arrival rate, processing capacity,

number of servers, queue length and utilization.

Step 2: Maintain fog table using update message

received from every fog node

Step 3: Synchronize the fog table with SFC.

Step 4: Upon receiving an offloading request from fog

node return the list of node suitable for

handling the request offloaded request.

Step 5: At every update interval, prepare a list of

lightly loaded nodes sorted according to

processing capacity, queue length, and

utilization.

Step 6: Return the list of lightly loaded nodes

V. EVALUATION AND RESULTS

We have implemented the algorithm for load balancing

algorithm given section 4. The libraries compatible with

Python 3.7 on Ubuntu 18.04 and Dell Inspirion 15 notebook

with 8GB RAM and i5 processors. The details of the

simulation parameter used are given in table 1. The number

of fog nodes was varied from 3 to 11 each with different

configuration representing the heterogeneity of IoT

environment. The arrival rate (800-1500 req/sec), service rate

(1500-2000 req/sec) was varied randomly in multiple of

100.The queue capacity was varied randomly between 50

-100 in multiple of 10. The configuration particularly

includes the arrival rate of request and service time arrival

rate and the number of server in fog center. The service

priority 1-4 for four types of packets were considered. The

packets were generated following Poisson distribution. The

packet with payload less

http://www.ijitee.org/

Load Balancing of Fog Computing Centers: Minimizing Response Time of High Priority Requests

2716

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K21710981119/19©BEIESP

DOI: 10.35940/ijitee.K2171.0981119

Journal Website: www.ijitee.org

Table 1: Simulation parameters

Fig. 4: Offloading of high priority request to

neighboring fog nodes

than 1KB was lightweight otherwise classified as

heavyweight packet. The result of the simulation is as given

in Fig. 4. The experiment was run for 300 iterations and the

average of 10 runs is plotted in Fig. 4 for three types of

request processing considered: First Come First Serve

(FCFC), priority-based and random processing. It is observed

that in case of the priority-based processing archives 11% of

reduction in offloading of high priority request which is a

considerable improvement. Hence our proposed method of

load balancing is capable of serving high priority request

more effectively as well as reducing the computational

complexity of the algorithm. Also, sensitive to load of fog

nodes as well as priority of IoT service request.

VI. CONCLUSION

The IoT systems are continuously developed for diverse

applications. Each application has its demand for regarding

how the request should be fulfilled. The traditional QoS

mechanism will not apply to IoT services. In this paper, we

attempt to address the demand for latency-sensitive IoT

service requests. The requests with higher priority were

processed first compared to requests with lower priority.

Based on results of simulation it is clear that our proposed

approach can minimize the amount of high priority request

offloaded to nearby fog nodes. This further helps in

minimizing response time compared to FCFS and random

processing of requests. Also, proposed algorithm is sensitive

to load of fog nodes as well as priority of IoT service request.

Our possible future work include modelling and processing

the latency-sensitive service request in real-time.

REFERENCES

1. “Top trends in the gartner hype cycle for emerging technologies, 2017,”

Aug2017. [Online Available]:

https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-
hype-cycle-for-emerging-technologies-2017/, accessed on August 20,

2019.
2. D. Rathod, G. Chowdhary, “Survey of middlewares for Internet of

things”, Proc. IEEE Int. Conf. on Recent Trends in Advanced

Computing: CPS, Chennai, India, Sep. 10-11, 2018, pp.129-135.
3. D. Rathod, G. Chowdhary, “Scalability of M/M/c queue based cloud-fog

distributed Internets of Things middleware”, Int. J. Advanced

Networking and Applications, UGC approved, ISSN: 0975-0290, 2019,
vol.11(1), pp.4162-4170.

4. D. Evans, “The Internet of Things: how the next evolution of the Internet
is changing everything”, white paper, Cisco, 2011.

5. C. Fricker, F. Guillemin, P. Robert, G. Thompson, “Analysis of an

offloading scheme for data centers in the framework of fog computing”.
ACM Trans. Model. Perform. Eval. 2016. vol.1(4) pp. 16:1-18.

6. M. Al-khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily, Y.

Jararweh, “Improving fog computing performance via Fog-2-Fog
collaboration”, Future Generation Computer Systems, 2019. (to be

published)

7. H. Xiao, Z. Zhang, Z. Zhou, GWS—A Collaborative load-balancing
algorithm for Internet of Things”, Journal of Sensors, 2018, vol.18(8),

2479.

8. W. Zhang, Z. Zhang, H. Chao, “Cooperative fog computing for dealing
with Big Data in the Internet of Vehicles: architecture and hierarchical

resource management”, IEEE Communications Magazine, December

2017.
9. M. Harchol-Balter, Performance modeling and design of computer

systems:queueing theory in action, Cambridge University Press, 2013.

AUTHORS PROFILE

Dilip Rathod is Research Scholar at Department of

Computer Science and Engineering, Shri Guru

Gobind Singhji Institute of Engineering and
Technology, Nanded, Maharashtra, India. He has

completed ME(CSE) in 2009 from Government

College of Engineering, Aurangabad, Maharashtra,

India. He received Bachelor of Engineering in

Information Technology degree from Dr. Babasaheb Marathwada University
in 2004 Maharashtra, India. Since 2005, he is working at P. E. S. College of

Engineering, Aurangabad. Currently designated as Assistant Professor in
Senior Scale at Computer Science and Engineering department. His

membership of professional bodies include Computer Society of India(CSI),

Institution of Electronics and Telecommunication Engineers (IETE, Life
Member), and Indian Society for Technical Engineers(ISTE, Life member).

Published 12 papers in national and International conferences. His area of
Interest include IoT, Computer Network, and Cloud computing.

Dr. Girish V. Chowdahry is Professor and
Director at School of Computational Science,

Swami Ramanand Teerth Marathwada (SRTM)
University, Nanded, Maharashtra, India. He has

completed is Ph.D. from Indian Institute of

Technology, Madras, Tamil Nadu, India. He
received his undergraduate degree from Shri Guru

Gobind Singhji Institute of Engineering and
Technology, Under SRTM University, Nanded. He worked as Research

Dean, for Engineering and Technology Section at SRTM Nanded,

Maharashtra, India. His area of research includes Internet of Things,
Wireless Sensor network and Optical WDM networks, pattern recognition.

He has published more than 20 research papers in International journals and
conferences.

http://www.ijitee.org/
https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/
https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/

