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Abstract— If C_n is a cycle of length n, then the graph cycle 

with parallel chords is obtained from C_n by adding an “edge 

between the non adjacent vertices of” C_(n.) Crown, C_n K_1 

“is the graph obtained by attaching a pendant edge at each vertex 

of the cycle” C_(n.) In this paper we prove that the graphs n-

cycle with parallel chords for n≥6 and the crowns, C_n K_(1,) 

for n≡0,3(mod 4). the graph P_(a,b)  obtained by identifying the 

end points of a internally disjoint paths each of length b,  are odd 

even graceful for odd values of a and b. 

 

Keywords— Cycles; Cycles with parallel chords; vertex 

labeling; odd even graceful labeling. 

I. INTRODUCTION 

Much interest towards the concept of graph labeling 

originates from the paper by Rosa in 1967 and he introduced 

graceful labeling as a tool to decompose the complete graph 

𝐾2𝑚+1 into copies of a given tree on 𝑚 edges. A labeling 

(valuation) of a graph is an assignment 𝑓 of labels from a set 

of positive integers to the vertices of 𝐺 that induce a label 

for each edge 𝑢𝑣 defined by the labels 𝑓(𝑢) and 𝑓(𝑣). If 𝐺 

is any simple graph with 𝑚 edges, then an injective function 

𝑓: 𝑉(𝐺) → {0, 1, 2, … , 𝑚} is said to be graceful, when each 

edge 𝑢𝑣 is assigned the label |𝑓(𝑢) −  𝑓(𝑣)|, the resulting 

edge labels are distinct.  In 2012, Sridevi, 

Navaneethakrishnan, A. Nagarajan and K. Nagarajan [7] 

defined a graph 𝐺 is odd-even graceful if there is an 

injection 𝑓 from 𝑉(𝐺) to  {1, 3, 5, … , 2𝑚 + 1} such that 

when each edge 𝑢𝑣 is assigned the label |𝑓(𝑢) −  𝑓(𝑣)|, the 

resulting edge labels are {2, 4, 6, … , 2𝑚}. They have verified 

the odd even gracefulness of some known standard graphs.  

In 1977, Bodendiek[1] conjectured that any cycle with a 

chord is graceful and later it is verified by Delorme[2] in 

1984.  In analogous to this the graph, cycle with parallel 

chords has been defined and many authors[5], [6], [9] have 
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verified its gracefulness. In 1991, Gnanajothi defined a 

graph to have odd graceful labeling if there is an injection 𝑓 

from 𝑉(𝐺) to  {0,1,2, 3, … , 2𝑚 − 1} such that when each 

edge 𝑢𝑣 is assigned the label |𝑓(𝑢) −  𝑓(𝑣)|, the resulting 

edge labels are {1,3,5, … , 2𝑚 − 1}.  For detailed survey 

refer to the dynamic survey by Gallian[4]. 

Definition 1.  

Crown, 𝐶𝑛𝐾1 is “the graph obtained by attaching” a 

pendant edge at each vertex of the cycle 𝐶𝑛. 

Definition 2.  

 Let 𝐶𝑛: 𝑣0, 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛

2
, 𝑣𝑛

2
−1

′ ,  𝑣𝑛

2
−2

′  , …,  

𝑣3
′ , 𝑣2

′ , 𝑣1
′ 𝑣0 be a cycle of length 𝑛.  Then the graph cycle 

with parallel chord is obtained from the cycle 𝐶𝑛 by adding 

a an edge between the vertices (𝑣1, 𝑣1
′ ), (𝑣2, 𝑣2

′ ), … , (𝑣𝑎 , 𝑣𝑎
′ ) 

where 𝑎 = ⌊
𝑛

2
⌋ − 1. Refer Figure.1. 

Definition 3.  

Let 𝐶𝑛: 𝑣1𝑣2𝑣3 … 𝑣𝑛𝑣1  be a cycle of length 𝑛. The graph 

𝐶𝑛,𝑘, a cycle with a 𝐶𝑘 − chord, is obtained from 𝐶𝑛 by 

adding a cycle 𝐶𝑘 of length 𝑘 between two non-adjacent 

vertices 𝑣2 and 𝑣𝑛.  

Definition 4.  

The graph 𝐶𝑛,𝑘
+ , a cycle with parallel 𝐶𝑘 −  chord, is the 

graph obtained from a cycle 𝐶𝑛 by adding a cycle 𝐶𝑘 of 

length 𝑘 between every pair of non-adjacent vertices 

𝑣2, 𝑣𝑛, 𝑣3, 𝑣𝑛−1, …, 𝑣𝑎 , 𝑣𝑏 , where 𝑎 =
𝑛

2
 , 𝑏 =

𝑛

2
+ 2, if 𝑛 is 

even and 𝑎 = ⌊
𝑛

2
⌋, 𝑏 = ⌊

𝑛

2
⌋ + 3, if 𝑛 is odd.  

Definition 5 

. 𝑃𝑎,𝑏 is the graph obtained by identifying the end points 

of 𝑎 internally disjoint paths each of length 𝑏. 

In the next section, we prove that the graphs 𝑛 −cycle 

with parallel chords for 𝑛 ≥ 6 and the crowns, 𝐶𝑛𝐾1, for 

𝑛 ≡ 0,3(mod 4) and admits odd even graceful labeling. 

II. MAIN RESULTS  

In this section we prove that every 𝑛 −cycle with parallel 

chords is odd even graceful for all 𝑛 ≥ 6. 

Theorem 2.1. Cycle with parallel chords admits odd even 

graceful labeling for all 𝑛 ≥ 6.  

Proof:  
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Consider a 𝑛 −cycle 𝐶𝑛: 𝑣0, 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛

2
, 𝑣𝑛

2
−1

′ ,  

 𝑣𝑛

2
−2

′  , … , 𝑣3
′ , 𝑣2

′ , 𝑣1
′ 𝑣0  with the vertices arranged in the 

order as illustrated in figure.1.  

1. Let 𝐶𝑛
+ denotes the graph 𝐶𝑛with parallel chords it 

is observed that 𝐶𝑛
+ has 𝑝 = 𝑛 vertices and 𝑞 = 𝑛 + ⌊

𝑛

2
⌋ − 1 

edges. 

 
 

Fig.1 The cycle 𝑪𝟏𝟐
+  with parallel chords 

 

Now, we label the vertices of the given graph 𝐺 as 

follows, 

Case 1.   

When 𝑛 = 6 and 7 then Figure.2(a) and figure. 2(b) 

provides the odd – even graceful labeling of the graph 𝐺.  

 
 

Fig. 2(a). Odd Even Gracefulness of  𝑪𝟔
+ 

 
 

Fig. 2(b). Odd Even Gracefulness of  𝑪𝟕
+ 

Case 2.1   

When 𝑛 = 4𝑘 + 3, for 𝑘 ≥ 2. 
Let 𝑓(𝑣0) = 1, 𝑓(𝑣1) = 3  𝑓(𝑣1

′ ) = 2𝑞 + 1 

For 1 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋ − 1, 𝑖 −even, define 

           𝑓(𝑣𝑖) = 2𝑞 − 3𝑖 + 5, 

           𝑓(𝑣𝑖
′) = 3𝑖 + 1 

For 2 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋ − 1, 𝑖 −odd, define 

           𝑓(𝑣𝑖) = 3𝑖,   𝑓(𝑣𝑖
′) = 2𝑞 − 3𝑖 + 4 

From the above vertex labeling, if 𝑈 and 𝑉 be set of all 

values realized by the vertices as defined below,   

Let 𝑈1 = {𝑓(𝑣𝑖
′), 𝑓(𝑣𝑖+1): 1 ≤ 𝑖 ≤ ⌊

𝑛

2
⌋ − 1, 𝑖 − 𝑜𝑑𝑑} and 

𝑉 = {𝑓(𝑣𝑖), 𝑓( 𝑣𝑖+1
′ ) ∶  1 ≤ 𝑖 ≤ ⌊

𝑛

2
⌋ − 1, 𝑖 − 𝑜𝑑𝑑 }. 

It is observed that the elements in the set 𝑈 along with the 

𝑓(𝑣0) forms a monotonically decreasing sequence and the 

elements in the set 𝑉 forms a monotonically increasing 

sequence. Further, it is noted that, 𝑚𝑖𝑛 {𝑈} < 𝑚𝑎𝑥{𝑉}. 

Hence all the vertex labels are distinct. 

Let 𝐴 ={(𝑣𝑖 , 𝑣𝑖
′): 1 ≤ 𝑖 ≤ ⌊

𝑛

2
⌋},  

      𝐵 = {(𝑣𝑖
′, 𝑣𝑖+1

′ ): 1 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋ − 1}. 

      𝐶 ={(𝑣𝑖 , 𝑣𝑖+1): 1 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋ − 1} and 𝐷1 = (𝑣0, 𝑣1

′ ) 

and , 𝐷2 = (𝑣0, 𝑣1) denote the edges of 𝐺. 

Let 𝐴′, 𝐵′, 𝐶′, 𝐷1
′  and 𝐷2

′  denotes the edge values realized 

by the sets 𝐴, 𝐵, 𝐶, 𝐷1 and 𝐷2 respectively. 

If 𝑀 = 2𝑞, then 

     𝐴′ = {𝑀 − 2, 𝑀 − 8, 𝑀 − 14, … ,10, 4} 

     𝐵′ = {𝑀 − 6, 𝑀 − 12, 𝑀 − 18, … ,12, 6} 

     𝐶′ = {𝑀 − 4, 𝑀 − 10, 𝑀 − 16, … ,14, 8} 

     𝐷1
′ = 𝑀 and 𝐷2

′ = 2 

Observe that the elements of 𝐴′, 𝐵′ , 𝐶′, 𝐷1
′  and 𝐷2

′  are all 

distinct and further 𝐴′ ∪ 𝐵′ ∪ 𝐶′ ∪ 𝐷1
′ ∪ 𝐷2

′ =  {2,4,6, … ,
2𝑞}. Hence 𝐺 is  odd even graceful. 

Case 2.2  When 𝑛 = 4𝑘 + 1, for 𝑘 ≥ 2. 
Let 𝑓(𝑣0) = 1,  𝑓(𝑣1

′ ) = 2𝑞 + 1 

For 2 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋ − 1, 𝑖 −even, define 

           𝑓(𝑣𝑖) = 2𝑞 − 3𝑖 + 5, 

          𝑓(𝑣𝑖
′) = 3𝑖 + 1 

For 2 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋ , 𝑖 −odd, define 

           𝑓(𝑣𝑖) = 3𝑖 
          𝑓(𝑣𝑖

′) = 2𝑞 − 3𝑖 + 4 

If 𝑁 =
𝑛−1

2
, then 𝑓(𝑣𝑁) = 𝑓(𝑣𝑁−1) + 6 

                       𝑓(𝑣𝑁
′ ) = 𝑓(𝑣𝑁−1

′ ) − 8.  
From the vertex labeling all the vertices of 𝐺 realises odd 

integers from 1 to  2𝑞 + 1 and its corresponding edge labels 

are distinct from 2 to 2𝑞. Hence 𝐺 is odd even graceful.. 

Case 3.1   

When 𝑛 is even of the form, 𝑛 = 4𝑘, for 𝑘 ≥ 2. 
  

Define 𝑓(𝑣0) = 1,  𝑓(𝑣1
′ ) = 2𝑞 + 1 

         𝑓(𝑣2𝑖−1) = 6𝑖 − 3, for 1 ≤ 𝑖 ≤
𝑛

4
 

   𝑓(𝑣2𝑖−1
′ ) = 2𝑞 − 6𝑖 + 7, for 2 ≤ 𝑖 ≤

𝑛−4

4
 

               𝑓(𝑣2𝑖) = 2𝑞 − 6𝑖 + 5, for 1 ≤ 𝑖 ≤
𝑛−4

4
 

                     𝑓(𝑣2𝑖
′ ) = 6𝑖 + 1, for 1 ≤ 𝑖 ≤

𝑛−4

4
 

If 𝑄 =
𝑛

2
, then 𝑓(𝑣𝑄−1

′ ) = 𝑓(𝑣𝑄−3
′ ) − 8,  

                           𝑓(𝑣𝑄) = 𝑓(𝑣𝑄−2) − 2 
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From the vertex labeling all the vertices of 𝐺 realises odd 

integers from 1 to  2𝑞 + 1 and its corresponding edge labels 

are distinct from 2 to 2𝑞. Hence 𝐺 is odd even graceful. 

Refer the Appendix. 

Case 3.2   

When 𝑛 is even of the form, 𝑛 = 4𝑘 + 2, for 𝑘 ≥ 2. 
 Define 𝑓(𝑣0) = 1,  𝑓(𝑣1

′ ) = 2𝑞 + 1 

            𝑓(𝑣2𝑖−1) = 6𝑖 − 3, for 1 ≤ 𝑖 ≤
𝑛−2

4
 

            𝑓(𝑣2𝑖−1
′ ) = 2𝑞 − 6𝑖 + 7, for 2 ≤ 𝑖 ≤

𝑛−2

4
 

                𝑓(𝑣2𝑖) = 2𝑞 − 6𝑖 + 5, for 1 ≤ 𝑖 <
𝑛−2

4
 

                𝑓(𝑣2𝑖
′ ) = 6𝑖 + 1, for 1 ≤ 𝑖 ≤

𝑛−2

4
 

If 𝑄 =
𝑛

2
, then 𝑓(𝑣𝑄−1

′ ) = 𝑓(𝑣𝑄−3
′ ) + 4,  

                       𝑓(𝑣𝑄−1) = 𝑓(𝑣𝑄−3) − 10 

                           𝑓(𝑣𝑄) = 𝑓(𝑣𝑄−1) + 4 

From the vertex labeling all the vertices of 𝐺 realises odd 

integers from 1 to  2𝑞 + 1 and its corresponding edge labels 

are distinct from 2 to 2𝑞. Hence 𝐺 is odd even graceful. 

Refer the Appendix. 

Theorem 2.2. Crowns 𝐶𝑛𝐾1 is odd even graceful for 

𝑛 ≡ 0, 3(𝑚𝑜𝑑 4).  

Proof:   

Let 𝐺 be the given crown graph 𝐶𝑛𝐾1 having 𝑝 = 2𝑛 

vertices and 𝑞 = 𝑝 = 2𝑛 edges with 𝑛 ≡ 0, 3(𝑚𝑜𝑑 4).  

 The vertices of 𝐺 are arranged in the order as 

illustrated in figure.6 and its corresponding vertex labeling 

are defined as below,  

        𝑓(𝑎𝑖) = 2𝑞 − 2𝑖 + 3, for 1 ≤ 𝑖 <
𝑛

2
, 𝑖 − odd. 

         𝑓(𝑎𝑖) = 2𝑞 − 2𝑖 + 1, for 𝑖 ≥
𝑛

2
, 𝑖 − odd. 

        𝑓(𝑎𝑖) = 2𝑖 − 1, for 1 ≤ 𝑖 ≤ 𝑛, 𝑖 − even. 

        𝑓(𝑏𝑖) = 2𝑖 − 1, for 1 ≤ 𝑖 < 𝑛, 𝑖 − odd. 

        𝑓(𝑏𝑖) = 2𝑞 − 2𝑖 + 3, for 1 ≤ 𝑖 ≤ ⌈
𝑛

2
⌉ , 𝑖 − even. 

        𝑓(𝑏𝑖) = 2𝑞 − 2𝑖 + 1, for 𝑖 ≥ ⌈
𝑛

2
⌉ + 1, 𝑖 − even. 

 
 

Fig. 3. The graph Crown, 𝑪𝟏𝟐𝑲𝟏 

 

 

From the vertex labeling all the vertices of 𝐺 realizes odd 

integers from 1 to  2𝑞 + 1 and its corresponding edge labels 

are distinct from 2 to 2𝑞. Hence 𝐺 is odd even graceful  

Theorem 2.3. The graph 𝑃𝑎,𝑏 admits odd graceful labeling 

for all odd values of 𝑎, 𝑏.  

Proof:   

Let 𝐺 be the given 𝑃𝑎,𝑏 with 𝑎, 𝑏 as odd.  Then 𝐺 have 

𝑛 = a(b − 2) + 2 vertices and 𝑚 = a(b − 1) edges.  

For the convenience of the labeling, the vertices are 

arranged in the order as shown in the figure. 5.  

 

 
 

Fig 4. The graph 𝑷𝒂,𝒃(𝒂, 𝒃 − 𝐨𝐝𝐝) 

 

Now we label the vertices of the given graph 𝐺 as 

follows,  

𝑓(𝑡0) = 2𝑚 − 1,  𝑓(𝑠0) = 2𝑚 − 1 − 𝑎(𝑏 − 1) 

 𝑓(𝑡𝑖,𝑗) = 𝑎(𝑖 − 1) + 2(𝑗 − 1), for 1 ≤ 𝑖 < 𝑏, 1 ≤

𝑗 ≤ 𝑎, 𝑖 − 𝑜𝑑𝑑 

 𝑓(𝑡𝑖,   𝑎+1−𝑗) = (2𝑚 − 1) − (4𝑗 − 2) − 𝑎(𝑖 − 2), 

for 2 ≤ 𝑖 < 𝑏, 1 ≤ 𝑗 ≤ 𝑎, 𝑖 − 𝑒𝑣𝑒𝑛 

From the above labeling we observe that all the vertex 

labels are distinct and its corresponding edge values results 

odd values from 1 to 2𝑚 + 1 and hence 𝐺 is odd graceful. 
 

 

 

 

 

 

 

 

 

 

Figure 5. The Odd graceful labeling of 𝑷𝟓,𝟕 

III. VERTEX CORDIAL LABELING OF CYCLE 

WITH A 𝑪𝟒 − CHORD AND CYCLE WITH 

PARALLEL 𝑪𝟒 − CHORD 

Recall that if 𝐶𝑛: 𝑣1𝑣2𝑣3 … 𝑣𝑛𝑣1  be a cycle of length 𝑛, 
then the graph 𝐶𝑛,𝑘, a cycle with a 𝐶𝑘 − chord, is obtained 

from 𝐶𝑛 by adding a cycle 𝐶𝑘 of length 𝑘 between two non-

adjacent vertices 𝑣2 and 𝑣𝑛. The graph 𝐶𝑛,𝑘
+ , a cycle with 

parallel 𝐶𝑘 −  chord, is the graph obtained from a cycle 𝐶𝑛 

by adding a cycle 𝐶𝑘 of length 𝑘 between every pair of non-

adjacent vertices 𝑣2, 𝑣𝑛 , 𝑣3, 𝑣𝑛−1, …, 𝑣𝑎, 𝑣𝑏 , where 𝑎 =
𝑛

2
 , 

𝑏 =
𝑛

2
+ 2, if 𝑛 is even and 𝑎 = ⌊

𝑛

2
⌋, 𝑏 = ⌊

𝑛

2
⌋ + 3, if 𝑛 is odd. 

 

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/


 

Cycle With Parallel Chords Are Odd Even Graceful 

3106 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: K24940981119/19©BEIESP 

DOI: 10.35940/ijitee.K2494.0981119 

Journal Website: www.ijitee.org 

 
 

Figure 6(a). The Graph 𝑪𝟏𝟐,𝟒 

 

 
 

Figure 6(b). The Graph 𝑪𝟏𝟐,𝟒
+  

Theorem 3.1. The graph 𝐶𝑚,4 admits vertex cordial 

labeling for 𝑚 ≡ 0(𝑚𝑜𝑑 4). 

Proof:   

Let 𝐺 be the graph 𝐶𝑚,4 with 𝑚 = 4𝑘, for 𝑘 ≥ 1. Denote 

the vertices of the cycle 𝐶𝑚 and the chord 𝐶4 as 

𝐶𝑚: 𝑣1𝑣2𝑣3 … 𝑣𝑚𝑣1 and chord 𝐶4: 𝑣2𝑤1𝑣𝑛𝑤2𝑣2 

respectively. Then 𝐺 has 𝑝 = 𝑚 + 2 vertices and 𝑞 = 𝑚 +
4 edges  

We label the vertices of 𝐺 in the order as provided in the 

figures 6 as follows, 

     𝑓(𝑣𝑖) = {
1, 𝑖 = 4𝑡 + 1, 4𝑡 + 2, 𝑡 ≥ 1
0, 𝑖 = 4𝑡 + 3, 4𝑡, 𝑡 ≥ 1

 

             𝑓(𝑤1) = 1, 𝑓(𝑤2) = 0 

Let V0 and V1 denote the set of all vertices assigned the 

label 0 and 1 respectively. Let E0and E1denote the set of all 

edges assigned the label 0 and 1 respectively. 

A particular 0-1 sequence is matched corresponding with 

the above sequence of vertices of the given graph 𝐺. It is 

evident that in 𝐺, |𝑉0| =  |𝑉1| and |𝐸1| =  |𝐸0|. Hence 𝐺 is 

vertex cordial. 

Theorem 3.2. The graph 𝐶𝑚,4
+  admits vertex cordial 

labeling for 𝑚 ≡ 0(𝑚𝑜𝑑 4). 

Proof:  

 Let 𝐺 be the graph 𝐶𝑚,4
+ , with 𝑚 = 4𝑘, for 𝑘 ≥ 1, then 

Then 𝐶𝑚,4
+  has 𝑝 = 2𝑚 − 2 vertices and 𝑞 = 3𝑚 − 4 edges. 

For the convenience of the labeling, the vertices of the 

given graph 𝐺 are ordered in the way as shown in figure. 12, 

Define, 

     𝑓(𝑣𝑖) = {
1, 𝑖 = 4𝑡 + 1, 4𝑡 + 2, 𝑡 ≥ 1
0, 𝑖 = 4𝑡 + 3, 4𝑡, 𝑡 ≥ 1

 

     𝑓(𝑤𝑖) = {
1, 𝑖 = odd
0, 𝑖 = even

 

Clearly from the above definition, it is evident that in 𝐺, 

|𝑉0| =  |𝑉1| and |𝐸1| =  |𝐸0|. Hence 𝐺 is vertex cordial. 
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VI. APPENDIX 

 
 

Fig. 7(a). Odd Even Gracefulness of  𝑪𝟐𝟑
+ (𝒏 = 𝟒𝒌 + 𝟑) 

 

 
 

Fig. 7(b). Odd Even Gracefulness of  𝑪𝟐𝟓
+ (𝒏 = 𝟒𝒌 + 𝟏) 
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