Cycle With Parallel Chords Are Odd Even Graceful

S. Venkatesh, P. Rajadurai, K. Parameswari, A. Atchayadevi, K. Sangeetha

Abstract

If $C_{-} n$ is a cycle of length n, then the graph cycle with parallel chords is obtained from $C_{-} n$ by adding an "edge between the non adjacent vertices of" $C_{-}(n$.$) Crown, C_{-} n \square K_{-} 1$ "is the graph obtained by attaching a pendant edge at each vertex of the cycle" C_(n.) In this paper we prove that the graphs n cycle with parallel chords for $n \geq 6$ and the crowns, $C_{-} n \square K_{-}(1$, for $n \equiv 0,3(\bmod 4)$. the graph $P_{-}(a, b)$ obtained by identifying the end points of a internally disjoint paths each of length b, are odd even graceful for odd values of a and b.

Keywords- Cycles; Cycles with parallel chords; vertex labeling; odd even graceful labeling.

I. INTRODUCTION

Much interest towards the concept of graph labeling originates from the paper by Rosa in 1967 and he introduced graceful labeling as a tool to decompose the complete graph $K_{2 m+1}$ into copies of a given tree on m edges. A labeling (valuation) of a graph is an assignment f of labels from a set of positive integers to the vertices of G that induce a label for each edge $u v$ defined by the labels $f(u)$ and $f(v)$. If G is any simple graph with m edges, then an injective function $f: V(G) \rightarrow\{0,1,2, \ldots, m\}$ is said to be graceful, when each edge $u v$ is assigned the label $|f(u)-f(v)|$, the resulting edge labels are distinct. In 2012, Sridevi, Navaneethakrishnan, A. Nagarajan and K. Nagarajan [7] defined a graph G is odd-even graceful if there is an injection f from $V(G)$ to $\{1,3,5, \ldots, 2 m+1\}$ such that when each edge $u v$ is assigned the label $|f(u)-f(v)|$, the resulting edge labels are $\{2,4,6, \ldots, 2 m\}$. They have verified the odd even gracefulness of some known standard graphs. In 1977, Bodendiek[1] conjectured that any cycle with a chord is graceful and later it is verified by Delorme[2] in 1984. In analogous to this the graph, cycle with parallel chords has been defined and many authors[5], [6], [9] have

Manuscript published on 30 September 2019.
*Correspondence Author(s)
S. Venkatesh, Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam, Tamilnadu, India (Email: mailvenkat1973@gmail.co)
P. Rajadurai, Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam, Tamilnadu, India (Email: psdurai17@gmail.com)
K. Parameswari, Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam, Tamilnadu, India (Email: parameswari.math@gmail.com)
A. Atchayadevi, Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam, Tamilnadu, India
K. Sangeetha, Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam, Tamilnadu, India
© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/
verified its gracefulness. In 1991, Gnanajothi defined a graph to have odd graceful labeling if there is an injection f from $V(G)$ to $\{0,1,2,3, \ldots, 2 m-1\}$ such that when each edge $u v$ is assigned the label $|f(u)-f(v)|$, the resulting edge labels are $\{1,3,5, \ldots, 2 m-1\}$. For detailed survey refer to the dynamic survey by Gallian[4].

Definition 1.

Crown, $C_{n} \odot K_{1}$ is "the graph obtained by attaching" a pendant edge at each vertex of the cycle C_{n}.

Definition 2.

Let

$$
C_{n}: v_{0}, v_{1}, v_{2}, v_{3}, \ldots, v_{\frac{n}{2}}, v_{\frac{n}{2}-1}^{\prime}, v_{\frac{n}{2}-2}^{\prime}, \ldots,
$$

$v_{3}^{\prime}, v_{2}^{\prime}, v_{1}^{\prime} v_{0}$ be a cycle of length n. Then the graph cycle with parallel chord is obtained from the cycle C_{n} by adding a an edge between the vertices $\left(v_{1}, v_{1}^{\prime}\right),\left(v_{2}, v_{2}^{\prime}\right), \ldots,\left(v_{a}, v_{a}^{\prime}\right)$ where $a=\left\lfloor\frac{n}{2}\right\rfloor-1$. Refer Figure.1.

Definition 3.

Let $C_{n}: v_{1} v_{2} v_{3} \ldots v_{n} v_{1}$ be a cycle of length n. The graph $C_{n, k}$, a cycle with a C_{k} - chord, is obtained from C_{n} by adding a cycle C_{k} of length k between two non-adjacent vertices v_{2} and v_{n}.

Definition 4.

The graph $C_{n, k}^{+}$, a cycle with parallel $C_{k}-$ chord, is the graph obtained from a cycle C_{n} by adding a cycle C_{k} of length k between every pair of non-adjacent vertices $v_{2}, v_{n}, v_{3}, v_{n-1}, \ldots, v_{a}, v_{b}$, where $a=\frac{n}{2}, b=\frac{n}{2}+2$, if n is even and $a=\left\lfloor\frac{n}{2}\right\rfloor, b=\left\lfloor\frac{n}{2}\right\rfloor+3$, if n is odd.

Definition 5

. $P_{a, b}$ is the graph obtained by identifying the end points of a internally disjoint paths each of length b.

In the next section, we prove that the graphs n-cycle with parallel chords for $n \geq 6$ and the crowns, $C_{n} \odot K_{1}$, for $n \equiv 0,3(\bmod 4)$ and admits odd even graceful labeling.

II. MAIN RESULTS

In this section we prove that every n-cycle with parallel chords is odd even graceful for all $n \geq 6$.

Theorem 2.1. Cycle with parallel chords admits odd even graceful labeling for all $n \geq 6$.

Proof:

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Consider a n-cycle $C_{n}: v_{0}, v_{1}, v_{2}, v_{3}, \ldots, v_{\frac{n}{2}}, v_{\frac{n}{2}-1}^{\prime}$,
$v_{n}^{\prime} n_{-2}, \ldots, v_{3}^{\prime}, v_{2}^{\prime}, v_{1}^{\prime} v_{0}$ with the vertices arranged in the order as illustrated in figure.1.

1. Let C_{n}^{+}denotes the graph C_{n} with parallel chords it is observed that C_{n}^{+}has $p=n$ vertices and $q=n+\left\lfloor\frac{n}{2}\right\rfloor-1$ edges.

Fig. 1 The cycle C_{12}^{+}with parallel chords
Now, we label the vertices of the given graph G as follows,

Case 1.

When $n=6$ and 7 then Figure.2(a) and figure. 2(b) provides the odd - even graceful labeling of the graph G.

Fig. 2(a). Odd Even Gracefulness of C_{6}^{+}

Fig. 2(b). Odd Even Gracefulness of C_{7}^{+}
Case 2.1
When $n=4 k+3$, for $k \geq 2$.
Let $f\left(v_{0}\right)=1, f\left(v_{1}\right)=3 f\left(v_{1}^{\prime}\right)=2 q+1$
For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1, i-$ even, define

$$
\begin{aligned}
& f\left(v_{i}\right)=2 q-3 i+5, \\
& f\left(v_{i}^{\prime}\right)=3 i+1
\end{aligned}
$$

For $2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1, i$-odd, define

$$
f\left(v_{i}\right)=3 i, \quad f\left(v_{i}^{\prime}\right)=2 q-3 i+4
$$

From the above vertex labeling, if U and V be set of all values realized by the vertices as defined below,

Let $U_{1}=\left\{f\left(v_{i}^{\prime}\right), f\left(v_{i+1}\right): 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1, i-o d d\right\}$ and $V=\left\{f\left(v_{i}\right), f\left(v_{i+1}^{\prime}\right): 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1, i-o d d\right\}$.

It is observed that the elements in the set U along with the $f\left(v_{0}\right)$ forms a monotonically decreasing sequence and the elements in the set V forms a monotonically increasing sequence. Further, it is noted that, $\min \{U\}<\max \{V\}$. Hence all the vertex labels are distinct.

Let $A=\left\{\left(v_{i}, v_{i}^{\prime}\right): 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$,

$$
\begin{aligned}
& B=\left\{\left(v_{i}^{\prime}, v_{i+1}^{\prime}\right): 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1\right\} . \\
& C=\left\{\left(v_{i}, v_{i+1}\right): 1 \leq i \leq\left[\frac{n}{2}\right\rfloor-1\right\} \text { and } D_{1}=\left(v_{0}, v_{1}^{\prime}\right)
\end{aligned}
$$

and , $D_{2}=\left(v_{0}, v_{1}\right)$ denote the edges of G.
Let $A^{\prime}, B^{\prime}, C^{\prime}, D_{1}^{\prime}$ and D_{2}^{\prime} denotes the edge values realized by the sets A, B, C, D_{1} and D_{2} respectively.

$$
\text { If } \begin{aligned}
& M=2 q \text {, then } \\
& \begin{aligned}
A^{\prime} & =\{M-2, M-8, M-14, \ldots, 10,4\} \\
B^{\prime} & =\{M-6, M-12, M-18, \ldots, 12,6\} \\
C^{\prime} & =\{M-4, M-10, M-16, \ldots, 14,8\} \\
D_{1}^{\prime} & =M \text { and } D_{2}^{\prime}=2
\end{aligned}
\end{aligned}
$$

Observe that the elements of $A^{\prime}, B^{\prime}, C^{\prime}, D_{1}^{\prime}$ and D_{2}^{\prime} are all distinct and further $A^{\prime} \cup B^{\prime} \cup C^{\prime} \cup D_{1}^{\prime} \cup D_{2}^{\prime}=\{2,4,6, \ldots$, $2 q\}$. Hence G is odd even graceful.

Case 2.2 When $n=4 k+1$, for $k \geq 2$.
Let $f\left(v_{0}\right)=1, f\left(v_{1}^{\prime}\right)=2 q+1$
For $2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1, i$-even, define

$$
\begin{aligned}
& f\left(v_{i}\right)=2 q-3 i+5 \\
& f\left(v_{i}^{\prime}\right)=3 i+1
\end{aligned}
$$

For $2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor, i$-odd, define

$$
\begin{gathered}
f\left(v_{i}\right)=3 i \\
f\left(v_{i}^{\prime}\right)=2 q-3 i+4 \\
\text { If } N=\frac{n-1}{2}, \text { then } f\left(v_{N}\right)=f\left(v_{N-1}\right)+6 \\
f\left(v_{N}^{\prime}\right)=f\left(v_{N-1}^{\prime}\right)-8
\end{gathered}
$$

From the vertex labeling all the vertices of G realises odd integers from 1 to $2 q+1$ and its corresponding edge labels are distinct from 2 to $2 q$. Hence G is odd even graceful..

Case 3.1

When n is even of the form, $n=4 k$, for $k \geq 2$.
Define $f\left(v_{0}\right)=1, f\left(v_{1}^{\prime}\right)=2 q+1$

$$
\begin{gathered}
f\left(v_{2 i-1}\right)=6 i-3, \text { for } 1 \leq i \leq \frac{n}{4} \\
f\left(v_{2 i-1}^{\prime}\right)=2 q-6 i+7, \text { for } 2 \leq i \leq \frac{n-4}{4} \\
f\left(v_{2 i}\right)=2 q-6 i+5, \text { for } 1 \leq i \leq \frac{n-4}{4} \\
f\left(v_{2 i}^{\prime}\right)=6 i+1, \text { for } 1 \leq i \leq \frac{n-4}{4} \\
\text { If } Q=\frac{n}{2}, \text { then } f\left(v_{Q-1}^{\prime}\right)=f\left(v_{Q-3}^{\prime}\right)-8 \\
f\left(v_{Q}\right)=f\left(v_{Q-2}\right)-2
\end{gathered}
$$

From the vertex labeling all the vertices of G realises odd integers from 1 to $2 q+1$ and its corresponding edge labels are distinct from 2 to $2 q$. Hence G is odd even graceful. Refer the Appendix.

Case 3.2
When n is even of the form, $n=4 k+2$, for $k \geq 2$.
Define $f\left(v_{0}\right)=1, f\left(v_{1}^{\prime}\right)=2 q+1$

$$
\begin{gathered}
f\left(v_{2 i-1}\right)=6 i-3, \text { for } 1 \leq i \leq \frac{n-2}{4} \\
f\left(v_{2 i-1}^{\prime}\right)=2 q-6 i+7, \text { for } 2 \leq i \leq \frac{n-2}{4} \\
f\left(v_{2 i}\right)=2 q-6 i+5, \text { for } 1 \leq i<\frac{n-2}{4} \\
f\left(v_{2 i}^{\prime}\right)=6 i+1, \text { for } 1 \leq i \leq \frac{n-2}{4} \\
\text { If } Q=\frac{n}{2}, \text { then } f\left(v_{Q-1}^{\prime}\right)=f\left(v_{Q-3}^{\prime}\right)+4, \\
f\left(v_{Q-1}\right)=f\left(v_{Q-3}\right)-10 \\
f\left(v_{Q}\right)=f\left(v_{Q-1}\right)+4
\end{gathered}
$$

From the vertex labeling all the vertices of G realises odd integers from 1 to $2 q+1$ and its corresponding edge labels are distinct from 2 to $2 q$. Hence G is odd even graceful. Refer the Appendix.

Theorem 2.2. Crowns $C_{n} \odot K_{1}$ is odd even graceful for $n \equiv 0,3(\bmod 4)$.

Proof:

Let G be the given crown graph $C_{n} \odot K_{1}$ having $p=2 n$ vertices and $q=p=2 n$ edges with $n \equiv 0,3(\bmod 4)$.

The vertices of G are arranged in the order as illustrated in figure. 6 and its corresponding vertex labeling are defined as below,

$$
\begin{aligned}
& f\left(a_{i}\right)=2 q-2 i+3, \text { for } 1 \leq i<\frac{n}{2}, i-\text { odd. } \\
& f\left(a_{i}\right)=2 q-2 i+1, \text { for } i \geq \frac{n}{2}, i-\text { odd. } \\
& f\left(a_{i}\right)=2 i-1, \text { for } 1 \leq i \leq n, i-\text { even. } \\
& f\left(b_{i}\right)=2 i-1, \text { for } 1 \leq i<n, i-\text { odd. } \\
& f\left(b_{i}\right)=2 q-2 i+3, \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right], i-\text { even. } \\
& f\left(b_{i}\right)=2 q-2 i+1, \text { for } i \geq\left\lceil\frac{n}{2}\right\rceil+1, i-\text { even. }
\end{aligned}
$$

Fig. 3. The graph Crown, $C_{12} \bigcirc K_{1}$

From the vertex labeling all the vertices of G realizes odd integers from 1 to $2 q+1$ and its corresponding edge labels are distinct from 2 to $2 q$. Hence G is odd even graceful

Theorem 2.3. The graph $P_{a, b}$ admits odd graceful labeling for all odd values of a, b.

Figure 6(a). The Graph $\boldsymbol{C}_{12,4}$

Figure 6(b). The Graph $\boldsymbol{C}_{12,4}^{+}$
Theorem 3.1. The graph $C_{m, 4}$ admits vertex cordial labeling for $m \equiv 0(\bmod 4)$.

Proof:

Let G be the graph $C_{m, 4}$ with $m=4 k$, for $k \geq 1$. Denote the vertices of the cycle C_{m} and the chord C_{4} as $C_{m}: v_{1} v_{2} v_{3} \ldots v_{m} v_{1}$ and chord $C_{4}: v_{2} w_{1} v_{n} w_{2} v_{2}$ respectively. Then G has $p=m+2$ vertices and $q=m+$ 4 edges

We label the vertices of G in the order as provided in the figures 6 as follows,

$$
\begin{gathered}
f\left(v_{i}\right)=\left\{\begin{array}{l}
1, \quad i=4 t+1,4 t+2, t \geq 1 \\
0, \quad i=4 t+3,4 t, t \geq 1
\end{array}\right. \\
f\left(w_{1}\right)=1, f\left(w_{2}\right)=0
\end{gathered}
$$

Let V_{0} and V_{1} denote the set of all vertices assigned the label 0 and 1 respectively. Let E_{0} and E_{1} denote the set of all edges assigned the label 0 and 1 respectively.

A particular 0-1 sequence is matched corresponding with the above sequence of vertices of the given graph G. It is evident that in $G,\left|V_{0}\right|=\left|V_{1}\right|$ and $\left|E_{1}\right|=\left|E_{0}\right|$. Hence G is vertex cordial.

Theorem 3.2. The graph $C_{m, 4}^{+}$admits vertex cordial labeling for $m \equiv 0(\bmod 4)$.

Proof:
Let G be the graph $C_{m, 4}^{+}$, with $m=4 k$, for $k \geq 1$, then Then $C_{m, 4}^{+}$has $p=2 m-2$ vertices and $q=3 m-4$ edges.

For the convenience of the labeling, the vertices of the given graph G are ordered in the way as shown in figure. 12,

Define,

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{l}
1, \quad i=4 t+1,4 t+2, t \geq 1 \\
0, \\
f\left(w_{i}\right)= \begin{cases}1, & i=4 t+3,4 t, t \geq 1 \\
0, & i=\text { odd }\end{cases}
\end{array} .\right.
\end{aligned}
$$

Clearly from the above definition, it is evident that in G, $\left|V_{0}\right|=\left|V_{1}\right|$ and $\left|E_{1}\right|=\left|E_{0}\right|$. Hence G is vertex cordial.

IV. ACKNOWLEDGMENT

The author thankfully acknowledges the referee for his/her valuable suggestions in improving the presentations of the paper. The author thankfully acknowledges the referee for his/her valuable suggestions in improving the presentations of the paper. Further the authors thanks the management of SASTRA deemed University for providing support in presenting this paper.

REFERENCES

1. R. Bodendiek, H.Schumacher, and H.Wegner. Uber graziose Graphen, Math.- Phys. Semesterberichte, 24 (1977) 103-106.
2. C.Delorme. M.Maheo, H. Thuillier, K.M. Koh. and H.K.Teo, Cycles with a chord are graceful, J. Graph Theory, 4 (1980) 409-415.
3. J.A. Gallian, A dynamic survey of Graph labeling, The Electronic Journal of Combinatorics, \#DS6 (2017), www.combinatorics.org.
4. R. B. Gnanajothi, Topics in Graph Theory, Ph. D. Thesis, Madurai Kamaraj University,1991.
5. K. M. Koh, K.Y.Yap, Graceful numberings of cycles with a $P_{3}-$ chord, Bull. Inst. Math. Acad. Sinica, 12 (1985) 41-48.
6. N.Punnim and N. Pabhapote, On graceful graphs: cycles with a $P_{k}-$ chord, $k \geq 4$, Ars Combin., 23A (1987) 225-228.
7. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July) Gordon and Breach, N.Y. and Dunod Paris, (1966), pp. 105-110.
8. R. Sridevi, S. Navaneethakrishnan, A. Nagarajan, and K. Nagarajan, Odd-even graceful graphs, J. Appl. Math. Inform., 30 (2012), no. 5-6, 913-923.
9. G. Sethuraman and A. Elumalai, Gracefulness of a cycle with parallel P_{k} - chords, Australasian. J. Combin., (2005) 32) 205-211.
10. Venkatesh. S, Aarthi. K, "On Odd-Even Gracefulness of Fire-cracker Tree", International Journal of Pure and Applied Maths, Volume .118, No. 9, 2018, pp.905-909.
11. Venkatesh. S, Bharathi. S, "On Generating Graceful Trees", International Journal of Pure and Applied Maths, Volume .118, No. 9, 2018, pp.899-904.
12. Venkatesh. S, Mahalakshmi. B, Amirthavahini. N, "New Results on Some Vertex labeling of Graphs", International Journal of Pure and Applied Maths, Volume
.118, No. 9, 2018, pp.891-898.
13. Venkatesh. S, Sivagurunathan. S, "On the Gracefulness of cycle related graphs", International Journal of Pure and Applied Maths (IJPAM), Volume. 117, No.15, 2017, pp. 589-598.
14. Venkatesh. S, Balasubramanian. K, Some Results on Generating Graceful Trees, International Journal of Engineering and Technology (UAE), 2018, Volume.7, Issue.4.10, 570-572.

VI. APPENDIX

Fig. 7(a). Odd Even Gracefulness of $C_{23}^{+}(n=4 k+3)$

Fig. 7(b). Odd Even Gracefulness of $C_{25}^{+}(n=4 k+1)$

