
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-11, September 2019

3263

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K25320981119/19©BEIESP

DOI: 10.35940/ijitee.K2532.0981119

Journal Website: www.ijitee.org

Abstract: Some real-time systems that need to be associated

with operating system services with a hard real-time system.

Since these real-time systems that need to be extremely

responsive to the outside world have no simple and low-cost

operating system assistance. This paper deals with the application

on a Linux-based operating system of the priority-based

preemptive real-time scheduling algorithm that will suffice these

firm applications in real-time. Typically, the algorithms regarded

for these hard real-time systems are preemptive scheduling based

on priorities. Based on the priority, by meeting the deadline, this

algorithm can produce a feasible schedule for the dynamic tasks

to be performed on the processor. It is feasible to schedule tasks

on a processor as long as preemption is permitted and tasks do

not compete for resources. In this scheduling algorithm, the task

in the running queue that is waiting for the execution will be

placed in the priority queue that is ready to execute in the

available processor. This algorithm is deployed in the Linux

kernel with the patch file and the kernel is built in the multi core

system to execute an application.

Keywords: Real time scheduling; Preemptive priority; Real

time systems; Kernel; MDF; DQMDF; Multicore; Raspberry Pi.

I. INTRODUCTION

The processor is the essential component of an automatic

data processing system and should be used more effectively.

Once the demand for computing power increases, the

possibility of missing the deadline, which is the

disadvantage of task scheduling and load equalization, may

be increased. More importantly, by not wasting any clock

cycles, processor must be used at the highest rate. Such task

scheduling should therefore conduct the execution of real-

time tasks [1]. Real-time tasks are one in which accuracy

depends not only on the precision of the result, but also on

the time of completion of the task execution. These real-

time tasks should eventually be scheduled in such a way as

to satisfy the execution limitations at the deadline level [2].

It is very essential to periodically perform certain tasks in

the processor. Examples include monitoring the external

Manuscript published on 30 September 2019.
*Correspondence Author(s)

M Shanmugsundaram, Vellore Institute of Technology, Vellore,
Tamilnadu, India

(email: phdsundaram@gmail.com)

Kalpak Burgul, Vellore Institute of Technology, Vellore, Tamilnadu,
India.

Kumar R, National Institute of Technology, Warangal, Telangana, India.
Kittur H M Vellore Institute of Technology, Vellore, Tamilnadu, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

environment by periodically receiving the sensor

information [3]. The regular execution of tasks therefore

plays a significant role as they need to be processed within

the limit so that the subsequent execution of tasks would not

be influenced by the missing of the deadline leading to

adverse effects in the response of the system. Most of these

real-time systems require periodic monitoring analysis of the

information. And in the real-time systems, scheduling these

periodic tasks is very essential [4].

1.1 Real Time System

The external environment is monitored and controlled by

real-time systems. The external environment information is

provided to the microcontroller for processing as input and

also to control the environment by meeting certain real-time

limitations with the aid of actuators [5]. It is also possible to

allow human link to this external universe with the suitable

interface that can be used to provide the reference input. The

terms used in the daily environment are usually referred to

as systems because the accurate output is expected to be

produced at the exact time as well [6]. Since it is essential

for the system to respond at the right moment within the

time limit, it is realized as a hard real-time system. Since the

deadlines for these real-time systems can be predefined, the

system's response is of profound importance in the desired

way and at the right time. Therefore, in order to design a

processor-based real-time system, it is essential for the

processor to provide the real-time reaction within the

desired deadline [7] for monitoring in the real-time

environment. Failure to do so would lead to idiosyncratic

and intolerable outcomes in environmental circumstances

leading to dangerous impacts and inappropriate functioning.

Taking the example of a rocket launch, if any of the rocket

systems fail to react within the deadline, rocket launch

failure and other catastrophic effects would inevitably result.

The processor's functioning in real time is therefore essential

[8]. Here, the processor must not only function properly

within the time limit, but also prioritize the most important

tasks in the real-time environment and preempt the task

currently taking place with a high priority task. This

scheduling is the most significant component of processing

in real-time systems in order to prioritize and perform the

significant tasks within the deadline and also to manage all

remaining tasks with low priority by proper allocation of

these tasks during the idle time of the processor. Hence, this

leads to proper utilization of the processor while increasing

the performance during the necessary

time [9].

Performance of Dynamic Queue Based Minimal

Deadline First Scheduling Algorithm In

Multicore System Under Real Time And Non-

Real Time Kernel Environment
M Shanmugsundaram, Kalpak Burgul, Kumar R, and Kittur H M

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.K2532.0981119&domain=www.ijitee.org

Performance of Dynamic Queue Based Minimal Deadline First Scheduling Algorithm In Multicore System Under

Real Time And Non-Real Time Kernel Environment

3264

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K25320981119/19©BEIESP

DOI: 10.35940/ijitee.K2532.0981119

Journal Website: www.ijitee.org

Real-time processing in the processor with multiple cores

will improve the processor's computational capacity,

efficiency, and parallelism. Therefore, multiple cores need a

novel way to schedule and synchronize tasks between them

in real-time processing. Multiple high-priority tasks can be

performed concurrently on various processor cores over this

scheduling [10]. Based on the dynamic task set of each

process to be performed in the processor, the first

scheduling algorithm is dynamically scheduled with

dynamic queue-based minimum deadline. This schedule

reduces the amount of deadline misses relative to static

preemptive priority scheduling [11].

1.2 Implementation of Non-Real Time OS with Real Time

Systems

In our daily routines, some generic real-time systems are

extremely used. The systems must be sensitive to the

deadline. This is one of the key characteristics that

distinguish real-time systems from non-real time systems.

So the programming and development firmware of real time

systems need a real time operating system. Together with

the processor, this operating system must have the essential

computing capacity to supply the output within the critical

time frame. Also, from other low-priority tasks, the real-

time operating system must categorize the significant tasks

to be carried out at first. This prioritization and scheduling is

one of the significant features of the real-time operating

system and in the non-real-time operating system this

contrasting characteristic is absent. It is also not readily and

conveniently affordable the operating system that is used to

develop easy real-time systems. So it will take longer to

develop this type of real-time systems, and even the cost

may increase with the performance for trade-offs. Suppose

this contrasting scheduling function is eradicated then these

features can be readily applied in simple real-time, highly

responsive systems. Consequently, implementing the real-

time scheduling algorithm in a real-time operating system to

develop real-time systems could improve feasibility and

extend the future development area of highly accurate real-

time systems [12].

II. SCHEDULING

The way the programming tasks are developed and

analyzed will describe the system behavior. There is no

adequate decision-making procedure for this behavior. Time

and latency for processing will play a significant part in

meeting the deadline. Every task in the task-set must be

scheduled within the deadline without violating the optimal

requirements associated with the feasible schedule. For real-

time systems, preemptive priority scheduling is preferable

[13]. The other real-time scheduling categories are discussed

in detail in chapter 2.1.

2.1. Classification

Scheduling is the method used to perform certain tasks at

a particular time. Real-time scheduling is not only about

providing the right output, but also about the time required

to produce results. The boundary within which systems need

to respond in real time is known as a deadline [14].

Different scheduling methods that are categorized as Figure

1 are used to obtain optimal outcomes. These scheduling

techniques are classified as preemptive and non-preemptive

scheduling based on real-time or non-real-time

implementation environments. Non-preemptive scheduling

algorithms are preferable to non-real time system in which

the execution of the next task begins only after the current

task is completed. Examples are First Come First serve

(FCFS) and Shorest Job First (SJF) scheduling algorithms.

Recommended for real-time systems are the preemptive

scheduling algorithms in which the highest priority task

should be performed first. The prioritization is provided to

the task on the basis of certain optimal criteria such as

minimal deadline. Round robin scheduling is based on a

clock tick that preempts tasks over a certain period of time.

It is presumed that all the tasks have equal priority here.

Scheduling based on priorities is further categorized as

scheduling of dynamic and static priorities. The priority is

allocated to each task during compilation time in static

priority scheduling, whereas the priority of each task is

resolved during run time in dynamic priority scheduling.

Rate Monotonic (RM) and Deadline Monotonic (DM)

scheduling are instances of static priority scheduling and

Minimal Deadline First (MDF) and Least Laxity Time

(LLT) are the dynamic priority scheduling scheme [15].

Figure 1 Scheduling Classifications

2.2 Task Model

Consider the set of n periodic, preemptable independent

tasks Ʈ = {Ʈ1, Ʈ2, Ʈ3 …Ʈn} such that Ʈk = {Ck, Rk, Dk,

Tk} where k =1, 2, …. n and Ck, Rk, Dk, Tk corresponds to

computation, release time, deadline and task period. Task

utilization is Uk= Ck / Tk and total system utilization is as

equation 1.

2.3 Minimal Deadline First (MDF)

It is a sort of ideal dynamic schedule in which tasks are

prioritized in accordance with their deadline. During the

execution of tasks the priority will vary dynamically. With

periodic tasks scheduled that have deadlines equivalent to

their periods, MDF has a 100 percent usage limit. The

schedulability test for MDF is as equation 2.

Consider the task set as shown in Table 1 consisting of 10

periodic tasks. While performing the scheduling analysis for

the set of specified tasks under MDF Scheduling for 4

processors, as shown in Figure 2 we have

the scheduling approach.

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-11, September 2019

3265

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K25320981119/19©BEIESP

DOI: 10.35940/ijitee.K2532.0981119

Journal Website: www.ijitee.org

2.4 Dynamic Queue Minimal Deadline First (DQMDF)

The main objective is to optimize the scheduling process

in uniprocessor in order to improve the performance of real-

time systems while at the same time providing adequate

progress and response to all applications.

The dynamic priority based approaches provide

anopportunity to develop an application based on a dynamic

approach with some predictability approaches for feasibility.

Priority is allocated based on their minimum deadline in the

priority-driven preemptive strategy. In this case, before

meeting its deadline, the task may be preempted during the

execution time. Therefore, in this situation, the timing

constraints should be evaluated continuously until the

deadline arrives [16].

Table 1. Example Taskset

Figure.2 MDF Scheduling in 4 core processor

Initially, each process with a specific amount of tasks is

considered for scheduling in the scheduling process. While

each process is scheduled at a certain time for execution, the

currently available process ready for running is brought in

the ready queue. Remaining execution-ready processes are

continuously inspected for a threshold value beyond which

the task would exceed the execution-time limit. The

threshold value for the entire task ready for execution as per

equation 2 is continually tracked. The permissible threshold

value is 75%. If any of the ready-to-execute processes have

a threshold below 75%, the process with the lowest

threshold value is preempted with the process available in

the ready queue. And according to the threshold values, the

priorities are changed so that no task would cross the

execution deadline.

Figure.3 – DQMDF Scheduling Concept – Before

preemption

Figure.4– DQMDF Scheduling Concept – After

Preemption

Initially, it is suspected that with the particular amount of

tasks as shown in Figure 3, each process to be performed in

the processor In the run queue, the priority of execution in

the processor is scheduled according to the deadline of each

of the processes P1, P2, P3, P4, P5 and tasks in the

processes. According to these priorities, the process would

be executed. Here, the higher priority of execution in the

processor is regarded to be P5.

Figure 4 refers to dynamically arriving tasks in each of

these processes in the red and yellow color boxes. Without

missing the deadline, the yellow color boxes refer to the

arriving tasks can be performed at the scheduled time in the

process. These processes would have a threshold of 100

percent (which is the proportion of executable tasks without

a missing time-limit in specific process) i.e. all tasks would

be executed within a scheduled time-limit. In contrast, when

the red-colored tasks arrive in processes, the task execution

with scheduled priority in the run queue will miss the

deadline. Therefore the threshold limit is set as 75%, all

processes with dynamic tasks below 75% would be

preempted in the processor run queue for execution. From

Figure 4, we can see that if executed according to the initial

scheduling priority, the process P1 with 3 dynamic tasks

arriving would miss the deadline. Thus, after calculating the

threshold (which is 57 percent according to the algorithm in

section III) for process P1 below the threshold limit, the

process in run queue will be

preempted and the new

priority

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/

Performance of Dynamic Queue Based Minimal Deadline First Scheduling Algorithm In Multicore System Under

Real Time And Non-Real Time Kernel Environment

3266

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K25320981119/19©BEIESP

DOI: 10.35940/ijitee.K2532.0981119

Journal Website: www.ijitee.org

assigned to the process will be assigned. Process P1 would

be given the greatest priority in the processor while all other

processes in the run queue would be decreased by one

priority value as shown in Figure 4. Therefore, in the run

queue, all processes would be executed by priority.

Where TDeadline is the deadline, TArrival is arrival time

of a task, Texe is execution time, NDLMiss is the number of

deadline miss, NTask is the total number of tasks and T is

period of tasks. Assume relative deadline.

The feasibility of schedule is

III. ALGORITHM

This is the condition to be followed, if they have to meet

the deadlines, not to overload the processor. Figure 5 shows

the number of deadline misses for standard MDF versus

Dynamic Queue Minimal Deadline First (DQMDF). The

comparison of deadline misses for the considered algorithms

was virtually simulated in SimSo Simulator using python

code. The scheduling algorithm has been implemented to

virtually generated tasks in the each of the process with the

number of cores for the processor being fixed. The

outcomes are presented graphically as shown in Figure 5 by

varying the number of tasks for these processes and by

scheduling them accordingly. The DQMDF has fewer

deadline misses compared to standard MDF, according to

the simulation results. This algorithm has therefore

demonstrated to be better for real-time operating system

execution.

Figure.5 Comparison of MDF and DQMDF

IV. METHODOLOGY

The scheduling algorithm program is initially written as

in [17] [18]. This program is developed in the kernel of

Raspberry Pi OS (Raspbian) as a module to be updated. It is

developed as a patch to be attached as shown in Figure 6 to

the Raspberry Pi OS kernel. The OS is then compiled on the

host platform with the updated kernel. The kernel would be

configured and constructed on Raspberry Pi after effective

compilation. Using the cyclic test tool [10], the build kernel

is examined for operation latency.

Figure.6 Flowchart for writing kernel code in python

V. HARDWARE SETUP & RESULTS

As shown in figure 7, Raspberry Pi has 4 cores each with

one thread. Here 4 processes with variable number of

execution tasks are considered. The cyclic testing tool

results in a minimum average and peak latency time for

pseudo code execution. In the cyclic test tool, the number of

loops for performing a task in each process and the interval

between the performances are defined. Figure 8 shows the

difference in the latency of execution of processes for the

normal kernel on Raspberry Pi and the modified kernel with

dynamic queue minimal first scheduling algorithm.

Figure 7 - Connection of Multicore system to PC

http://www.ijitee.org/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075 (Online), Volume-8 Issue-11, September 2019

3267

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K25320981119/19©BEIESP

DOI: 10.35940/ijitee.K2532.0981119

Journal Website: www.ijitee.org

5.1 Result

Figure 8 Latency Time of Tasks in process

5.2 Performance analysis

By running the RT-cyclic test tool by defining number of

tasks to be executed, priority of the execution in each of the

processes (tasks are assigned dynamically to each of the

processes) corresponding to the cores of the processor with

kernel of non-real time scheduling algorithm (i.e. default

scheduling algorithm – Completely Fair Scheduling (CFS))

the maximum latency time for some tasks executed in the

processor is 150ns to 200ns while others have a very least

latency time below 50ns. Therefore, it can be established

that if high-priority tasks to be performed can have a high

latency time, while low-priority tasks can have a low latency

time to be performed. So the execution of high-priority tasks

can be delayed. Ultimately, using real-time systems that

need to be extremely responsive becomes unfeasible.

Similarly, the maximum latency time was observed by

performing the RT-cyclic latency test for tasks executed

with the modified kernel (replacing the CFS scheduling

algorithm with the DQMDF scheduling algorithm in the

kernel scheduling module). For the maximum latency time

for each task is observed, the maximum latency time was

around 50ns to 80ns for almost all tasks executed with

modified scheduling policy. Therefore it is evident that the

response time of execution has been lowered while

assigning the greater priority to the tasks. So the tasks with

high priority can respond earlier for execution and also the

tasks with the low priority of execution are responded are

with optimal response time without the long delay in

execution as compared with non-real time Kernel (with CFS

scheduling algorithm). Thus, the DQMDF scheduling

algorithm proves to be more responsive in real-time context

and can therefore be implemented in the kernel with the

non-real-time operating system that can be implemented

with real-time systems.

Figure.9 Performance Analysis for 4 tasks

Figure.10 Performance Analysis for 8 tasks

Figure.11 Performance Analysis for 16 tasks

VI. CONCLUSION

The proposed DQMDF is implemented in Simso in this

paper by considering 4 cores and comparing the

performance of the proposed one to the standard MDF.

Compared to state of the art work, the deadline miss is

proven to be less in the suggested technique. Then the same

at the hardware level in the non-real time kernel is

implemented in 4 core processor, it has been shown that the

latency time is reduced considerably. We plan to implement

that enormous task set in the future.

https://www.openaccess.nl/en/open-publications
http://www.ijitee.org/

Performance of Dynamic Queue Based Minimal Deadline First Scheduling Algorithm In Multicore System Under

Real Time And Non-Real Time Kernel Environment

3268

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: K25320981119/19©BEIESP

DOI: 10.35940/ijitee.K2532.0981119

Journal Website: www.ijitee.org

REFERENCES

1. Senthilkumar, M. “Energy-Aware Task Scheduling Using Hybrid

Firefly-BAT (FFABAT) in Big Data.” Cybernetics and Information

Technologies, vol. 18, no. 2, 2018, pp. 98–111., doi:10.2478/cait-2018-
0031.

2. Kandasamy, Nagarajan, et al. “Task Scheduling Algorithms for Fault

Tolerance in Real-Time Embedded Systems.” Dependable Network
Computing, 2000, pp. 395–412., doi:10.1007/978-1-4615-4549-1_18.

3. Ha SW, Lee YK, Vu TH, Jung YJ, Ryu KH. An environmental

monitoring system for managing spatiotemporal sensor data over
sensor networks. Sensors (Basel). 2012;12(4):3997–4015.

doi:10.3390/s120403997.

4. Cain C, Haque S. Organizational Workflow and Its Impact on Work
Quality. In: Hughes RG, editor. Patient Safety and Quality: An

Evidence-Based Handbook for Nurses. Rockville (MD): Agency for

Healthcare Research and Quality (US); 2008 Apr. Chapter 31.
5. Gao, Huanli, and Yonggui Liu. “Event-Driven Real-Time Actuator

Scheduling Strategy over Wireless Sensor and Actuator Networks.”

Proceedings of the 33rd Chinese Control Conference, 2014,
doi:10.1109/chicc.2014.6896663.

6. Sullins, John, “Information Technology and Moral Values”,

Metaphysics Research Lab, Stanford University, 2019.
7. Di Liu, Nan Guan, Jelena Spasic, Gang Chen, Songran Liu and Todor

Stefanov, "Scheduling Analysis of Imprecise Mixed-Criticality Real-

Time Tasks," in IEEE Transactions on Computers, vol. 67, no. 7, pp.
975-991, 1 July 2018.

8. N. Romanova, N. Crosby, and V. Pilipenko, “Relationship of

Worldwide Rocket Launch Crashes with Geophysical Parameters,”
International Journal of Geophysics, vol. 2013, Article ID 297310, 15

pages, 2013. https://doi.org/10.1155/2013/297310.

9. Malik, Sehrish, Shabir Ahmad, Israr Ullah , Dong Hwan Park and
DoHyeun Kim “An Adaptive Emergency First Intelligent Scheduling

Algorithm for Efficient Task Management and Scheduling in Hybrid of

Hard Real-Time and Soft Real-Time Embedded IoT Systems.”
Sustainability, vol. 11, no. 8, 2019, p. 1- 21.

10. Saifullah, Abusayeed, et al. “Multi-Core Real-Time Scheduling for

Generalized Parallel Task Models.” 2011 IEEE 32nd Real-Time
Systems Symposium, 2011, doi:10.1109/rtss.2011.27.

11. RAS, PH D. JIM. Scheduling Algorithms for Real-Time Systems.

LULU COM, 2016.
12. Kohutka, Lukas, and Viera Stopjakova. “A Novel Hardware-

Accelerated Real-Time Task Scheduler Based on Robust Earliest

Deadline Algorithm.” 2018 13th International Conference on Design
& Technology of Integrated Systems In Nanoscale Era (DTIS),

2018.

13. Yim, Yin-Goo, and Hyun-Wook Jin. “Analysis of Impact of Multi-
Core CPU Bandwidth in Docker Containers.” KIISE Transactions on

Computing Practices, vol. 24, No. 12, 2018, pp. 675–680.,

doi:10.5626/ktcp.2018.24.12.675.
14. Arshad Iqbal, Asia Zafar and Bushra Siddique , “Dynamic Queue

Deadline First Scheduling Algorithm for Soft Real Time Systems.”
Proceedings of the IEEE Symposium on Emerging Technologies,

2005., doi:10.1109/icet.2005.1558906.

15. Khera, Ishan, and Ajay Kakkar. “Comparative Study of Scheduling
Algorithms for Real Time Environment.” International Journal of

Computer Applications, vol. 44, No. 2, 2012, pp. 5–8.,

doi:10.5120/6233-7797.
16. Ruan, Youlin, et al. “Energy-Aware Scheduling for Multicore Real-

Time Systems.” Management Innovation and Information Technology,

2014, doi:10.2495/miit130391.
17. Abeer Hamdy, Ahmed E. Youssef and Reda Ammar, “Real-Time

Workload Allocation on a Uni-Processor.” International Journal of

Computer Applications, vol. 53, No. 12, 2012, pp. 17–24.
18. M. Kaladevi and Dr. S. Sathiyabama "Comparative Study of

Scheduling Algorithms for Real Time Task", International Journal of

Advances in Science and Technology, Vol. 1, No. 4, 2010.

http://www.ijitee.org/

