
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-11, September 2019

3446

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number K25730981119/2019©BEIESP

DOI: 10.35940/ijitee.K2573.0981119



Abstract—The intention behind software testing is discovering

defects in the developed software, making it error-free, robust and

trustworthy. A large quantum of total efforts in the development of

software is done on software testing. These efforts may include

time, cost and most importantly manpower. The number of efforts

required in software testing may be reduced if test data is

generated automatically, without trade off the quality of the

developed software. In literature, various nature inspired

algorithms are used for the optimization of the software testing

process. This article is a brief study on the applications of nature

inspired algorithms in software testing. To keep the study succinct

this study considers only two widely used testing types, structural

and functional testing and literature available, since 2010 by

considering only SCI or SCOPUS indexed publications.

Index Terms—structural testing, functional testing, software

testing, test data generation, nature inspired algorithm, testing

optimization

1. INTRODUCTION

Software testing is among the important phases in the

software development cycle. The sole aim of this phase is to

detect faults in the developed software and make it error-free,

robust and trustworthy. A large quantum of total efforts in the

development of software is done on software testing. These

efforts may include time, cost and most importantly

manpower. In software testing phase first step is to generate

test cases, to works as an input for the developed software

and then it is checked that whether the software under test is

meeting its requirement or missing something. To make

developed software error free exhaustive testing needed,

which in turn requires a lot of efforts, so it is a challenge for

someone to do it optimally. The number of efforts required in

software testing may be reduced if test data is generated

automatically, without any adverse effect on the quality of

the developed software. Test case generation is an

optimization problem and can be solved optimally with the

help of nature-inspired optimization algorithms. These

nature-inspired algorithms may include Genetic Algorithm

(GA), Ant Colony Optimization (ACO), Particle Swarm

Optimization (PSO), Cuckoo Search Algorithm (CSA),

Firefly Algorithm (FA), etc.

This article presents a brief study on the applications of the

nature-inspired algorithm in software testing since 2010

while considering only SCOPUS or SCI-indexed research

papers from online digital libraries (ACM, IEEE, Springer,

ScienceDirect and, Elsevier). Fig. 1 shows the number of

Revised Version Manuscript Received on September 09, 2019.

Sanjiv Sharma, Computer Science & Engineering, KIET Group of

Institutions, Ghaziabad, India
S.A.M Rizvi, Computer Science, Jamia Millia Islamia University, New

Delhi, India

Vineet Kumar Sharma, Computer Science & Engineering, KIET
Group of Institutions, Ghaziabad, India

publications year wise and Fig. 2 shows the shares of SCI and

SCOPUS indexed research papers and Fig. 3 shows shares of

Conferences and journals. In literature there are various

nature inspired algorithms, this study considers only GA,

PSO, ACO, CSA and FA because these algorithms are widely

used. Relative contributions of these algorithms are shown in

Fig. 4. To keep the study concise this article categorizes

available literature in two categories of software testing, i.e.

structural and functional testing. This paper is composed as

follows, section II gives the overview of GA and its use in

software testing, section III summarizes PSO algorithm and

its application in software testing. Section IV, V and VI gives

brief introductions of ACO, CSA and FA and their uses in

software testing respectively. Finally, section VII represents

the conclusion of this study.

Fig 1: Publication from 2010 to 2018

2. GENETIC ALGORITHM

Genetic Algorithm (GA) was developed by John Holland

[1] and it is the most widely used meta-heuristic based

optimization algorithm. This algorithm is developed by

taking inspiration from the theory of natural evaluation given

by the great biologist Charles Darwin and it mimics the

process of natural selection, where fittest or best individuals

are selected by the nature for the breeding. GA is generally

used to generate better solutions for the search problems

having very large state space and optimization problem by

using operations, such as crossover, mutation, and selection.

A set of possible solutions to the problem is represented as a

set of the chromosome. A set of chromosomes is named as

population. A chromosome is represented as a string of

character/binary digit/integer. Each individual chromosome

denotes a solution to the problem or a point in the search

space. GA uses the following rules in each iteration, to create

the next generation from the current population.

Research on use of Nature Inspired Algorithms

in Software Testing

Sanjiv Sharma, S.A.M. Rizvi, Vineet Kumar Sharma

Research on use of Nature Inspired Algorithms in Software Testing

3447

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number K25730981119/2019©BEIESP

DOI: 10.35940/ijitee.K2573.0981119

a) Initial population: A set of initial solution is generated

using randomly selected solutions. This set is

represented as initial population.

b) Fitness function: This function is used to calculate

quality of the current solution (chromosome) and assign

a fitness score to it. This fitness score plays an important

role in the selection of an individual for reproduction.

Calculation of fitness function is totally dependent on

the type of problem in hand and varies problem to

problem.

c) Selection: This operation is used to select

chromosomes that fulfill the fitness criteria, for

reproduction and to generate a new population for the

next iteration. Selection method may be one from

roulette wheel, binary tournament, stochastic sampling,

and truncation.

d) Crossover or recombination: This stage is used after

selection and applied to selected chromosomes in the

previous stage. In crossover two individual swap genes

or sequence of bits on crossover sites. It may be on

single point, double points, uniform or random. This

stage creates a new offspring for the next iteration.

e) Mutation: This is used to keep diversity in the

population of genes, some of the genes are mutated by

altering their values. This process removes the

premature convergence. Some important mutation

operators are bit string, bit flip, boundary, uniform, and

Gaussian.

A. GA in Structural Testing

A modified GA is used by [2] for automatic test case

generation. The suggested approach uses real numbers

instead of binary numbers for improvement of genetic

algorithm and claims that this modified approach provides a

better path and branch coverage for Delaunay Triangulation

network program but has poor time efficiency compare to

basic genetic algorithm. Vivanti et al. [3] used a search-based

approach GA with the help of EVOSUITE tool for finding

out test cases for data flow testing. Using EVOSUITE an

empirical study is performed on the 100 open source java

projects, selected from SF100 corpus and concludes that data

flow testing provides better coverage than branch coverage

and better mutation score. Garg and Garg [4] suggested a

hybrid GA called HGA to generate test cases while

considering a fitness function based on branch coverage. This

new suggested hybrid algorithm is a blend of hill climbing

and a simple genetic algorithm. Experiment results show that

suggested approach performs better than simple path

coverage. Yang et al. [5] used a modified GA called

regenerate genetic algorithm (RGA), which solves the

population aging problem of the basic genetic algorithm. This

algorithm regenerates population when population aging

crosses the threshold limit. For experiment Siemens suite’s

programs are selected for evaluation of the suggested

approach. In this work, results are compared with the basic

Genetic Algorithm and random testing by considering branch

coverage as a test adequacy criterion. Khan and Amjad [6]

used GA and mutation analysis for generation of test cases of

the selected program while considering path coverage and

boundary coverage as testing adequacy criterion. As per the

study claim, this approach achieved 100 % path and

boundary coverage. Varshney and Mehrotra [7] suggested

GA based approach for generating optimized test cases for

data flow testing while considering all uses criterion as

testing adequacy criterion. This paper also introduces a

fitness function by using dominance concept in control flow

graph, elitism and branch distance. Results achieved using

this approach are also compared with random testing and the

results produced by the [8].

B. GA in Functional Testing

A combination of GA and static analysis for automatic

testing of Eiffel classes is used in [9]. In this work, the fitness

function depends upon the number of faults identified by test

cases and results are compared with random testing. This

study claims that the suggested approach performs better than

random testing for the object-oriented software. GA is used

by [10] in black box testing. In this work test cases are

generated by considering the use case diagram as an input

program. The fitness function is the ratio between valid and

invalid test results. Arora [11] used GA with variable length

chromosome, for the generation of test suite in the

state-based testing. In this study, a program is represented as

a fine state machine and fitness function depends upon the

number of states traversed and transitions. Betts and Petty

[12]used GA for automatic testing of UAV flight control

software. To achieve optimized test cases fitness function

depends upon maximum lateral deviation from the

predetermined path is used. This study claims that GA and

surrogate-based optimization algorithms perform better than

the commonly used Monte Carlo testing method.

Fig 2: Share of SCOPUS and SCI indexed Papers

 III. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) algorithm is also

nature inspired optimization algorithm. This is also

population-base optimization algorithm developed by

Kennedy and Albert in 1995 [13]. It mimics the behavior of

bird flocking and schooling pattern of fish. PSO uses a set of

particles called swarm and this swarm moves around in the

search space and explore possible solutions.

 Movements of any particle is guided by the following

three things.

a) Particle’s current velocity.

b) Distance from its best-known position.

c) Distance from the swarms best position.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-11, September 2019

3448

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number K25730981119/2019©BEIESP

DOI: 10.35940/ijitee.K2573.0981119

All particles of swarm communicate with each other and

share their finding in the search space. Movement or

trajectory of particle has two components i.e. deterministic

and stochastic. Each particle’s position is defined using its

position vector (Xi) and velocity vector (Vi). For a d

dimensional space, each particle is represented as a

d-dimensional positional vector Xi = [Xi1, Xi2,…….., Xid] and

all particle collectively called population. The previous best

value achieved by a particle is called Pbest and described as

Pbesti = [Pbesti1, Pbesti2,…….., Pbestid]. The best value of each

particle is called global best (Pgbest) and described as Pgbesti =

[Pgbesti1, Pgbesti2,…, Pgbesti1d]. Velocity of the particle and

described as Vi = [Vi1, Vi2,…, Vid]. Velocity of i
th

particle in

j
th

 iteration is calculated using the following equation.

Vid(j+1) = WVid(j)+C1R1(Pbesti(j)- Xi(j))+C2R2(Pgbesti(j)- Xi(j))

 (1)

Where value of i varies from 1 to n and n signifies

population of the swarm, w is used to denotes inertia weight,

c1, and c2 denotes acceleration constants, r1 and r2 are two

randomly generated number in the range [0,1]. Equation 2 is

used to calculate position of the i
th

 particle in the j
th

 iteration.

Xi (j+1) = Xi(j)+ Vid(j+1) (2)

Based on the above two equations the population of

particles converges on a global best solution while each

particle is having random movement.

A. PSO in Structural Testing

Nayak and Mohapatra [14] used PSO for the generation of

test suite for structural testing using data flow testing. This

new approach is tested on the 14 FORTRAN programs while

considering all uses criterion as test adequacy criteria. The

results achieved after simulation of the suggested approach

on MATLAB are compared with the solution achieved using

GA algorithm. Using an empirical study of results achieved

after experiments, a conclusion is derived that PSO performs

much better than GA in achieving 100% def-use coverage. In

other words, PSO achieved the same results in lesser number

of generation compared to GA. Agarwal and Srivastava

[15]used a modified PSO algorithm, called Discrete

Quantum Particle Swarm Optimization (QPSO), to generate

test cases automatically for three benchmark programs e.g.

triangle classifier, calculation of number of days between two

given dates and line in a rectangle problem. The branch

coverage is considered as test adequacy criteria and fitness

function is also based on branch predicates in branching

condition. Mao [16] also used PSO for the generation of test

suite while considering a objective function depending on

branch coverage and branch distance for the guidance of the

PSO in its search space. An empirical study is performed

after finding test cases using PSO for eight benchmark

programs and test cases produced by Simulated Annealing

(SA) and Genetic algorithm on matrices like average

percentage coverage, success rate, average generations and

average execution time. In the end, this study concludes that

PSO performs better than SA and GA. Jiang et al. [17] used a

modified PSO algorithm called Reduced Adaptive PSO, for

automatic test data generation. This suggested algorithm

modifies the evolution equation after removing the velocity

component of PSO and considers only inertia weight. This

modification in the PSO reduces the chances of getting stuck

in local minima while searching in the state space. The inertia

weight suggested in this work is dynamic and changes its

value based on the relationship between particle fitness and

aggregation degree. For guidance to the suggested algorithm,

a fitness function is used. This fitness function works on

branch predicates. After each execution of the algorithm

updated population is partitioned into three parts and the

inertia of each part is calculated independently. As per the

study, this provides a better balance between local and global

search. For the validation of the suggested work, this new

approach is applied to four benchmark program as well as

four industry programs and compares the results with two

other approaches suggested by [18] [19]. After

experimentation of suggested work, it is concluded that this

new approach provides better convergence speed. Sumit [20]

used a hybrid approach for the generation of test suite in data

flow testing. This hybrid algorithm is called Adaptive

PSO-GA, and it is an amalgamation of GA and PSO. This

algorithm removes the problem of immature convergence

from PSO and the problem of slow convergence of GA. In

this study, a new objective function is also suggested for the

guidance of the adaptive PSO-GA. This objective function is

a combination of dominance relation, branch weight, and

branch distance in a CFG of the program under test. The

effectiveness of this new approach is tested on four

real-world problems as well as on the ten benchmark

programs and further results are compared with results

gained using Differential Evolution (DE), PSO, GA, and

ACO on two parameters i.e. an average number of

generation, average coverage achieved. In the end, the study

claims that the suggested approach produced a better result

than above-mentioned algorithms. Kumar, Yadav, and Khan

[21]suggested a modified PSO called accelerating PSO for

data flow testing. This suggested ASPO provides a better

tunning between exploration and exploitation. This work also

introduces a new objective function based upon the

dominance relation between nodes of the CFG and branch

weight distance for the guidance of ASPO in its search space.

A set of 10 benchmark programs are used for the empirical

study of the suggested approach and the study concludes that

the suggested approach works better than random search, GA

and PSO algorithm for the same set of programs on several

parameters like the number of generation, average coverage,

and ANOVA test. Varshney and Mehrotra [22]used a

combination of PSO and differential Evolution to generate

test data for structural testing. This suggested approach is

used for data flow testing with the help of neighborhood

search strategy for improvement in the performance of the

suggested hybrid algorithm. The fitness function used in this

work is based upon dominance concepts of nodes in CFG of

the program under test and branch distance, while

considering the mean number of generation and percentage

of coverage as performance matrices for evaluation of the

suggested hybrid algorithm. The results achieved by this

algorithm are compared with results gain from using GA,

Random Search, PSO and Differential Evolution algorithms

Research on use of Nature Inspired Algorithms in Software Testing

3449

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number K25730981119/2019©BEIESP

DOI: 10.35940/ijitee.K2573.0981119

 on 10 benchmark programs and results indicate that this new

approach performs better than others on the selected

benchmark programs.

B. PSO in Functional Testing & Results

A simplified version of PSO called Simplified Swarm

Optimization (SSO) is used by Ahmed, Sahib, and Potrus

[23] for GUI functional testing. This simplified algorithm

SSO modifies the velocity modification equation by

removing personal influence. After generating the final set of

test cases an empirical study is done by comparing results of

SSO with Test Vector Generator (TVG), Pairwise

Independendant Combinatorial Testing (PICT), Intelligent

Test Case Handler (ITCH) and Parameter Order Generator

(IPOG) with the help of Quick Test Professional (QTP), an

automatic testing software. For the case study, example

software for fight reservation written in Visual Basic is used.

As per the study’s claim, the suggested strategy generates a

lesser number of test cases than the original PSO version.

Tyagi and Malhotra [24] used Multi-Objective PSO in

regression testing for prioritization of test cases. This

suggested approach works in three steps. In the first step,

matrix operations are used to remove redundant test cases. In

the second step, PSO is used for finding out minimal test suite

which covers all faults in minimum execution time and

priority is assigned to the test cases as a last step. For

experiment two case studies are used and results are

generated after simulation on MATLAB. The results

achieved using the suggested algorithm, are compared with

three other approaches of regression testing called No

Ordering, Reverse Ordering and Random Ordering. In the

end, it is concluded that the suggested approach works better

than the rest three one.

Fig 3: Share of Conferences and Journals

IV. ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is another

nature-inspired optimization algorithm that mimics the

foraging behaviour of an ant colony. This algorithm is

suggested by Dorigo [25]. During foraging process ant drops

the special chemical called pheromone on the traversed path.

This pheromone fades away over time. When other ants

follow the same path, they also deposit the pheromone on the

traversed path. In the initial phase, ants select the random

paths for searching food and deposit the pheromone while

moving. When some ant finds out shortest route form colony

to food it deposits pheromone on the path of it’s to and fro

route, this activity leads to the high intensity of pheromone on

that path which further attracts other ants to follow the same

path. After some tine, all ants converge on that shortest path.

Fig 4: Relative Contribution of Algorithms

A. ACO in Structural Testing

Mao, Xiao, Yu, & Chen [26] used a discrete version of the

ACO algorithm to generate test data for structural testing

while taking branch coverage as test adequacy criteria. This

work proposes a new fitness function, based on nesting level

and predicate coverage of the branch. The suggested

approach is tested on eight benchmark programs and results

are compared with simulated annealing and genetic

algorithm. As per the study claim suggested approach

outperforms the other algorithm mentioned above in terms of

coverage capability and convergence speed. Yang, Man, and

Xu [27]used modified ACO for software test case generation.

This modified ACO introduces a new coefficient with the

name Improved Pheromone Volatilization Coefficient for

ACO (IPVACO) for pheromone update strategy. The results

achieved using this approach are compared with GA and

Random Approach by considering branch coverage and

statement coverage as testing adequacy criterion. After the

experiment, an empirical study is used to establish that

approach based on IPVACO is better than the others. Biswas,

Kaiser, and Mamun [28] used ACO algorithm in structural

testing. This suggested approach used to generate test suite

for path coverage and then prioritizes them. Although this

approach is used on a single program i.e. binary search and

gives evidence that by using this approach it is guaranteed

that with the help of this full software coverage can be

achieved without having any redundancy.

B. ACO in Functional Testing

Noguchi and Washizaki [29] used ACO in black box

testing and prioritizes the test cases. A framework is

suggested for the prioritization of test suite on a new product,

with the help of test execution history of similar older

product. For experiment two actual products are considered.

One is software for medical purpose and another one is for

financial purpose. After simulations, results achieved using

the suggested framework are compared with random order

approach while considering the Average of the Percentage of

Faults Detected (APFD) as an evaluation parameter. In the

end, it is established that, suggested approach provides better

APFD than the random approach. Zheng and Hu [30]used a

hybrid version of ACO for the creation of automated test data

sequence for the functional requirement specification of a

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-11, September 2019

3450

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number K25730981119/2019©BEIESP

DOI: 10.35940/ijitee.K2573.0981119

high-speed train in China. This hybrid ACO is the

combination of ACO and Maze algorithm. This new

algorithm provides dynamic learning capability and

overcomes the problem of local optima of plain ACO

algorithm. For the experiment purpose, four scenarios are

used after converting them into Colored Petri Nets (CPN) and

then converted into an XML model. At the last step modified

ACO is used to generate optimal sequence of test cases. The

generated sequence further tested on the system after creating

the Radio Blocking Center (RBC) test platform. The results

achieved after this indicates that this new approach optimizes

the test sequences. Dongdong Gao, Xiangying Guo [31] used

ACO for in the regression testing and prioritizes the test

cases. This approach optimizes the test sequence after

considering three factors; the number of faults detected the

severity of fault and execution time of the program as a

guiding tool in the search state space. The results achieved

using this, are compared with the random approach by

considering APFD as a metric. Sayyari, Faeghe [32] used

ACO on model-based testing. In this approach, a small model

of phone is considered and control flow graph of phone

communication is created while assigning different weight to

the branches. ACO with Markov chain is used for finding out

optimal test paths and puts a limit on the generation of paths

with p-factor. Carino and Andrews [33] used ACO for

dynamic GUI testing. In this approach, two variant of ACO

are used. One is simple ACO and other is AntQ. The AntQ

algorithm is a hybrid of ACO and Q-Learning (a behavioral

reinforcement technique). Both algorithms are used for

traversing the GUI state diagram and finding out good event

sequence while using the same fitness function. Here fitness

function is maximization function and finds out the amount

of change in the GUI state for every test case. The test cases

which have a higher impact on the GUI state carry forward to

the next iteration. Results achieved using the above two

approaches are compared with results achieved using random

selection technique by using six applications and it is

concluded that AntQ achieved the highest code coverage.

V. CUCKOO SEARCH ALGORITHM

Xin-She-Yang and Suresh Deb in 2009 [34] developed

Cuckoo Search Algorithm (CSA). CSA mimics the behavior

of some cuckoo species, which have parasitic nature for their

brooding. These cuckoos lay their eggs in such nests in which

eggs are laid recently by the host bird and have resemblance

with cuckoo eggs. If host bird somehow figures out that all

eggs do not belong to them, in such case it has two choices.

First, it may push the alien eggs out from nest and second, it

may simply abandon the nest and make new nest somewhere

else. In most of the cases, cuckoo’s eggs hatch earlier than

host bird’s eggs and once cuckoo chick hatched, it removes

the host egg from the nest by following its natural instinct.

This action of cuckoo chick improvises the probability of its

survival by accessing more food brought by the host the host

bird. To mimic the process of searching a host bird by a

cuckoo, CSA uses the concept of e vy flight. e vy flight is

used to exhibit the foraging behavior of various animal and

insects. CSA works on the following three principles.

a) One cuckoo chooses a nest randomly from a finite set

and lay single egg in it at a time.

b) The nest having high-quality eggs will be forwarded to

the next generations.

c) Availability of host nests is fixed and egg laid down by

cuckoo may be identified by host bird by the probability

Pa.

A. CSA in Structural Testing

Panda, Sarangi, & Dash [35] used CSA in unit testing

while considering all feasible path coverage of a CFG as test

adequacy criteria. The objective function used in this

research article is based on edge weight based path coverage.

The suggested approach has been applied on a single

benchmark program i.e. triangle classifier program and

results are compared with PSO and Gravitational Search

Algorithm (GSA). After comparisons of results, it is

established that the suggested approach is superior to PSO

and GSA. Khari Manju[36] applied CSA in the structural

testing. The test adequacy criterion considered in this work is

path coverage. The suggested approach is tested on twenty

benchmark programs and the results achieved are compared

with the Hill Climbing Algorithm using three comparison

parameters. These parameters are the size of the optimized

test data, number of iterations and duration of execution time.

As per the study claim, results achieved using CSA are better

than Hill Climbing Algorithm. Sharma, Rizvi, and

Sharma[37] suggested a framework and algorithm for the

functional testing. In this work a CSA bases algorithm is

proposed to generate test cases.

B. CSA in Functional Testing

Nagar, Kumar, Singh, & Kumar [38] used CSA in

regression testing. This approach prioritizes the test suite

from a given test case pool on the basis of the number of

faults identified in minimum time. This approach is tested on

a random case study and simulation is done using MATLAB.

From the achieved results it is concluded that CSA reduced

the test suite by 40%.

VI. FIREFLY ALGORITHM

Firefly algorithm (FA) is another nature inspired

optimization algorithm developed by Xin She Yang [39].

This algorithm is based upon the social flashing behavior of

fireflies and mimics the behavior of firefly for finding mates,

attracting its prey and protecting themselves from predators

using its flashlight. This algorithm is multi-objective

optimization algorithm and works on the following three

principles.

a) All fireflies are unisex and any firefly can attract other

fireflies regardless of its sex.

b) The attractiveness of firefly is directly propositional to

its brightness and both depend on the distance. If

distance increases then both of them decreases and vice

versa. For any tow arbitrary fireflies, the firefly having

lesser brightness moves towards the firefly having

higher brightness level. If all flies have same level of

brightness level, firefly moves randomly.

Research on use of Nature Inspired Algorithms in Software Testing

3451

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number K25730981119/2019©BEIESP

DOI: 10.35940/ijitee.K2573.0981119

c) Brightness of flashing light is determined by the

objective function of the problem concerned and in

most of the cases it is maximization function.

A. FA in Structural Testing

Pandey & Banerjee [40] used a modified version of Firefly

algorithm called chaotic firefly, to generate test cases for

white box testing. The suggested approach is applied on five

benchmark program while considering path coverage as

testing adequacy criteria. The results achieved using the

firefly algorithm are compared with 3 other meta heuristic

based optimization algorithm ACO, ABC and GA while

considering path coverage and execution time as a

comparison parameter. After simulation on MATLAB, the

results achieved, indicates that chaotic firefly algorithm

outperforms the rest.

B. FA in Functional Testing

Panthi & Mohapatra [41] have applied Firefly Algorithm

(FA) for the generation of a test data sequence of software,

using UML modeling. In this approach software is converted

into a state machine diagram, the Firefly algorithm is used for

the generation of prioritized sequence for the state machine.

For the validation of the suggested approach bank ATM

system is considered as a case study. Srivatsava,

Mallikarjun, and Yang [42] used Firefly algorithm for

optimal test case sequence generation for software testing

and developed a tool “Optimal Firefly Test Sequence

Generator (OFTSG)”. To apply this suggested approach a

program is represented as a graph using State transition

Diagram and CFG. For experiment a single case study is

taken and results are compared with results achieved using

ACO, after simulation of the suggested approach. After doing

empirical study it is found that firefly, generates less

redundant test cases as compared to ACO. Sharma & Saha

[43] applied Firefly algorithm in model based testing. In this

suggested approach a program is represented as a state

transition diagram, based on its behavior on inputs. For the

validation of suggested work, it is applied to the five

benchmark programs and test cases are generated using

Firefly algorithm. After that, a comparative study is done by

comparing the results achieved using FA and ACO. From the

empirical study, it is established that results achieved using

FA are less redundant than ACO.

CONCLUSION

This article presents a study on the use of nature inspired

optimization algorithms in software testing optimization

since 2010. After the study of the literature available from

authentic and reputed sources (i.e. SCOPUS and SCI indexed

publications), the following conclusions have been drawn.

First is that GA is the most widely used optimization

algorithm while CSA and Firefly algorithms are the least

used ones. Second, most of the work done is in the white box

testing especially, structural testing. The third is, in structural

testing, path and branch coverage are the most extensively

used as test adequacy criteria. And last observation is, the

majority of the work is validated on some small benchmarked

program e.g. Triangle classifier program, checking number

is a perfect square or not, etc. From the above observations,

we can say that use of nature inspired algorithm in the field of

testing is in the growing phase, there is ample scope for work

in this research area.

REFERENCES

1. J. H. Holland, Adaptation in natural and artificial

systems : an introductory analysis with applications to

biology, control, and artificial intelligence. MIT Press,

1992.

2. D. iu, X. Wang, and J. Wang, “Automatic test case

generation based on genetic algorithm,” J. Theor. Appl.

Inf. Technol., vol. 48, no. 1, pp. 411–416, 2013.

3. M. Vivanti, A. Mis, A. Gorla, and G. Fraser,

“Search-based Data-flow Test Generation,” in IEEE 24th

International Symposium on Software Reliability

Engineering (ISSRE), 2013, pp. 370–379.

4. D. Garg and P. Garg, “Basis Path Testing Using SGA &

HGA with Ex B Fitness Function,” Procedia Comput.

Sci., vol. 70, pp. 593–602, 2015.

5. S. Yang, T. Man, J. Xu, F. Zeng, and K. i, “RGA: A

lightweight and effective regeneration genetic algorithm

for coverage-oriented software test data generation,” Inf.

Softw. Technol., vol. 76, pp. 19–30, 2016.

6. R. Khan and M. Amjad, “Optimize the Software Testing

Efficiency using Genetic Algorithm and Mutation

Analysis,” 2016 3rd Int. Conf. Comput. Sustain. Glob.

Dev., vol. 16, pp. 1174–1176, 2016.

7. S. Varshney and M. Mehrotra, “Search-Based Test Data

Generator for Data-Flow Dependencies Using Dominance

Concepts, Branch Distance and Elitism,” Arab. J. Sci.

Eng., vol. 41, no. 3, pp. 853–881, 2016.

8. A. S. Ghiduk, M. J. Harrold, and M. R. Girgis, “Using

genetic algorithms to aid test-data generation for

data-flow coverage,” Proc. - Asia-Pacific Softw. Eng.

Conf. APSEC, pp. 41–48, 2007.

9. . S. Silva and M. van Someren, “Evolutionary testing of

object-oriented software,” in Proceedings of the 2010

ACM Symposium on Applied Computing, 2010, p. 1126.

10. M. Fischer and R. Tonjes, “Generating test data for

black-box testing using genetic algorithms,” in IEEE 17th

International Conference on Emerging Technologies &

Factory Automation (ETFA 2012), 2012.

11. A. Arora and M. Sinha, “State based test case generation

using VCL-GA,” Proc. 2014 Int. Conf. Issues Challenges

Intell. Comput. Tech. ICICT 2014, pp. 661–665, 2014.

12. [12] K. M. Betts and M. D. Petty, “Automated

Search-Based Robustness Testing for Autonomous

Vehicle Software,” Model. Simul. Eng., vol. 2016, pp.

1–15, 2016.

13. R. E. James Kennedy, “Particle Swarm Optimization,” in
Proc. IEEE International Conf. on Neural Networks,

1995.

14. N. Nayak and D. P. Mohapatra, “Automatic test data

generation for data flow testing using particle swarm

optimization,” Commun. Comput. Inf. Sci., vol. 95 CCIS,

no. PART 2, pp. 1–12, 2010.

15. K. Agarwal and G. Srivastava, “Towards software test

data generation using discrete quantum particle swarm

optimization,” in Proceedings of the 3rd India software

engineering conference, 2010, pp. 65–68.

16. C. Mao, “Generating Test Data for Software Structural

Testing Based on Particle Swarm Optimization,” Arab. J.

Sci. Eng., vol. 39, no. 6, pp. 4593–4607, 2014.

17. S. Jiang, J. Shi, Y. Zhang, and H. Han, “Automatic test
data generation based on reduced adaptive particle swarm

optimization algorithm,” Neurocomputing, vol. 158, pp.

109–116, 2015.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-11, September 2019

3452

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number K25730981119/2019©BEIESP

DOI: 10.35940/ijitee.K2573.0981119

18. X. M. Zhu and X. F. Yang, “Software test data generation

automatically based on improved adaptive particle swarm

optimizer,” in International Conference on

Computational and Information Sciences, 2010, pp.

1300–1303.

19. S. Singla, D. Kumar, H. M. Rai, and P. Singla, “A hybrid

PSO approach to automate test data generation for data

flow coverage with dominance concepts,” Int. J. Adv. Sci.

Technol., vol. 37, pp. 15–26, 2011.

20. S. Kumar, D. K. Yadav, and D. A. Khan, “A novel
approach to automate test data generation for data flow

testing based on hybrid adaptive PSO-GA algorithm,” Int.

J. Adv. Intell. Paradig., vol. 9, no. 2/3, pp. 278–312, 2017.

21. S. Kumar, D. K. Yadav, and D. A. Khan, “An accelerating
PSO algorithm based test data generator for data-flow

dependencies using dominance concepts,” Int. J. Syst.

Assur. Eng. Manag., vol. 8, no. s2, pp. 1534–1552, 2017.

22. S. Varshney and M. Mehrotra, “A Hybrid Particle Swarm

Optimization and Differential Evolution based Test Data

Generation Algorithm for Data-Flow Coverage using

Neighbourhood Search Strategy,” Informatica, vol. 42,

no. 3, pp. 417–438, 2018.

23. B. S. Ahmed, M. A. Sahib, and M. Y. Potrus, “Generating

combinatorial test cases using Simplified Swarm

Optimization (SSO) algorithm for automated GUI

functional testing,” Eng. Sci. Technol. an Int. J., vol. 17,

no. 4, pp. 218–226, 2014.

24. M. Tyagi and S. Malhotra, “Test case prioritization using

multi objective particle swarm optimizer,” in

International Conference on Signal Propagation and

Computer Technology, ICSPCT 2014, 2014, pp. 390–395.

25. M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony

optimization,” IEEE Comput. Intell. Mag., vol. 1, no. 4,

pp. 28–39, Nov. 2006.

26. C. Mao, . Xiao, X. Yu, and J. Chen, “Adapting ant

colony optimization to generate test data for software

structural testing,” Swarm Evol. Comput., vol. 20, pp.

23–36, 2015.

27. S. Yang, T. Man, and J. Xu, “Improved Ant Algorithms

for Software Testing Cases Generation,” Sci. World J.,

vol. 2014, p. 9, 2014.

28. S. Biswas, M. S. Kaiser, and S. A. Mamun, “Applying Ant

Colony Optimization in software testing to generate

prioritized optimal path and test data,” 2nd Int. Conf.

Electr. Eng. Inf. Commun. Technol. iCEEiCT 2015, no.

May, pp. 21–23, 2015.

29. T. Noguchi and H. Washizaki, “History-Based Test Case

Prioritization for Black Box Testing using Ant Colony

Optimization,” in IEEE 8th International Conference on

Software Testing, Verification and Validation (ICST),

2015, pp. 2–3.

30. W. Zheng and N. W. Hu, “Automated test sequence

optimization based on the maze algorithm and ant colony

algorithm,” Int. J. Comput. Commun. Control, vol. 10, no.

4, pp. 593–606, 2015.

31. . Z. Dongdong Gao, Xiangying Guo, “Test Case
Prioritization for Regression Testing Based on Ant

Colony Optimization,” 2015, no. 91118007.

32. F. Sayyari and S. Emadi, “Automated generation of
software testing path based on ant colony,” in

International Congress on Technology, Communication

and Knowledge (ICTCK), 2016, pp. 435–440.

33. S. Carino and J. H. Andrews, “Dynamically testing GUIs
using ant colony optimization,” in 30th IEEE/ACM

International Conference on Automated Software

Engineering (ASE), 2016, pp. 138–148.

34. X.-S. Yang and S. Deb, “Cuckoo Search via evey

Flights,” 2009 World Congr. Nat. Biol. Inspired Comput.

(NaBIC 2009), pp. 210–214, 2009.

35. M. Panda, P. P. Sarangi, and S. Dash, “Automatic Test

Data Generation using Metaheuristic Cuckoo Search

Algorithm,” Int. J. Knowl. Discov. Bioinforma., vol. 5, no.

December, pp. 16–29, 2015.

36. M. Khari and P. Kumar, “A Novel Approach for Software

Test Data Generation using Cuckoo Algorithm,” in

Proceedings of the Second International Conference on

Information and Communication Technology for

Competitive Strategies, 2016, pp. 1–6.

37. S. Sharma, S. A. M. Rizvi, and V. Sharma, “A Framework

for Optimization of Software Test Cases Generation using

Cuckoo Search Algorithm,” in 2019 9th International

Conference on Cloud Computing, Data Science &

Engineering (Confluence), 2019, pp. 282–286.

38. R. Nagar, A. Kumar, G. P. Singh, and S. Kumar, “Test
Case Selection and Prioritization using Cuckoos Search

Algorithm,” in 1st International Conference on Futuristic

trend in Computational Analysis and Knowledge

Management (ABLAZE-2015), 2015, pp. 283–288.

39. X. S. Yang, “Firefly algorithm, ??vy flights and global
optimization,” Res. Dev. Intell. Syst. XXVI Inc. Appl.

Innov. Intell. Syst. XVII, pp. 209–218, 2010.

40. A. Pandey and S. Banerjee, “Test Suite Optimization

Using Chaotic Firefly Algorithm in Software Testing,”

Int. J. Appl. Metaheuristic Comput., vol. 8, no. 4, pp.

41–57, 2017.

41. H. S. Behera and D. P. Mohapatra, “Generating

Prioritized Test Sequences Using Firefly Optimization

Technique,” Adv. Intell. Syst. Comput., vol. 410, pp.

627–635, 2016.

42. P. R. Srivatsava, B. Mallikarjun, and X. S. Yang,

“Optimal test sequence generation using firefly

algorithm,” Swarm Evol. Comput., vol. 8, pp. 44–53,

2013.

43. R. Sharma and A. Saha, “Optimization of object-oriented

testing using firefly algorithm,” J. Inf. Optim. Sci., vol. 38,

no. 6, pp. 873–893, 2017.

AUTHORS PROFILE

Sanjiv Sharma is an assistant professor at KIET

Group of Institutions, Ghaziabad. He received his

B.Tech. degree from MMMEC, Gorakhpur affiliated

to AKTU, Lucknow, India in 2008, M.Tech degree

from Shobhit University Meerut, India in 2014, and

pursuing Ph.D. from Jamia Milllia University, New Delhi, India.

His research interests include software testing and nature inspired

algorithm. One can connect Sanjiv Sharma on

martin.mmmec@gmail.com.

S.A.M. Rizvi is a professor and former HoD at

Jamia Millia University, New Delhi India. He

received his Ph.D from Dr. R. M. L. Avadh

University, India, in 1996. His research interests are

Knowledge Engineering, MIS, Automation,

Algorithms and Bioinformatics. One can connect

SAM Rizvi on samsam_rizvi@yahoo.com.

Vineet Kumar Sharma is a professor and HoD at

KIET Group of Institutions, Ghaziabad, India. He

received his Ph.D. from Jamia Millia Islamia

University, New Delhi, India in 2012. His research

interest are algorithms, Software Engineering. One

can connect Vineet Kumar Sharma on vineet.sharma@kiet.edu.

