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 

Abstract—The intention behind software testing is discovering 

defects in the developed software, making it error-free, robust and 

trustworthy. A large quantum of total efforts in the development of 

software is done on software testing. These efforts may include 

time, cost and most importantly manpower. The number of efforts 

required in software testing may be reduced if test data is 

generated automatically, without trade off the quality of the 

developed software. In literature, various nature inspired 

algorithms are used for the optimization of the software testing 

process. This article is a brief study on the applications of nature 

inspired algorithms in software testing. To keep the study succinct 

this study considers only two widely used testing types, structural 

and functional testing and literature available, since 2010 by 

considering only SCI or SCOPUS indexed publications. 

 

Index Terms—structural testing, functional testing, software 

testing, test data generation, nature inspired algorithm, testing 

optimization 

1. INTRODUCTION 

Software testing is among the important phases in the 

software development cycle. The sole aim of this phase is to 

detect faults in the developed software and make it error-free, 

robust and trustworthy. A large quantum of total efforts in the 

development of software is done on software testing. These 

efforts may include time, cost and most importantly 

manpower. In software testing phase first step is to generate 

test cases, to works as an input for the developed software 

and then it is checked that whether the software under test is 

meeting its requirement or missing something. To make 

developed software error free exhaustive testing needed, 

which in turn requires a lot of efforts, so it is a challenge for 

someone to do it optimally. The number of efforts required in 

software testing may be reduced if test data is generated 

automatically, without any adverse effect on the quality of 

the developed software. Test case generation is an 

optimization problem and can be solved optimally with the 

help of nature-inspired optimization algorithms. These 

nature-inspired algorithms may include Genetic Algorithm 

(GA), Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), Cuckoo Search Algorithm (CSA), 

Firefly Algorithm (FA), etc. 

This article presents a brief study on the applications of the 

nature-inspired algorithm in software testing since 2010 

while considering only SCOPUS or SCI-indexed research 

papers from online digital libraries (ACM, IEEE, Springer, 

ScienceDirect and, Elsevier). Fig. 1 shows the number of 
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publications year wise and Fig. 2 shows the shares of SCI and 

SCOPUS indexed research papers and Fig. 3 shows shares of 

Conferences and journals. In literature there are various 

nature inspired algorithms, this study considers only GA, 

PSO, ACO, CSA and FA because these algorithms are widely 

used.  Relative contributions of these algorithms are shown in 

Fig. 4. To keep the study concise this article categorizes 

available literature in two categories of software testing, i.e. 

structural and functional testing. This paper is composed as 

follows, section II gives the overview of GA and its use in 

software testing, section III summarizes PSO algorithm and 

its application in software testing. Section IV, V and VI gives 

brief introductions of ACO, CSA and FA and their uses in 

software testing respectively. Finally, section VII represents 

the conclusion of this study. 

 

 
Fig 1: Publication from 2010 to 2018 

2. GENETIC ALGORITHM 

Genetic Algorithm (GA) was developed by John Holland 

[1] and it is the most widely used meta-heuristic based 

optimization algorithm. This algorithm is developed by 

taking inspiration from the theory of natural evaluation given 

by the great biologist Charles Darwin and it mimics the 

process of natural selection, where fittest or best individuals 

are selected by the nature for the breeding. GA is generally 

used to generate better solutions for the search problems 

having very large state space and optimization problem by 

using operations, such as crossover, mutation, and selection. 

A set of possible solutions to the problem is represented as a 

set of the chromosome. A set of chromosomes is named as 

population. A chromosome is represented as a string of 

character/binary digit/integer. Each individual chromosome 

denotes a solution to the problem or a point in the search  

space. GA uses the following rules in each iteration, to create 

the next generation from the current population. 
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a) Initial population: A set of initial solution is generated 

using randomly selected solutions. This set is 

represented as initial population. 

b) Fitness function: This function is used to calculate 

quality of the current solution (chromosome) and assign 

a fitness score to it. This fitness score plays an important 

role in the selection of an individual for reproduction. 

Calculation of fitness function is totally dependent on 

the type of problem in hand and varies problem to 

problem. 

c) Selection: This operation is used to select 

chromosomes that fulfill the fitness criteria, for 

reproduction and to generate a new population for the 

next iteration. Selection method may be one from 

roulette wheel, binary tournament, stochastic sampling, 

and truncation. 

d) Crossover or recombination: This stage is used after 

selection and applied to selected chromosomes in the 

previous stage. In crossover two individual swap genes 

or sequence of bits on crossover sites. It may be on 

single point, double points, uniform or random. This 

stage creates a new offspring for the next iteration. 

e) Mutation: This is used to keep diversity in the 

population of genes, some of the genes are mutated by 

altering their values. This process removes the 

premature convergence. Some important mutation 

operators are bit string, bit flip, boundary, uniform, and 

Gaussian. 

A. GA in Structural Testing 

A modified GA is used by [2] for automatic test case 

generation. The suggested approach uses real numbers 

instead of binary numbers for improvement of genetic 

algorithm and claims that this modified approach provides a 

better path and branch coverage for Delaunay Triangulation 

network program but has poor time efficiency compare to 

basic genetic algorithm. Vivanti et al. [3] used a search-based 

approach GA with the help of EVOSUITE tool for finding 

out test cases for data flow testing. Using EVOSUITE an 

empirical study is performed on the 100 open source java 

projects, selected from SF100 corpus and concludes that data 

flow testing provides better coverage than branch coverage 

and better mutation score. Garg and Garg [4] suggested a 

hybrid GA called HGA to generate test cases while 

considering a fitness function based on branch coverage. This 

new suggested hybrid algorithm is a blend of hill climbing 

and a simple genetic algorithm. Experiment results show that 

suggested approach performs better than simple path 

coverage. Yang et al. [5] used a modified GA called 

regenerate genetic algorithm (RGA), which solves the 

population aging problem of the basic genetic algorithm. This 

algorithm regenerates population when population aging 

crosses the threshold limit. For experiment Siemens suite’s 

programs are selected for evaluation of the suggested 

approach. In this work, results are compared with the basic 

Genetic Algorithm and random testing by considering branch 

coverage as a test adequacy criterion.     Khan and Amjad [6] 

used GA and mutation analysis for generation of test cases of 

the selected program while considering path coverage and 

boundary coverage as testing adequacy criterion. As per the 

study claim, this approach achieved 100 % path and 

boundary coverage. Varshney and Mehrotra [7] suggested 

GA based approach for generating optimized test cases for 

data flow testing while considering all uses criterion as 

testing adequacy criterion. This paper also introduces a 

fitness function by using dominance concept in control flow 

graph, elitism and branch distance. Results achieved using 

this approach are also compared with random testing and the 

results produced by the [8]. 

B. GA in Functional Testing 

A combination of GA and static analysis for automatic 

testing of Eiffel classes is used in  [9]. In this work, the fitness 

function depends upon the number of faults identified by test 

cases and results are compared with random testing. This 

study claims that the suggested approach performs better than 

random testing for the object-oriented software. GA is used 

by [10] in black box testing. In this work test cases are 

generated by considering the use case diagram as an input 

program. The fitness function is the ratio between valid and 

invalid test results. Arora [11] used GA with variable length 

chromosome, for the generation of test suite in the 

state-based testing. In this study, a program is represented as 

a fine state machine and fitness function depends upon the 

number of states traversed and transitions. Betts and Petty 

[12]used GA for automatic testing of UAV flight control 

software. To achieve optimized test cases fitness function 

depends upon maximum lateral deviation from the 

predetermined path is used. This study claims that GA and 

surrogate-based optimization algorithms perform better than 

the commonly used Monte Carlo testing method.  

 
Fig 2: Share of SCOPUS and SCI indexed Papers 

 III. PARTICLE SWARM OPTIMIZATION  

Particle Swarm Optimization (PSO) algorithm is also 

nature inspired optimization algorithm. This is also  

population-base optimization algorithm developed by 

Kennedy and Albert in 1995 [13]. It mimics the behavior of 

bird flocking and schooling pattern of fish. PSO uses a set of 

particles called swarm and this swarm moves around in the 

search space and explore possible solutions. 

 Movements of any particle is guided by the following 

three things. 

a) Particle’s current velocity. 

b) Distance from its best-known position. 

c) Distance from the swarms best position. 
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All particles of swarm communicate with each other and 

share their finding in the search space. Movement or 

trajectory of particle has two components i.e. deterministic 

and stochastic. Each particle’s position is defined using its 

position vector (Xi) and velocity vector (Vi). For a d 

dimensional space, each particle is represented as a 

d-dimensional positional vector Xi = [Xi1, Xi2,…….., Xid] and 

all particle collectively called population. The previous best 

value achieved by a particle is called Pbest and described as 

Pbesti = [Pbesti1, Pbesti2,…….., Pbestid]. The best value of each 

particle is called global best (Pgbest) and described as Pgbesti = 

[Pgbesti1, Pgbesti2,…, Pgbesti1d]. Velocity of the particle and 

described as  Vi = [Vi1, Vi2,…, Vid]. Velocity of i
th 

particle in 

j
th

 iteration is calculated using the following equation. 

 

Vid(j+1) = WVid(j)+C1R1(Pbesti(j)- Xi(j))+C2R2(Pgbesti(j)- Xi(j)) 

                                     (1) 

Where value of i varies from 1 to n and n signifies 

population of the swarm, w is used to denotes inertia weight, 

c1, and c2 denotes acceleration constants, r1 and r2 are two 

randomly generated number in the range [0,1].  Equation 2  is 

used to calculate position of the i
th

 particle in the j
th

 iteration. 

 

Xi (j+1) = Xi(j)+ Vid(j+1)                         (2) 

Based on the above two equations the population of 

particles converges on a global best solution while each 

particle is having random movement. 

A. PSO in Structural Testing 

Nayak and Mohapatra [14] used PSO for the generation of 

test suite for structural testing using data flow testing. This 

new approach is tested on the 14 FORTRAN programs while 

considering all uses criterion as test adequacy criteria. The 

results achieved after simulation of the suggested approach 

on MATLAB are compared with the solution achieved using 

GA algorithm. Using an empirical study of results achieved 

after experiments, a conclusion is derived that PSO performs 

much better than GA in achieving 100% def-use coverage. In 

other words, PSO achieved the same results in lesser number 

of generation compared to GA. Agarwal and Srivastava 

[15]used a modified PSO algorithm, called Discrete 

Quantum Particle Swarm Optimization (QPSO), to generate 

test cases automatically for three benchmark programs e.g. 

triangle classifier, calculation of number of days between two 

given dates and line in a rectangle problem. The branch 

coverage is considered as test adequacy criteria and fitness 

function is also based on branch predicates in branching 

condition. Mao [16] also used PSO for the generation of test 

suite while considering a objective function depending on 

branch coverage and branch distance for the guidance of the 

PSO in its search space. An empirical study is performed 

after finding test cases using PSO for eight benchmark 

programs and test cases produced by Simulated Annealing 

(SA) and Genetic algorithm on matrices like average 

percentage coverage, success rate, average generations and 

average execution time. In the end, this study concludes that 

PSO performs better than SA and GA. Jiang et al. [17] used a 

modified PSO algorithm called Reduced Adaptive PSO, for 

automatic test data generation. This suggested algorithm 

modifies the evolution equation after removing the velocity 

component of PSO and considers only inertia weight. This 

modification in the PSO reduces the chances of getting stuck 

in local minima while searching in the state space. The inertia 

weight suggested in this work is dynamic and changes its 

value based on the relationship between particle fitness and 

aggregation degree. For guidance to the suggested algorithm, 

a fitness function is used. This fitness function works on 

branch predicates. After each execution of the algorithm 

updated population is partitioned into three parts and the 

inertia of each part is calculated independently. As per the 

study, this provides a better balance between local and global 

search. For the validation of the suggested work, this new 

approach is applied to four benchmark program as well as 

four industry programs and compares the results with two 

other approaches suggested by [18] [19]. After 

experimentation of suggested work, it is concluded that this 

new approach provides better convergence speed. Sumit [20] 

used a hybrid approach for the generation of test suite in data 

flow testing. This hybrid algorithm is called Adaptive 

PSO-GA, and it is an amalgamation of GA and PSO. This 

algorithm removes the problem of immature convergence 

from PSO and the problem of slow convergence of GA. In 

this study, a new objective function is also suggested for the 

guidance of the adaptive PSO-GA. This objective function is 

a combination of dominance relation, branch weight, and 

branch distance in a CFG of the program under test. The 

effectiveness of this new approach is tested on four 

real-world problems as well as on the ten benchmark 

programs and further results are compared with results 

gained using Differential Evolution (DE), PSO, GA, and 

ACO on two parameters i.e. an average number of 

generation, average coverage achieved. In the end, the study 

claims that the suggested approach produced a better result 

than above-mentioned algorithms. Kumar, Yadav, and Khan 

[21]suggested a modified PSO called accelerating PSO for 

data flow testing. This suggested ASPO provides a better 

tunning between exploration and exploitation. This work also 

introduces a new objective function based upon the 

dominance relation between nodes of the CFG and branch 

weight distance for the guidance of ASPO in its search space. 

A set of 10 benchmark programs are used for the empirical 

study of the suggested approach and the study concludes that 

the suggested approach works better than random search, GA 

and PSO algorithm for the same set of programs on several 

parameters like the number of generation, average coverage, 

and ANOVA test. Varshney and Mehrotra [22]used a 

combination of PSO and differential Evolution to generate 

test data for structural testing. This suggested approach is 

used for data flow testing with the help of neighborhood 

search strategy for improvement in the performance of the 

suggested hybrid algorithm. The fitness function used in this 

work is based upon dominance concepts of nodes in CFG of 

the program under test and branch distance, while 

considering the mean number of generation and percentage 

of coverage as performance matrices for evaluation of the 

suggested hybrid algorithm. The results achieved by this 

algorithm are compared with results gain from using GA, 

Random Search, PSO and Differential Evolution algorithms 
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 on 10 benchmark programs and results indicate that this new 

approach performs better than others on the selected 

benchmark programs. 

B. PSO in Functional Testing & Results 

A simplified version of PSO called Simplified Swarm 

Optimization (SSO) is used by Ahmed, Sahib, and Potrus 

[23] for GUI functional testing. This simplified algorithm 

SSO modifies the velocity modification equation by 

removing personal influence. After generating the final set of 

test cases an empirical study is done by comparing results of 

SSO with Test Vector Generator (TVG), Pairwise 

Independendant Combinatorial Testing (PICT), Intelligent 

Test Case Handler (ITCH) and Parameter Order Generator 

(IPOG) with the help of Quick Test Professional (QTP), an 

automatic testing software. For the case study, example 

software for fight reservation written in Visual Basic is used. 

As per the study’s claim, the suggested strategy generates a 

lesser number of test cases than the original PSO version. 

Tyagi and Malhotra [24] used Multi-Objective PSO in 

regression testing for prioritization of test cases. This 

suggested approach works in three steps. In the first step, 

matrix operations are used to remove redundant test cases. In 

the second step, PSO is used for finding out minimal test suite 

which covers all faults in minimum execution time and 

priority is assigned to the test cases as a last step. For 

experiment two case studies are used and results are 

generated after simulation on MATLAB. The results 

achieved using the suggested algorithm, are compared with 

three other approaches of regression testing called No 

Ordering, Reverse Ordering and Random Ordering. In the 

end, it is concluded that the suggested approach works better 

than the rest three one. 

 
Fig 3: Share of Conferences and Journals 

IV. ANT COLONY OPTIMIZATION  

Ant Colony Optimization (ACO) is another 

nature-inspired optimization algorithm that mimics the 

foraging behaviour of an ant colony. This algorithm is 

suggested by Dorigo [25]. During foraging process ant drops 

the special chemical called pheromone on the traversed path. 

This pheromone fades away over time. When other ants 

follow the same path, they also deposit the pheromone on the 

traversed path. In the initial phase, ants select the random 

paths for searching food and deposit the pheromone while 

moving. When some ant finds out shortest route form colony 

to food it deposits pheromone on the path of it’s to and fro 

route, this activity leads to the high intensity of pheromone on 

that path which further attracts other ants to follow the same 

path. After some tine, all ants converge on that shortest path. 

 
Fig 4: Relative Contribution of Algorithms 

A. ACO in Structural Testing 

Mao, Xiao, Yu, & Chen [26] used a discrete version of the 

ACO algorithm to generate test data for structural testing 

while taking branch coverage as test adequacy criteria. This 

work proposes a new fitness function, based on nesting level 

and predicate coverage of the branch. The suggested 

approach is tested on eight benchmark programs and results 

are compared with simulated annealing and genetic 

algorithm. As per the study claim suggested approach 

outperforms the other algorithm mentioned above in terms of 

coverage capability and convergence speed. Yang, Man, and 

Xu [27]used modified ACO for software test case generation. 

This modified ACO introduces a new coefficient with the 

name Improved Pheromone Volatilization Coefficient for 

ACO (IPVACO) for pheromone update strategy. The results 

achieved using this approach are compared with GA and 

Random Approach by considering branch coverage and 

statement coverage as testing adequacy criterion. After the 

experiment, an empirical study is used to establish that 

approach based on IPVACO is better than the others. Biswas, 

Kaiser, and Mamun [28] used ACO algorithm in structural 

testing. This suggested approach used to generate test suite 

for path coverage and then prioritizes them. Although this 

approach is used on a single program i.e. binary search and 

gives evidence that by using this approach it is guaranteed 

that with the help of this full software coverage can be 

achieved without having any redundancy. 

B. ACO in Functional Testing 

Noguchi and Washizaki [29] used ACO in black box 

testing and prioritizes the test cases. A framework is 

suggested for the prioritization of test suite on a new product, 

with the help of test execution history of similar older 

product. For experiment two actual products are considered. 

One is software for medical purpose and another one is for 

financial purpose. After simulations, results achieved using 

the suggested framework are compared with random order 

approach while considering the Average of the Percentage of 

Faults Detected (APFD) as an evaluation parameter. In the 

end, it is established that, suggested approach provides better 

APFD than the random approach. Zheng and Hu [30]used a 

hybrid version of ACO for the creation of automated test data 

sequence for the functional requirement specification of a 
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high-speed train in China. This hybrid ACO is the 

combination of ACO and Maze algorithm. This new 

algorithm provides dynamic learning capability and 

overcomes the problem of local optima of plain ACO 

algorithm. For the experiment purpose, four scenarios are 

used after converting them into Colored Petri Nets (CPN) and 

then converted into an XML model. At the last step modified 

ACO is used to generate optimal sequence of test cases. The 

generated sequence further tested on the system after creating 

the Radio Blocking Center (RBC) test platform. The results 

achieved after this indicates that this new approach optimizes 

the test sequences. Dongdong Gao, Xiangying Guo [31] used 

ACO for in the regression testing and prioritizes the test 

cases. This approach optimizes the test sequence after 

considering three factors; the number of faults detected the 

severity of fault and execution time of the program as a 

guiding tool in the search state space. The results achieved 

using this, are compared with the random approach by 

considering APFD as a metric. Sayyari, Faeghe [32] used 

ACO on model-based testing. In this approach, a small model 

of phone is considered and control flow graph of phone 

communication is created while assigning different weight to 

the branches. ACO with Markov chain is used for finding out 

optimal test paths and puts a limit on the generation of paths 

with p-factor. Carino and Andrews [33] used ACO for 

dynamic GUI testing. In this approach, two variant of ACO 

are used. One is simple ACO and other is AntQ. The AntQ 

algorithm is a hybrid of ACO and Q-Learning (a behavioral 

reinforcement technique).  Both algorithms are used for 

traversing the GUI state diagram and finding out good event 

sequence while using the same fitness function. Here fitness 

function is maximization function and finds out the amount 

of change in the GUI state for every test case. The test cases 

which have a higher impact on the GUI state carry forward to 

the next iteration. Results achieved using the above two 

approaches are compared with results achieved using random 

selection technique by using six applications and it is 

concluded that AntQ achieved the highest code coverage. 

V. CUCKOO SEARCH ALGORITHM 

Xin-She-Yang and Suresh Deb in 2009 [34] developed 

Cuckoo Search Algorithm (CSA). CSA mimics the behavior 

of some cuckoo species, which have parasitic nature for their 

brooding. These cuckoos lay their eggs in such nests in which 

eggs are laid recently by the host bird and have resemblance 

with cuckoo eggs. If host bird somehow figures out that all 

eggs do not belong to them, in such case it has two choices. 

First, it may push the alien eggs out from nest and second, it 

may simply abandon the nest and make new nest somewhere 

else. In most of the cases, cuckoo’s eggs hatch earlier than 

host bird’s eggs and once cuckoo chick hatched, it removes 

the host egg from the nest by following its natural instinct. 

This action of cuckoo chick improvises the probability of its 

survival by accessing more food brought by the host the host 

bird. To mimic the process of searching a host bird by a 

cuckoo, CSA uses the concept of  e  vy flight.  e  vy flight is 

used to exhibit the foraging behavior of various animal and 

insects. CSA works on the following three principles. 

a) One cuckoo chooses a nest randomly from a finite set 

and lay single egg in it at a time. 

b)  The nest having high-quality eggs will be forwarded to 

the next generations. 

c) Availability of host nests is fixed and egg laid down by 

cuckoo may be identified by host bird by the probability 

Pa.   

A. CSA in Structural Testing 

Panda, Sarangi, & Dash [35] used CSA in unit testing 

while considering all feasible path coverage of a CFG  as test 

adequacy criteria. The objective function used in this 

research article is based on edge weight based path coverage. 

The suggested approach has been applied on a single 

benchmark program i.e. triangle classifier program and 

results are compared with PSO and Gravitational Search 

Algorithm (GSA). After comparisons of results, it is 

established that the suggested approach is superior to PSO 

and GSA. Khari Manju[36] applied CSA in the structural 

testing. The test adequacy criterion considered in this work is 

path coverage. The suggested approach is tested on twenty 

benchmark programs and the results achieved are compared 

with the Hill Climbing Algorithm using three comparison 

parameters. These parameters are the size of the optimized 

test data, number of iterations and duration of execution time. 

As per the study claim, results achieved using CSA are better 

than Hill Climbing Algorithm. Sharma, Rizvi, and 

Sharma[37] suggested a framework and algorithm for the 

functional testing. In this work a CSA bases algorithm is 

proposed to generate test cases.  

B. CSA in Functional Testing 

Nagar, Kumar, Singh, & Kumar [38] used CSA in 

regression testing. This approach prioritizes the test suite 

from a given test case pool on the basis of the number of 

faults identified in minimum time. This approach is tested on 

a random case study and simulation is done using MATLAB. 

From the achieved results it is concluded that CSA reduced 

the test suite by 40%. 

VI. FIREFLY ALGORITHM 

Firefly algorithm (FA) is another nature inspired 

optimization algorithm developed by Xin She Yang [39]. 

This algorithm is based upon the social flashing behavior of 

fireflies and mimics the behavior of firefly for finding mates, 

attracting its prey and protecting themselves from predators 

using its flashlight. This algorithm is multi-objective 

optimization algorithm and works on the following three 

principles. 

a) All fireflies are unisex and any firefly can attract other 

fireflies regardless of its sex. 

b) The attractiveness of firefly is directly propositional to 

its brightness and both depend on the distance. If 

distance increases then both of them decreases and vice 

versa. For any tow arbitrary fireflies, the firefly having 

lesser brightness moves towards the firefly having 

higher brightness level.  If all flies have same level of 

brightness level, firefly moves randomly. 
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c) Brightness of flashing light is determined by the 

objective function of the problem concerned and in 

most of the cases it is maximization function. 

A. FA in Structural Testing 

Pandey & Banerjee [40]  used a modified version of Firefly 

algorithm called chaotic firefly, to generate test cases for 

white box testing. The suggested approach is applied on five 

benchmark program while considering path coverage as 

testing adequacy criteria. The results achieved using the 

firefly algorithm are compared with 3 other meta heuristic 

based optimization algorithm ACO, ABC and GA while 

considering path coverage and execution time as a 

comparison parameter. After simulation on MATLAB, the 

results achieved, indicates that chaotic firefly algorithm 

outperforms the rest. 

B. FA in Functional Testing 

Panthi & Mohapatra [41] have applied Firefly Algorithm 

(FA) for the generation of a test data sequence of software, 

using UML modeling. In this approach software is converted 

into a state machine diagram, the Firefly algorithm is used for 

the generation of prioritized sequence for the state machine. 

For the validation of the suggested approach bank ATM 

system is considered as a case study.  Srivatsava, 

Mallikarjun, and Yang [42] used Firefly algorithm for 

optimal test case sequence generation for software testing 

and developed a tool “Optimal Firefly Test Sequence 

Generator (OFTSG)”. To apply this suggested approach a 

program is represented as a graph using State transition 

Diagram and CFG. For experiment a single case study is 

taken and results are compared with results achieved using 

ACO, after simulation of the suggested approach. After doing 

empirical study it is found that firefly, generates less 

redundant test cases as compared to ACO. Sharma & Saha 

[43] applied Firefly algorithm in model based testing. In this 

suggested approach a program is represented as a state 

transition diagram, based on its behavior on inputs. For the 

validation of suggested work, it is applied to the five 

benchmark programs and test cases are generated using 

Firefly algorithm. After that, a comparative study is done by 

comparing the results achieved using FA and ACO. From the 

empirical study, it is established that results achieved using 

FA are less redundant than ACO. 

CONCLUSION 

This article presents a study on the use of nature inspired 

optimization algorithms in software testing optimization 

since 2010. After the study of the literature available from 

authentic and reputed sources (i.e. SCOPUS and SCI indexed 

publications), the following conclusions have been drawn. 

First is that GA is the most widely used optimization 

algorithm while CSA and Firefly algorithms are the least 

used ones. Second, most of the work done is in the white box 

testing especially, structural testing. The third is, in structural 

testing, path and branch coverage are the most extensively 

used as test adequacy criteria.  And last observation is, the 

majority of the work is validated on some small benchmarked 

program e.g.  Triangle classifier program, checking number 

is a perfect square or not, etc.  From the above observations, 

we can say that use of nature inspired algorithm in the field of 

testing is in the growing phase, there is ample scope for work 

in this research area.  
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