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Abstract: While taking an MRI scan, the patients cannot static 
for a long time during the motions; the image formation process 
can create artifacts that may reduce the image quality. The 
Compressed Sensing (CS) mechanism is employed to reconstruct 
the original image from the limited data given as the sparse 
matrix. Hence, CS can be utilized to reduce the acceleration time 
for an MRI scan considering the patient's health. So the sensing 
method is implemented by a suitable projection matrix for 
reconstructing the sparse signals from a few numbers of 
measurements using Compressed Sensing. The CS guarantees 
the recovery of the original image with high probability based on 
random Gaussian projection matrices. However, sparse ternarius 
projections are more apt for the implementation of hardware. In 
this article, the proposed deep learning method is employed to 
obtain a very sparse ternary projection in Compressed Sensing. 
Compressed Sensing Reconstruction using an adaptive scale 
parameter based on the texture feature is used to improve the 
image quality. The two scaling factors αx and αy are assigned to 
specify the fixed scale for changing the improvement of the 
image quality. In the parameter using texture feature, the αx and 
αy are assigned to α as an adaptive scale based on texture 
feature. In the TACS-SDANN architecture, there are two layers 
namely the sensing layer which trains the projection matrix and 
a reconstruction layer which trains for non-linear sparse matrix 
continuously using Auto-encoder. Experimentally, the scaling 
factors are calculated on the training data to get the mean Peak-
Signal-to-Noise Ratio (PSNR) for improving the image quality. 
Hence a new deep network layer is employed to improve the 
image quality in this proposed method. Hence the consequence 
of the proposed method is compared with the SDANN method 
based on the mean Peak-Signal-to-Noise Ratio (PSNR) to check 
the image quality. From that comparisons, the TACS-SDANN 
architecture is proposed to yield a better performance.  
 
Keywords: Compressed Sensing, Deep Learning, SDANN 
architecture, LBP image, Sparse-LBP ternary projection. 

I. INTRODUCTION 

CS joins compression and sensing or acquisition. 
Here sparsity is used for recovering the signals that have 
been sampled at a significantly lower frequency than the 
requirements of the Shanon/Nyquist theorem [1]. In medical 
regions such as MRI and CT, audio or video or image [2], 
the effective processing and analysis of high-dimensional 
data using CS are very important. 
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Consider the compressed representation of the 

testing signal x ϵ Rn is detained by CS using sensing 
mechanism.  

It is examined by sensing or projection matrix.  

Instead of pixels, the linear measurements are taken as 
given below: 

y1=<x, Φ1>  y2=<x, Φ2>  … ym=<x,Φm> 
y=Φ x (1) 

Where Φ ϵ R m x n 
In R m x n, m x n is the projection matrix.  y ϵ Rm is the vector 
that contains the acquired measurements. In Sparse 
Sampling, let assume either x is a sparse signal or x has a 
sparse representation for a suitable basis ψ ϵ R nxn.  
Hence x = ψ u, u ϵ Rn, ||u||o = s x n. 
Here ||.||o is a lo quasi-norm.  
It is used to count the appearing coefficients of the acquired 
signal for getting the underdetermined linear system 

y = Φ ψ u (2) 
The equation (2) is satisfied by the sparse vector that can be 
found. This is the solution to the l1 minimization problem. 

min ||u||1 subject to y = Φ ψ u (3) 
             u ϵ Rn 
 
The well-known algorithm like Basis Pursuit [3] is utilized 
here. The predictable CS method provides the time 
complexity of the number of measurements  
O(s log (n/s)) in the n-dimensional s-sparse signal based on 
random Gaussian matrices [4]. One important issue that 
random matrices are typically considered to build hardware 
is very difficult. Also, arbitrary matrices are multiplied with 
signal vectors of high dimension. At that time if there is no 
fast matrix multiplication algorithm, the high computation 
cost to be evaluated. Deep learning can be used to learn the 
multiple levels of data representation in image processing 
successfully. Deep Learning approach has been used for 
image super-resolution [5], compressed sensing [7] [8] and 
image denoising [6]. Local binary pattern (LBP) [18] is a 
type of visual descriptor. It is used for classification in the 
computer vision.  LBP is one of the Texture Spectrum 
models. It is a powerful feature for the classification of 
texture. It improves the detection performance considerably 
on some datasets.  

In this article, the deep learning method is followed 
to find out a suitable projection matrix and non-linear 
reconstruction from the acquired measurements to the 
original signal for designing a suitable projection to 
implement the hardware. The sparsity and binary constraints 
are required on the proposed network architecture to be 
focused on implementing the hardware.  

Also, the texture-based adaptive CS reconstruction 
is used to assign the fixed scale factor in this research. The 
image patches are tested by the proposed TACS-SDANN 
network and the images are acquired in a block-based 
manner using the learned projection matrix.  
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Experimentally, the result of the TACS-SDANN 
method shows that the image with high quality in the 
reconstruction can be achieved with projections. These 
projection contains only 0.05 non-zero {-1, +1} entries. 

Section 2 discusses the related work done in 
Compressed Sensing and SDANN architecture.   Section 3 
highlights the Compressive Sensing via Deep learning. The 
experimental results are analyzed in Section 4. This section 
describes the improved CS approach in image 
reconstruction. Hence the result of the proposed TACS-
SDANN method is focused to improve the image quality. 

II. RELATED WORK 

A. Compressed Sensing 
 While using CS, the utilized random projection 
matrices are introduced. But the resultant matrices are more 
efficient than that. Some required measurements or 
improvement of the reconstruction performance are 
followed by using the resultant matrices [9] [10]. In the fast 
encoding and decoding, the structured matrices have been 
applied for implementing the hardware in CS to achieve 
efficient storage to be focused on this proposed 
work[11][12]. But, the costs of these constructions are in 
very poor recovery conditions. The number of the zero-
valued elements of the m x n matrix divided by the total 
number of elements of an m x n matrix is called a sparse 
matrix. Some elements are non-zero in a sparse matrix is 
considered as dense. Sparse data is easy 
to compress naturally so it requires significantly 
less storage. It is not possible to work with a few very large 
sparse matrices using standard dense-matrix algorithms. So 
it allows us to store the sparse data efficiently and has {-1, 
+1} non-zero entries that give fast computation during 
acquisition. When the sparse projection matrix is combined 
with conventional reconstruction algorithms for solving an 
unacceptable performance, the joint mechanism and the 
reconstruction process gives better result in image recovery. 
 
B. Deep Learning  

The recovery for regaining the original signal from 
compressed sensing measurement is implemented using 
Deep Learning [7][8]. The Stacked Denoising Auto-encoder 
(SDA) is used for training a non-linear reconstruction 
mapping and non-linear sensing operator [7]. 

The deep learning is utilized for block-based CS. 
The block-based linear sensing and non-linear 
reconstruction process are performed using this completely-
connected network. The sensing matrix and the 
reconstruction method are jointly optimized in the training 
phase to give the result of the proposed method based on the 
reconstruction quality and computation time [8]. The 
projection matrices are treated as a dense matrix [7] [8]. So 
the projection matrix treated as a sparse matrix element is in 
the range of {-1, 0, +1} so it gives the fast computation 
during acquisition and also improves the implementation of 
hardware.  

While training a DNN with binary weights {-1, +1} 
using the BinaryConnect method during the forward and 
backward propagations, the collected gradients of the stored 
weights are regained [13].DNN is expanded to full BNN 
[14] for training a neural network with binary weights and 
formation at runtime for reducing the memory size and 
process. However, some scaling factors are added for 

compensating the loss of introducing the weight binarization 
and also this technique is used to compress the pre-retained 
network [15]. The proposed method [16] is used to learn the 
binary weights, connections and produce a sparsely 
connected network. This mechanism is expanded [17] for 
compressing DNN using connection pruning, Huffman 
coding, and weight quantization. 

A sparse technique is proposed for implementing 
the sensing layer on the weights using the binarization 
technique for Local Binary Pattern (LBP) images that 
produces a highly sparse-LBP ternarius (Latin word) 
projection matrix. The trained projections can be stored 
efficiently and allowed fast computations during acquisition. 
So this technique is apt for hardware implementation. The 
first layer is constructed as sensing in this forthcoming 
network, which corresponds to the linear projection matrix 
and allows the reconstruction module to be the non-linear 
for attaining the high performance. 

 
C. SDANN architecture 
 An efficient method of compressed sensing is 
employed for improving the image quality namely SDANN 
(Stacked Denoising Auto-encoder Neural Network) and 
mapping the sensing and reconstruction layer for non-linear 
measurements to attain high performance. Here the sparse 
ternary projection matrix is implemented in the sensing 
layer and the learned scaling factor is kept in the 
reconstruction module However, the sparse weight is 
obtained by the sparsifying process in the sensing layer. The 
scaling layer update a column-wise operator on the sensing 
weights, the top-K selection process is done in a column-
wise manner. The sparse binary mask is built with entries 
equal to 1 that are corresponding to the largest value in the 
continuous domain. The continuous-valued sensing weights 
are mapped into sparse binary sensing weights, which is 
required in binarization. After the completion of the 
sparsifying and binarization step, it creates some loss that 
can be recovered during the reconstruction. This scaling 
factor is served as a reverse mapping of sparse binary 
sensing weights into continuous-valued sensing weights. 
This network is trained with binary weights, sparse binary 
sensing weights are used during the forward and backward 
propagation with Adam parameter, the scaling layer weight 
is obtained by minimizing the Mean Square Error. Hence 
the sparse ternary projection matrix with 5% non-zero 
binary entries is achieved to give the reconstruction 
performance based on PSNR and 0.1% non-zero entries are 
learned using the SDANN algorithm gives an acceptable 
performance as well experimentally. 

III. TACS RECONSTRUCTION 

Now an efficient method of compressed sensing is 
proposed for improving the image quality through texture-
based adaptive scale reconstruction namely TACS-SDANN 
(Texture-based Adaptive scale Compressed Sensing-Stacked 
Denoising Auto-encoder Neural Network), used to map the 
sensing and reconstruction layer for the non-linear 
measurements to attain the high performance. This section 
describes TACS-SDANN architecture, followed by the steps 
of the training algorithm. 
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A. Formation of LBP Image 
The traditional LBP operator [17, 18, 19, 20, 21] 

works on image patches of size 3 X 3, 5 X 5, etc. The value 
of the neighboring pixel is compared to the central pixel  

within the patch sequentially for forming the LBP 
descriptor. If the higher intensity values of the central pixel 
are compared to the neighboring pixel, the value 1 is 
assigned or otherwise 0. Finally, these bit string are 
converted to a decimal number as the feature value, assigned 
to the central pixel. The collection of the feature value 
displays the local texture in the image. The LBP for the 
center pixel (xc, yc) within a patch can be represented as  

LBP (xc, yc) =  ∑n=0
L=1 s(in, ic) ∙ 2

n   
Where in denotes the value of the nth neighboring pixel, ic 
denotes the value of the central pixel, L is the length of the 
sequence, and   s(∙) = 1 if in ≥ ic and s(∙) = 0 otherwise. For 
example, an image patch of size N x N neighborhood 
consists of   N2-1 neighboring pixels and therefore results in 
an N2- 1 long bit string. The different scale factors and 
constructions of the LBP formation can result in different 
feature descriptors. Thus, the texture image is found using 
the LBP descriptor adaptive parameter. 

 

  
Gray Image Texture Image 

So the value of scaling parameter αx or αy will be 
assigned to α based on texture image value either greater or 
less than a predefined threshold. 
B. TACS-SDANN Architecture 

The TACS-SDANN architecture is employed in 
Figure.1. It contains the sensing and reconstruction layer. 
Here, the Left-half of the TACS-SDANN architecture 
[Figure 1] represents the sensing layer (SeL) [linear layer] 
and the Right-half of the TACS-SDANN architecture 
[Figure 1] represents the reconstruction layer (non-linear 
layer). The network takes input as the vectorized image 
patches (IP) of size n = S2. The n-dimensional input signal x 
is projecting into the m-dimensional domain in the sensing 
layer. Thus, the number of units in this layer is m =S2R, 
where R is the sensing rate, has a value in the range between 
0 and 1. The sensing layer has the weights Θab ϵ {-1, 0, +1} 
m x n

, that are corresponding to the projection matrix Θab= Φ
T. 

The first part of the reconstruction layer is a scaling 
layer. It represents the output of the sensing layer based on 
the texture feature image linearly by the learned factor α. 
The scaling layer contains m hidden units. The number of m 
hidden units of this layer are connected “1-1” and used for 
compensating the loss which was made by binarizing the 
sensing weights. The projection matrix is employed in the 
sensing layer and the learned scaling factor α is kept based 

on the texture feature image in the reconstruction layer. 
These layers are followed by m hidden layers. These hidden 
layers (HL1…m) are using the Rectified Linear Unit 
(ReLU) activation function [22]. The output layer (OL) is a 
linear fully connected layer which has a size similar to the 
input dimension. The HL’s are fully connected in the 
reconstruction module, followed by a batch-normalization 
layer that is connected [23]. 

C. Training Process 
Generally, network training uses the standard mini-

batch gradient descent method. It is used to obtain the mini 
patch size of the image. Here, yi, ŷi denotes the input and 
reconstructed patches, respectively. So yi, ŷi ϵ Rn, n = S2. 
The mean squared error is obtained between the input and 
the reconstruction of the image. It is used for obtaining the 
loss function:            

           N 
L=1    ∑ || yi- ŷi||

2
2   (4) 

       N   i=1 
Where N is the number of sample image patches. 

The process of sparsifying and binarization are introduced 
jointly on the training of the sensing layer opposite to the 
conventional mini-batch gradient descent method. 

In the steps of sparsifying and binarization, the 
continuous-valued sensing weights Θ ϵ R m x n are sparsified 
to get the sparse weights Θa ϵ R m x n. In this sparsifying step, 
the sparse weight Θa contains only the entries that are 
corresponding to the top-K largest absolute values as Θ and 
set all the remaining entries are to zero. This process is 
known as a top K-select function. The selection of the top 
weights in the whole matrix can be assigned column-wise 
and row-wise. However, since the scaling layer change 
column-wise operator on the sensing weights, the selection 
of top K entries can be made column wise. In the sensing 
layer, each neuron is connected to K = S2 

γ elements in the 

input signal, where γ is the sparsity ratio. A sparse binary 
mask M ϵ {0, 1} m x n is built with entries that are equal to1 
corresponding to the largest weights in Θ implementation 

wise. The sparse sensing weights are modified according to 
Θa = M ʘ Θ where ʘ represents the Hadamard product. The 
process of mapping the sparse continuous-valued weights Θa 
ϵ R n x m to the sparse binary weights Θab ϵ {-1, 0, +1}m x n is 
required in binarization. However, both the sparse and 
binarization step creates some loss that can be recovered 
during the reconstruction. This layer with weights αx or αy ϵ 
Rm served as a reverse mapping of the sparse binarized 
weights Θab to the continuous weights Θ. Thus, the output α 

Θab
Ty of the scaling layer is obtained by the LBP descriptor 

adaptive parameter. It is an approximation of Θ
Ty, 

corresponding to the continuous projections Θ
T
. Let θ (j) and 

θab(j) be the jth columns of Θ and Θab respectively. θ (j)  
corresponds to the dense continuous weights of the jth  
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Figure 1. TACS-SDANN architecture 

hidden unit in the scaling layer. θ (j) is an approximation of θ 

ab(j). The jth entry of the scaling layer weights αx and αy are a 
scale factor where αx ϵ R+, αy ϵ R+. The values of θab(j) and 
θ(j) can be obtained by minimizing the following mean 
square error for θab(j),  α(j). Here α(j) is described in the 
formation of the LBP image. 

E= || θ(j)- α(j) θab(j)||
2

2    (5) 
The equation (5) is expanded as 
E= θ(j)

T θ(j) - 2 α(j) θ(j)
T θab(j) + α(j)

2 θ ab(j)
T θab(j)     (6) 

Where θ(j)
T θ(j)  is a constant. As α(j)  is a positive scalar [15],  

and it is taken as an account of the sparsity constraint, the 
finest sparse binary vector  θab(j)  obtained as 
θab(j)

*
= argmax(θ(j)

T θab(j)) θab(j) 
such that  θab(j) ϵ {-1,0,+1}m x n 

                         supp (θab(j))=supp(θ a(j))  (7) 
Where θ a(j) is the jth column of Θa, and supp ʘ  denotes the 
positions of the non-zero entries of the treated vector. The 
solution of (7) is a vector containing the significations of 
θab(j). After obtaining the finest θab(j), the finest θ(j) is solved 
by making the derivation of E equal to zero. Considering θ 

ab(j)
T θab(j) = K, the finest α(j) is given below: 

α(j)= 1/K (θ(j)
T θab(j))= 1/K (∑i=1

n θ(ji) θab(ji)  
= 1/K (||θ a(j) ||1)   (8) 

At the end of sparsifying and binarization steps, the 
resultant Θab is sparse and has the K non-zero entries {-1, 
+1} in each of its columns. After the completion of the 
existing training algorithms for networks with binary 
weights [13, 14, 15], the sparse binary weights Θab are used 
during the forward and backward propagation. The high 
accuracy weights Θ are used during the update of the 

parameter Wt, for making the small changes of the weights 
after the steps of each updating. In the proposed training, Θ 

is modified using the gradient of loss function for Θab. This 
process of parameter updating is called an SGD parameter 
update. It should be marked that Θab contains only discrete 
weights such as {-1, +1} during the gradient of loss 
concerning still lies in the continuous domain. 
Algorithm  

The training of TACS-SDANN is proposed for 
evaluating the sparse-LBP ternary projection matrix and 
reconstruction weights at t steps as follows: 
Input: Give the patch image x or Y, sparse filter bi; non-
linear binarization operator σ; linear weight v; Give the 
weights of continuous and reconstruction domain such as Θ

t-

1, Wt-1; the learning rate μ. 
Procedure for converting the patch image into texture image 

1. (xc, yc) =  ∑n=0
L=1 s(in, ic) ∙ 2

n 
2. s(∙) = 1 if in ≥ ic and s(∙) = 0 otherwise 
3. y = ∑i=1

8 σ(bi * x)∙vi 
Procedure for sparsifying and binarizing sensing weights 

4. M = top_K_select(Θ
t-1) 

5. Θa
t
 = M ʘ Θt-1 

6. Θab
t = sign(Θa

t) 
7. α j

t = 1/K  (||θ a(j)||1)   for all j ϵ [1,m] 
Procedure for Forwarding Propagation 

8. L= forward(Y, Θab
t, Wt-1) 

Procedure for Backward Propagation 
9. (δL/ δ Θab

t ), (δL/ δ W
t-1 )=  

                                backward(Y, Θab
t, Wt-1) 

Procedure for Parameter update 
10. Wt = update(Wt-1

, δL/ δ W
t-1, μ) 

11. Θ
t = update(Θ

t-1
, δL/ δ Θab

t
, μ) 

Output: Find out LBP image y; the loss L; the newly 
updated weights of continuous and reconstruction domains 
such as Θ

t, Wt
; the sparse binary sensing weights Θab

t
 and 

the scaling layer weights αj
t. 

The performance of the proposed TACS-SDANN 
method is compared with the SDANN method based on the 
evaluation of mean PSNR using a sparse-LBP ternary 
projection to check the image quality. 
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IV. EXPERIMENTAL ANALYSIS 

Here, The ILSVRC2012 set [24] is taken for 
validation, which contains 2000 samples out of 50 K images 
for training and also the spinal cord dataset is taken for 
validation, which contains more than 50 K patches for 
training. These two datasets are taken for comparing with 
the SDANN and proposed TACS-SDANN model. The 
proposed model tested on the two testing sets of images with 
resolution 256x256. The first testing set is taken from the 
spinal cord dataset and ILSVRC2014 dataset [19] for the 
comparison between SDANN and the proposed TACS-
SDANN algorithm. The second testing set is composed of a 
randomly selected from the single image in LabelMe dataset 
[25]. All the images were converted into grayscale in this 
experiment. It runs in small image patches of size 32 X 32 
pixels for reducing the computational overhead. 5 million 
patches sampled randomly to form the training set. During 
the training, the input patches of ILSVRC2012 and spinal 
cord datasets were converted into texture image-based 
adaptive scale factor. It is processed by subtracting the mean 
and dividing by the standard deviation. The proposed 
TACS-SDANN using the proposed training algorithm with 
the SGD parameter update [26] for a image patch size of 
3000, 25 epochs and a learning rate of 0.01 decomposing by 
a factor of 0.6 every 5 epochs. Also, the SDANN is 
processed using the proposed training algorithm with the 
Adam parameter update [26] for the same manner. The 
training samples were randomly shuffled after each epoch. 
This out-of-fitting is avoided by the l2 regularization in the 
reconstruction layer, with a weight equal to 0.001. During 
the testing stage, the overlapping patches sampled from each 
test image with a size of 2 pixels and determined the final 
image reconstruction as the mean of the patches’ 

reconstructions. These methods are evaluated using PSNR 
values. PSNR is expressed in dB. The number of non-linear 
hidden layer (L) is assigned to 2. Each layer contains 2048 
hidden units relating to this network architecture. So this 
construction produces a good outcome between training 
time and testing time based on the reconstruction quality.  
Sensing rate  

The network is trained and tested for different 
sensing rates by choosing γ = 0.1. The value of R changes in 
the entries [0.1, 0.3]. The mean PSNR values of the 
proposed of TACS-SDANN and SDANN method on the 
first testing set are shown in Table I. The overall 
reconstruction quality gets better in the larger sensing rates 
since more information from the signal is retained in a few 
numbers of measurements as shown in Table I. Hence the 
proposed TACS-SDANN gives a better reconstruction 
performance than SDANN. 

 
Table I. Reconstruction Performance for ILSVRC2014 
and Spinal Card dataset when varying Sensing rate R        

(Choose γ = 0.1) 
ILSVRC2014 

R 0.1 0.15 0.2 0.25 0.3 

TACS-
SDANN 

(PSNR dB) 
31.66 32.65 33.95 34.69 32.18 

SDANN 
(PSNR dB) 

30.85 30.83 31.22 31.28 31.1 

 
Spinal cord 

R 0.1 0.15 0.2 0.25 0.3 

TACS-
SDANN 

(PSNR dB) 
27.9 28.1 28.36 28.53 28.14 

SDANN 
(PSNR dB) 

22.57 22.6 22.76 22.85 22.74 
 

 
Sparsity ratio  

The network is trained and tested with different 
sparsity ratios γ by choosing R = 0. The mean PSNR values 
on the first testing set ILSVRC2014 and spinal card are 
presented in Table II. The result is obtained as Θab ∈ {−1, 0, 

+1}1024×256 for the dimension of input 32 × 32 and R = 
0.25. The number of non-zero entries in each column of Θab   
(i. e. K) are 1, 5, 10, 51, 102, 307 and 1024 respectively. It 
is represented experimentally as γ ∈ {0.001, 0.005, 0.010, 
0.050, 0.100, 0.300, 1.00}. Hence, the finest reconstruction 
performance can be achieved using extremely sparse 
projection matrices with only 0.1% non-zero entries (γ = 

0.001). The reconstruction performance is improved in the 
value of γ from 0.001 to 0.05. The network achieves its peak 
performance in         R = 0.25 and produces a slightly worst 
value for                γ ∈ {0.10, 0.30}. It should be noted that 
there are 256 and 1280 non-zero entries for γ ∈ {0.001, 
0.005} in the projection matrix respectively. The previous 
process is not enough for dealing with the 
1024−dimensional input signal. Hence, this is the reason for 
beginning an obvious performance when γ is increasing 
from 0.001 to 0.01. During training, the network processes 
the over-fitting with the reconstructions’ value of γ ∈ {0.1, 
0.3}. Hence, γ = 0.05 gives better performance than γ ∈ 
{0.1, 0.3}. As a result, the proposed sparse binary 
constraints can be represented as an extra regularizer to the 
network. 
 

Table II Reconstruction Performance for 
ILSVRC2014 and Spinal Card dataset when varying 

Sparsity ratio γ       (Choose R=0.25) 
ILSVRC2014 

γ 0.001 0.005 0.01 0.05 0.1 0.3 

TACS-
SDANN 

(PSNR dB) 
35.53 36.47 36.54 36.61 34.69 32.84 

SDANN 
(PSNR dB) 

30.88 31.02 31.16 31.38 31.28 30.96 

Spinal cord 

γ 0.001 0.005 0.01 0.05 0.1 0.3 

TACS-
SDANN 

(PSNR dB) 
27.96 28.28 28.57 28.71 28.53 28.43 

SDANN 
(PSNR dB) 

22.59 22.64 22.77 22.87 22.85 22.48 

 

Since the proposed TACS-SDANN method 
implements CS using deep learning, the next experiment 
involves a comparison with this method of ILSVRC2014 
[7], which uses a stacked denoising auto-encoder to jointly 
learn the sensing and the reconstruction. The proposed 
algorithm uses a non-linear sensing mechanism based on 
texture feature descriptor, with overlapping image patches 
of size 32 X 32.  
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The result of ILSVRC2014 and spinal cord datasets 
on the first testing set are taken. The proposed TACS-
SDANN model is trained on the training set for obtaining 
the results on the second testing set. Sparse binary and 
ternarius construction like the ones proposed in [27, 28] 
could not be employed in this experiments due to the 
constraints impose on matrix dimensions. The comparison 
of TACS-SDANN with SDANN is obtained using the same 
sensing rate R = 0.25. Choose γ = 0.05 since it yields the 

best performance while producing a highly sparse projection 
matrix. The comparison between the TACS-SDANN and 
SDANN method on the first testing set of Spinal cord is 
shown in Table I and II. On the second testing set of 
LabelMe [25], the mean PSNR values for SDANN and the 
proposed TACS-SDANN algorithm are 27.24 and 30.90 dB, 
respectively. Hence, the proposed TACS-SDANN algorithm 
yields a significantly best result. The proposed TACS-
SDANN method provides the sparse ternarius matrix of only 
5% of non-zero entries. It is compared to SDANN in terms 
of recovery performance. Hence, the proposed TACS-
SDANN method can provide a better reconstruction quality 
than the SDANN method using the texture-based adaptive 
scale. 

Table III Reconstruction Performance on different 
algorithms for Label Me dataset 

Images SDANN TACS-SDANN 

Birds 26.75 29.52 

Rabbit 28.51 31.71 

Dog 26.47 31.47 

Mean PSNR  dB 27.24 30.90 

V. CONCLUSION 

A TACS-SDANN training algorithm is proposed 
for the joined mechanism of a highly sparse-LBP ternarius 
projection matrix and a non-linear reconstruction. It is done 
for the compressed sensing of the images based on the 
adaptive scale factor using the LBP descriptor. The TACS-
SDANN projection method yields a better reconstruction 
quality by the value of mean PSNR than the SDANN 
method. The experimental result shows that the performance 
of the reconstruction for a projection matrix with 5% non-
zero binary entries to be achieved on real images and the 
corresponding reconstruction trained end-to-end with the 
proposed TACS-SDANN algorithm.        It yields a better 
result than the SDANN method. The sparse projection 
matrices based on texture feature descriptor with only 0.1% 
non-zero entries are learned using the proposed TACS-
SDANN algorithm, that algorithm gives a better 

performance by the value of mean PSNR than SDANN 
method. 
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