

R.Rengarajan, S.Venkatesh

Abstract: Customers should aware about the building management system (BMS) and their requirements based on the location of the apartment, type of the apartment and number of floors in the apartment. It is observed from various literature reviews that the customer requirements vary depending on the geographic physiological environment they are present in. Various techniques were followed and the project went up to 16 weeks. Observation of the customer requirements in BMS have been made and key areas to be focused based on location such as 1.Rural residents preferred having fire and alarm system and energy savings 2.Urban residents focused on Monetary, energy and security systems has been identified. Observation was also made based on the apartment type and customer requirements varied if the apartment is an individual standalone apartment or a multiple cluster of apartment. The other factor based on which the customers preference varied is the number of floors in the apartment, where as the floors increases the focus was on security systems, else the focus was on monetary savings. I also provide suggestions like elements to focus on rural apartment, urban apartment and standalone apartment.

Keywords: Perception, Requirements, Savings and Standalone.

I. INTRODUCTION

A building management system (BMS), otherwise known as a building automation system (BAS), is a computer-based control system installed in buildings that controls and monitors the building's mechanical and electrical equipment through HVAC Automation, Lighting Controls, Fire Detection& Alarm System, Access Controls, CCTV controls, Elevator & Escalators Controls. The system is consisting of software& hardware components integrated for complete automation of the buildings.

II. OBJECTIVES

- To identify the features of building management systems that is relevant for apartments.
- To determine the customers' perception on what is suitable for a smart building.
- To identify how various parameters like smart metering, building automation are perceived.

Revised Manuscript Received on October 30, 2019.

* Correspondence Author

R.Rengarajan*, Assistant Professor, PRIST School of Business, PRIST Deemed to be University, Vallam, Thanjavur, Tamilnadu, India. Email: renjan86r@gmail.com

S.Venkatesh, Associate Professor, PRIST School of Business, PRIST Deemed to be University, Vallam, Thanjavur, Tamilnadu, India. Email: venkatbaskar1980@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

• To identify the factors that influence in buying a building management system.

III. RESEARCH METHODOLOGY

The research design used in this project is Descriptive Research.

SAMPLING DESIGN SAMPLE SIZE

The sample size for this survey is about 204 people.

SAMPLING TECHNIQUE

The sampling technique used here is Simple Random sampling.

IV. HYPOTHEIS FORMULATION

I) LOCATION & DECIDING FACTORS

H0: There is no significant association between location of the apartment and important elements of BMS.

H0: There is no significant association between location of the apartment and important function of EMS.

H0: There is no significant association between location of the apartment and knowledge about fire accidents.

H0: There is no significant association between location of the apartment and important parameter of fire safety mechanism.

H0: There is no significant association between location of the apartment and strong points associated with BMS.

H0: There is no significant association between location of the apartment and deciding factor for buying BMS.

II) APARTMENT TYPE & DECIDING FACTORS

H0: There is no significant association between type of apartment and important elements of BMS.

H0: There is no significant association between type of apartment and important function of EMS.

H0: There is no significant association between type of apartment and knowledge about fire accidents.

H0: There is no significant association between type of apartment and important parameter of fire safety mechanism.

H0: There is no significant association between type of apartment and strong points associated with BMS.

H0: There is no significant association between type of apartment and deciding factor for buying BMS.

III) NUMBER OF FLOOR & DECIDING FACTORS

H0: There is no significant association between number of floors in the apartment and important elements of BMS.

H0: There is no significant association between number of floors in the apartment and important function of EMS.

H0: There is no significant association between number of floors in the apartment and knowledge about fire accidents. **H0:** There is no significant association between number of floors in the apartment and important parameter of fire safety mechanism.

H0: There is no significant association between number of floors in the apartment and strong points associated with BMS.

H0: There is no significant association between number of floors in the apartment and deciding factor for buying BMS.

V. CONSOLIDATED RESPONSE SHEET

TABLE 1.1 Location vs Important area of BMS

			Important	areas of BMS	8		
		Energy Management systems	Fire & alarm system	Security system	Ventilation system	All of the above	Total
Location	Rural	0	19	3	3	3	28
	Urban-Fully residential	10	9	6	12	111	148
	Urban-Industrialized area	3	0	19	3	3	28
	Total	13	28	28	18	117	204

TABLE 1.2 Location vs Important function of EMS

			Important a	reas of Energ	y Management		Total
		Automatic control of electrical appliances	Automatic control of room temperature	Continuou s feedback on energy usage	Monitor consumption of individual appliances	Alert when consumption exceeds the budgeted bill	
Location	Rural	3	3	19	0	3	28
	Urban-Fully residential	12	12	6	9	109	148
	Urban-Industrialized area	6	3	0	19	0	28
	Total	21	18	25	28	112	204

TABLE 1.3 Location vs Knowledge about fire accidents

		In case	of fire accider	nts how occupa	ants come to kno	w about it	
		On the	Alarms	Direct fire	Fire engine	Fire safety	
		direction	related to	cues such	sirens	managemen	Total
		of others	fore safety	as smoke		t system	
Location	Rural	19	0	3	6	0	28
	Urban-Fully	3	109	21	9	6	148
	residential						
	Urban-Indust	3	0	3	3	19	28
	rialized area						
	Total	25	109	27	18	25	204

TABLE 1.4 Location vs Important parameter of fire safety mechanism

			Most impor	tant for fire safe	ty mechanism		
		Fire alarms	Fire proof elevators working in extreme conditions	Automatic Fire extinguisher System	Emergency response system	Smoke and ventilation system	Total
Location	Rural	16	3	0	3	6	28
	Urban-Fully residential	6	3	117	19	3	148
	Urban-Indus trialized area	0	22	3	3	0	28
7	Total	22	28	120	25	9	204

TABLE 1.5 Location vs Strong points associated with BMS

		St	rong poi	nts associated with	BMS	
		Desired comfort	Ease of use	Maintenance and effectiveness	Costs and savings both	Total
Location	Rural	19	3	3	3	28
Location			_		Ü	_
	Urban-Fully	6	9	22	111	148
	residential					
	Urban-Industrialized	0	22	0	6	28
	Total	25	34	25	120	204

TABLE 1.6 Location vs Deciding factor for buying BMS

			Deciding factor	r for buying l	BMS		
		Energy savings	Fire and alarms	Monetary	Improved	Security	
			systems	savings	convenience	systems	Total
Location	Rural	22	6	0	0	0	28
	Urban-Fully residential	0	6	3	16	123	148
	Urban-Indust rialized area	3	3	19	3	0	28
7	Fotal	25	15	22	19	123	204

TABLE 1.7 Preference based on location

	Important elements	Important	Knowledge	Important	Strong	Deciding
	of BMS	functions of EMS	about fire	parameter of	points	factor for
			accidents	fire safety	associated	buying BMS
				mechanism	with BMS	
		Continuous	On the			
Rural	Fire and alarm	feedback on energy	decision of	Fire alarms	Desired	Energy
	system	usage	others		comfort	savings
	All	Alert when				
Urban	parameter(Energy,	consumption	Alarms related	Automatic fire	Cost and	Security
Residential	fire safety, security	exceeds the	to fire safety	extinguisher	savings	systems
area	& ventilation)	budgeted bill		system	associated	
		Monitor		Fire proof		
Urban		consumption of	Fire safety	elevators	Ease of use	Monetary
Industrialized	Security system	individual	management	working in		savings
area		appliances	system	extreme		
				condition		

TABLE 2.1 Apartment type vs Important area of BMS

			Impor	tant area of BM	S		
		Energy management systems	Fire & Alarm system	Security system	Ventilation system	All of the above	Total
Apartment	Individual	3	19	22	6	6	56
type	Apartment						
	Multiple	9	9	6	13	111	148
	residential						
	apartments /						
	buildings						
To	otal	12	28	28	19	117	204

TABLE 2.2 Apartment type vs Important function of EMS

			Important fun	ctions of energy	management		
		Automatic control of electrical appliances	Automatic control of room temperature	Continuous feedback on energy usage	Monitor the consumption of individual appliances	Alert when consumption exceeds the budgeted bill	Total
Apartment	Individual	9	6	19	19	3	56
type	Apartment						
	Multiple residential apartments / buildings	12	12	6	10	108	148
	Total	21	18	25	29	111	204

TABLE 2.3 Apartment type vs Knowledge about fire accidents

			Knowle	dge about fire	accidents		
		On the	Alarms	Direct fire	Fire	Fire safety	
		direction	related to	cues such	engine	management	Total
		of others	fire safety	as smoke	sirens	system	
Apartment	Individual	22	0	6	10	18	56
type	Apartment						
	Multiple	3	108	22	9	6	148
	residential						
	apartments						
	/ buildings						
Total		25	108	28	19	24	204

TABLE 2.4 Apartment type vs Important parameter of fire safety mechanism

			Most impor	tant for fire safety	mechanism		
		Fire alarms	Fire elevators working in extreme conditions	Automatic fire extinguisher system	Emergency response system	Smoke and ventilation system	Total
Apartment type	Individual Apartment	16	25	3	6	6	56
	Multiple residential apartments / buildings	6	3	117	19	3	148
To	otal	22	28	120	25	9	204

TABLE 2.5 Apartment type vs Strong points associated with BMS

			Strong 1	points associated with B	MS	Total
		Desired comfort	Ease of use	Maintenance and effectiveness	Costs and savings associated	
Apartment type	Individual apartment	19	25	3	9	56
	Multiple residential	6	9	22	111	148
То	tal	25	34	25	120	204

TABLE 2.6 Apartment type vs Deciding factor for buying BMS

			Deciding factor for buying BMS						
		Energy	Fire and	Monetary	Improved	Security	-		
		savings	alarm systems	savings	convenience	systems	Total		
Apartment	Individual	25	9	19	3	0	56		
type	Apartment								
	Multiple	0	6	3	16	123	148		
	residential								
	apartments /								
	buildings								
	Total	25	25	22	19	123	204		

TABLE 2.7 Preference based on apartment type

	Important	Important functions of	Knowledge	Important	Strong	Deciding
	elements of	EMS	about fire	parameter	points	factor for
	BMS		accidents	of fire safety	associated	buying
				mechanism	with BMS	BMS
Individual	Security	1.Continuous feedback	On the	Fire proof		
apartment	system	on energy usage	direction of	elevators	Ease of use	Energy
building		2. Monitor the	others	working in		savings
		consumption of		extreme		
		individual appliances		conditions		
Multiple	All	Alert when consumption	Alarms	Automatic	Costs and	Security
residential	parameters	exceeds the budgeted bill	related to fire	fire	savings	system
apartments	(Energy, fire		safety	extinguisher	associated	
buildings	safety,			system		
	security &					
	ventilation)					

TABLE 3.1 Number of floors vs Important area of BMS

			Important areas of BMS						
		Energy manageme nt system	Fire and alarms systems	Security system	Ventilation system	All of the above	Total		
Numbe	3 to 10	3	0	19	3	3	28		
r of	11-20	0	19	3	3	3	28		
floors	More than 20	9	9	6	13	111	148		
	Total	12	28	28	19	117	204		

TABLE 3.2 Number of floors vs Important function of EMS

			Important functions of energy management							
		Automatic	Automatic	Continuous	Monitor the	Alert when				
		control of	control of	feedback	consumption	consumptio	Total			
		electrical	room	on energy	level of	n exceeds				
		appliances	temperatur	usage	individual	budgeted				
			e		appliances	bill				
Number	3 to 10	6	3	0	19	0	28			
of floors	11-20	3	3	19	0	3	28			
01 110015										
01 110015	More than 20	12	12	6	10	108	148			

TABLE 3.3 Number of floors vs Knowledge about fire accidents

			Knowledge about fire accidents					
		On the direction of others	Alarms related to safety	Direct fire cues such as smoke	Fire engine sirens	Fire safety managemen t system	Total	
Number	3 to 10	3	0	3	3	19	28	
of floors	11-20	19	0	3	6	0	28	
	More than 20	3	108	22	9	6	148	
	Total	25	108	28	18	25	204	

TABLE 3.4 Number of floors vs Important parameters of fire safety mechanism

			Important for fire safety mechanism						
		On the direction of others	Alarms related to safety	Direct fire cues such as smoke	Fire engine sirens	Fire safety managemen t system	Total		
Number	3 to 10	0	22	3	3	0	28		
of floors	11-20	16	3	0	3	6	28		
	More than 20	6	3	117	19	3	148		
	Total	22	28	120	25	9	204		

TABLE 3.5 Number of floors vs Strong points associated with BMS

		Strong points associated with BMS						
		Desired comfort	Ease of use	Maintenance and effectiveness	Costs and savings both associated	Total		
Number of	3-10	0	22	0	6	28		
floors	11-20	19	3	3	3	28		
	More than 20	6	9	22	111	148		
Total		25	34	25	120	204		

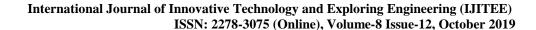
TABLE 3.6 Number of floors vs Deciding factor for buying BMS

			Deciding factor for buying BMS					
		Energy	Fire & alarm	Monetary .	Improved .	Security	T-4-1	
		Savings	systems	savings	convenience	systems	Total	
Number	3 to 10	3	3	19	3	0	28	
of floors	11-20	22	6	0	0	0	28	
	More than 20	0	6	3	16	123	148	
	Total	25	15	22	19	123	204	

TABLE 3.7 Preference based on number of floors in the apartment

Number	Important	Important	Knowledge	Important	Strong	Deciding
of floors	elements of BMS	functions of	about fire	parameter of fire	points	factor for
		EMS	accidents	safety	associated	buying
				mechanism	with BMS	BMS
3 to 10	Security system	Monitor	Fire safety	Fire proof		
		consumption	management	elevators working	Ease of use	Monetary
		of individual	system	in extreme		savings
		appliances		conditions		
11 – 20	Fire and alarm	Continuous	On the	Fire alarms	Desired	Energy
	system	feedback on	direction of		comfort	savings
		energy usage	others			
More	All	Alert when		Automatic fire		
than 20	parameter(Energy,	consumption	Alarms related	extinguisher	Cost and	Security
	fire safety,	exceeds the	to fire safety	system	savings	systems
	security &	budgeted bill			associated	
	ventilation)					

VI. FINDINGS


- The preference of more than 50% respondents is to have a BMS that focuses on all the area (Energy, fire & safety, security and ventilation system).
- More than 50% of the respondents feel that the energy management system helps in reducing the energy consumption and bill amounts.
- EMS helps in setting up a point above which if consumption is made it alerts the respondents. This is the important function preferred in EMS
- In case of fire accidents most of the people tend to get knowledge about the accident with the help of alarms related to fire safety.
- Respondents feel that more than any individual methods fire safety management is more beneficial.
- Of the various attributes in fire safety management system customers prefer to have Automatic fire extinguisher system followed by emergency response system, presence of fire alarms, elevators working in extreme conditions, smoke and ventilation system.

- More than 90% of the respondents choose to have ventilation system that controls the temperature according to the external environment.
- The strong point that is associated with the BMS system is the costs and savings associated with it.
- The deciding factor for buying a BMS system is the Energy savings & security systems associated with the system.

VII. SUGGESTINS

- BMS system for rural apartment must focus on the following parameters.
 - oFire and alarm system
 - oContinuous feedback on energy usage
 - oEnergy savings
- BMS system for urban apartment must focus on the following parameters.

- oEnergy savings and security systems
- OMonitor the consumption of individual appliances and alert when consumption exceeds the budgeted bill.
- o Monetary savings
- OAutomatic fire extinguisher systems.
- BMS for individual standalone apartment must focus on the following
 - OSecurity system.
 - oEnergy savings
 - oFire proof elevators working in extreme conditions
 - oContinuous feedback on energy usage and alert when consumption exceeds the budgeted bill
- BMS for multiple cluster of apartment must focus on the following
 - OMonetary and energy savings.
 - Monitor the consumption of individual appliances.
 - OAlarms related to fire safety.
- Since the preference of customers vary based on location, apartment type and number of floors, it is necessary to identify specific requirements of customers for developing BMS.
- Awareness should be created about the use of BMS systems that help in reducing the energy consumption and bill amount, increase security and safety.

VIII. CONCLUSION

The project was undertaken to identify the level of customer awareness and their requirement in building management system. Analysis was done to identify the customer requirements based on the location of the apartment, type of apartment and number of floors in the apartment.

The project thus meets the major objectives such as

- ✓ Identifying the features of building management systems that are relevant for the customers and apartments.
- ✓ Determination of customers' perception on features suitable for smart buildings.
- ✓ Identifying the factors that influence the buying behavior of BMS.

The evaluations of features of BMS that are favored by customers have been established based on data collection, analysis and interpretation.

REFERENCES

- Alessandro Antonio Nacci, Vincenzo Rana, Donatella Sciuto (2014) "A Perspective Vision on Complex Residential Building Management Systems", EUC, 12th IEEE edition, pp 209 – 214
- Anna Pellegrino, Valerio R.M. Lo Verso, Laura Blaso, Andrea Acquaviva, Edoardo Patti, Anna Osello (2015) "Lighting control and monitoring of energy efficiency: A case study focused on interoperability of building management systems", EEEIC, 2015 IEEE 15th international conference, pp 748 – 753.
- C. Aghemo, J. Virgone, G.V. Fracastoro, A. Pellegrino, L. Blaso, J. Savoyat and K. Johannes, (2013) "Management and monitoring of public buildings through ICT based systems: control rules for energy saving with lighting and HVAC services", Frontiers Of Architec. Research., vol. 2, pp. 147-161
- R G Ariyawansa (2013), "Financial Market and Real Estate Sector in India: Overview and Some Thoughts for Strengthening Emerging

- Economies like India" 16 th Chapter in Dynamics of Financial Services in India, Edited by Styanarayana Chary T and T Neelakantam, Paramout Publishing House, New Delhi and Hyderabad, pp. 137-155.
- Paramout Publishing House, New Delhi and Hyderabad, pp.137-155

 5. Robert H.Socolow (1977) "The twin rivers program on energy conservation in housing and conclusions", Energy and Buildings, vol 1, pp 207 242
- Sonderegger, R.C.Movers and Stayers (1977) "The residents contribution to variation across houses in energy consumption for space heating energy building", vol 1, pp 313 324
 Young-hoon Lim, Hi-won Yun, Doosam Song (2015) "Indoor
- Young-hoon Lim, Hi-won Yun, Doosam Song (2015) "Indoor Environment Control and Energy Saving Performance of a Hybrid Ventilation System for a Multi-residential Building" Elsevier 6th International Building Physics Conference, IBPC 2015, vol 78, pp 2863-2868
- 8. http://www.ibef.org/industry/infrastructure-sector-india.aspx
- 9. www.cmhc-schl.gc.ca/publications/en/rh-pr/tech/03-121-e.html

AUTHORS PROFILE

Prof.R.Rengarajan currently working as Assistant Professor at PRIST School of Business, PRIST University, Thanjavur having eight years of teaching experience and One year Industrial experience. I am basically an Electrical Engineer and completed MBA (Finance and Marketing), ME (Power Systems) from the reputed institutions. I am having more than 10

publications in international and national journals. My area of interest is Economics, Production and Operations Management, Supply chain Management. My area of research is operations management within which the research topic is green supply chain management. I am life time member of Entrepreneurship Development and Innovation Institute of Tamilnadu and also acting as mentor for the young Entrepreneurs. I cleared National Eligibility Test (NET) and State Lectureship Eligibility Test (SLET) in the year 2012.

Dr.S.Venkatesh currently working as Associate Professor at PRIST School of Business, PRIST University, Thanjavur having fifteen years of teaching experience. I am having more than 20 publications in international and national journals. My area of interest is Human Resource Management and Marketing Management. My area of research is Human Resource management within which the research topic is Stress

Management. I am a life time member in Indian Society for Technical Education (ISTE). I cleared State Eligibility Test (SET) in the year 2016.

