CMOS/VLSI Circuit for Power Optimization on Portable Devices

R. SambaSiva Nayak, MD Javeed Ahammed, B. Satyanarayana, Nayeemuddin Mohammad

Abstract: In this day and age utilizing convenient gadgets are chiefly being used which turned out to be every day need in our life’s in which control utilization is principle situation which requests low power. This should be possible with procedures and principles while planning. To build control utilization through VLSI innovation CMOS (NMOS, PMOS) Transistor circuits are utilized and the sub-micron innovation likewise utilized for the prerequisite of low power gadgets increments altogether. Spillage current and power dispersal in both static and dynamic must be thought about which can bother the gadget execution. This paper presents strategies to lessen the power scattering and different philosophies to expand the speed of gadget. This can be useful in future low power innovation.

Index Terms: Leakage Current; Dynamic Power Dissipation; CMOS; static power dissipation.

I. INTRODUCTION

We are making VLSI chips which are made of silicon now days which is more than 95%. On a single small chip we place trillions of transistors for efficient operation. The best semiconductor is silicon which is from Group IV element. Its popular due to its different properties. By using single crystal material these silicon chips are made which are currently available in market. As our material is of high speed so, we use this in BJTs which we call as bipolar junction transistors which are usually having very high speed. We generally use DRAM chip which is of MOSFET and these transistors have very high density of packing. On the basis of this MOSFETs technology we integrate millions of transistors on integrated circuits which is very small silicon area. As shown in figure below silicon chip growth rate in figure1. We divided this VLSI technology essentially in two branches. First one is MOSFET technology and second one is BJT technology. As we had very small range of clock rate of processor but now its ranging to 1000 mega hertz and most processors even using the clock rate in range of giga hertz now a days. Size is also an main advantage in MOSFET technology which is shrinking as per the moore’s prediction which is from 0.45 micron to 0.25 micron. Processor technology of current era uses very advanced area utility operation from 60 nanometers to 45 nanometers. By the size reduction in fabrication of chips we have advantage of power consumption which gets optimized, but the dissipation power is increased from 30 to 100 watts. In microprocessors Power consumption is the major task as we concern. Scientists have proposed number of devices and architectures for overcoming this power dissipation problem.

Figure 1: Growth rate of transistor on chip

Figure 2: Power Dissipation Distributions

II. CMOS PD CONTROL TECHNIQUES

Basically we have 2 types of power dissipation sources in CMOS fabrication technology those are dynamic power consumption and static power consumption. When the device is in working mode or active mode then dynamic power consumption problem occurs and when device is not in working mode or standby mode then some parts of device are not active then this Static power consumption problem occurs. As in figure given below ever power dissipation problems occur on microprocessor are shown. An continuous loading and unloading of charges in the output capacitance is necessary to transmit information in CMOS circuits.

Revised Manuscript Received on October 10, 2019

R. SambaSiva Nayak, Department of ECE, Sri Satya Sai University of Technology and Medical Science, Sehore, Bhopal, Madhya Pradesh, India

MD Javeed Ahammed, Department of ECE, Sri Satya Sai University of Technology and Medical Science, Sehore, Bhopal, Madhya Pradesh, India

B. Satyanarayana, Department of ECE, Sri Satya Sai University of Technology and Medical Science, Sehore, Bhopal, Madhya Pradesh, India

Nayeemuddin Mohammad, Department of ECE, Sri Satya Sai University of Technology and Medical Science, Sehore, Bhopal, Madhya Pradesh, India
For the switch power both the charging and discharging occurs for dissipation. We have number of capacitors in CMOS circuits. In CMOS transistor we have both and interconnect capacitances which are called as parasitic capacitances. When the circuit is normally operating normally the power is observed by capacitors which are in number present in CMOS transistor so, they can charge and discharge accordingly. This power consumption by parasitic capacitances tends to dissipation of power which we call as the switching power dissipation. There are two types of networks we have in CMOS transistor they are P-MOS and N-MOS and the networks we use are pull-up Network which is made of pMOS and pull-down network which is made of nMOS. As given in fig.3&4.

![Figure 3: P-MOS and N-MOS Networks](image)

We have millions of nodes of capacitive circuits then we call it as complex CMOS circuit, we have dissipation of power even when apply switching then nodes are charged and discharged. By the PMOS device of P-channel pull up network the capacitors of nodes are charged, similarly discharge is through N-MOS transistors n-channel devices in the pull-down network [2]. We express the dissipation of power is as shown in equation below.

\[P_{\text{en}} = \alpha C_i V_d^2 f \]

Here power consumption is denoted as \(P \), active factor is denoted as \(\alpha \), capacitance switched load is \(C \), we have frequency of clock representation as \(f \) and \(V \) as the voltage supply. In our system the clock has activity factor as \(\alpha = 1 \), because for every duty cycle it rises and falls. 0.5 is the active factor value of the data probably. In the load of right dissipation of power Dynamic can be effectively computed when at the nodes capacitance of the right load is estimated by considering in the activity factors [2].

![Figure 4: inverter of CMOS](image)

Power dissipation of short circuit is known which also known as dynamic dissipation of power was a Second type.

We have open circuit when we on the path of PMOS network when in CMOS circuit the output is 1. While we open the path of NMOS network when we have zero output. The in other hand the network path of pMOS is closed [4]. In short we can say that there is no path directly from supply to ground. As given in figure 5. It an inverter which has simple circuit; the NMOS is on when we have 1 in the input, PMOS is on when we have zero input but we don’t have path between low and high inputs normally between the supply voltage to ground. No path should be present for short circuit. When there is a slow change in input from 0 to 1 then through the transistor short circuit flows. We have a passing current in transistor which is a short circuit current if we have a change in input slowly from low to high or else 1 to 0 then definitely a region is there in between where both transistors are on.

![Figure 5: CMOS inverter short-circuit current](image)

If voltage of input is much more than voltage of threshold of transistor NMOS type and similarly smaller than the VD threshold voltage minus the PMOS transistor type threshold voltage, so, both the transistor types will be on for that input time and then had a path of short circuit for that time of the input both the transistors will be on, and as a consequence there is a short circuit path from supply to ground [5]. And it’s called as dissipation of power in short circuit, because of direct current path as shown in figure below characteristics as the formula elaborates the dissipation power of short-circuit excluding the load output in an invert designed of CMOS, here gain factor is \(\beta \), the time of inverter fall or rise is given as \(\tau \) and signal period of input is \(T \).

![Figure 6: characteristics of voltage and current](image)

We have frequency dependence very strongly and also we have dependence on rise and fall time. We definitely have 20% dissipation power of short circuit which resulted due to slow time of rise on nodes significantly for loaded inverters. Keeping fast edges in all is a good practice when we consider the dissipation of power.
If we assume that we have very high capacitance of load as an first case as shown in figure below, in that case we have a large significant fall time of output which is greater than the rise time of input. So, we get zero value maximum for current of short circuit. Now as shown in figure below the case of reverse operation is, where we have capacitance of output very small, and we have very less time of fall in output than input rise time. PMOS transistor device drain to source voltage is equal to \(V_{DD}\) for most periods of the transition, so the short circuit current is maximum. By doing the fall and rise time of output higher than counter part of input which tends to the minimum dissipation of short circuit leaded by this analysis which has concluded [3].

![Figure 7: short circuit capacitance load](image)

Or else if we increase the time of fall or rise in the output that can cause currents short circuit by slowing down the circuit as given in waveform in below figure.8.

![Figure 8: CMOS inverter short-circuit](image)

We also call the power of standby is essentially known as Leakage power dissipation. Dissipation of power is the result of voltage supply connection of the circuit as there is no change in input that tends to dissipation of power. It’s very important due to its leakage current. Its an typical transistor of MOS type where the leakage current is mentioned as I to I5 contribution diagram on fig.9.

![Figure 9: current due to leakage contribution](image)

As shown in figure the Complementary MOS is a combination of NMOS and PMOS. We can form substrate of P and N type by the n-Well and p-type substrate combination. So, it is considered as a diode. There will be some reverse current in bias because the diode is reversed. By using the equation we can calculate the static consumption of power.

\[
P_s = V_{CC} \times I_{CC}
\]

Where: \(V_{CC}\) = supply voltage, \(I_{CC}\) = current into a device

Based on the temperature our leakage current is present depending on density of current saturation which is reverse and device area which is active. We have to carefully consider all the transistors present in the chip. In today’s IC’s we use to have millions –trillions of transistors.

III. RESULTS

When we sum currents which all passes through it. The current is of 0.1 microns for more than 1 million transistors. This current will become thousand times when we use 1 billion transistors, which is quite heavy and that can’t be ignored. If there is less number of transistors then we can ignore, but if the chip contains maximum number of transistors then diodes reverse bias current will quite heavy, when the threshold voltage \(V_T\) increases the channel gets activated and when channel gets increases pinch-off condition occurs due to the reverse leakage current the power dissipation occurs. The simulation results for power consumption with temperature dependent carriers are as shown in figure.10 below.

IV. CONCLUSIONS

We need a balance in efficiency of power and performance which is the aim of Electronic design. In this paper tried to connect and represent various IC’s with number of low-power designs of general purpose to relate different solutions. Now a day’s basic need is to have low power consumption devices and less power dissipation also in every system. So, we have parallelization and pipelining techniques for reduction of power. For achieving our goals its very important to have methodology of Low-power. Cost will definitely reduce if we can reduce the dissipation of power in accordance to cooling and packing reduction so, system performance will be improved overall.

REFERENCES

Retrieval Number L27161081219/2019@BEIESP
DOI: 10.35940/ijitee.L2716.1081219
CMOS/VLSI Circuit for Power Optimization on Portable Devices

1997.

20. D. Chaudhuri, A. Nag, and S. Bose”lower powerful adder circuit implemented in different logic”, an international journal of innovative research in science, engineering, and technology.

