Fuzzy Translation of INK-ideal of INK-algebras

Kaviyarasu. M Indhira. K.

Abstract: In this paper, the ideas of fuzzy translation (FT) to F-INK-ideals in INK-algebras are presented. The concept of (FE) fuzzy extensions and (FM) fuzzy multiplications of F-INK-ideals with a few related properties are examined. Additionally, the connections between fuzzy translations, fuzzy extensions (FE) and fuzzy multiplications (FM) of F-INK-ideals are investigated.

Keywords: INK-algebra, fuzzy INK-ideal, (FT) fuzzy translation, (FE) fuzzy extension, (FM) fuzzy multiplication.

I. INTRODUCTION

BCI-algebras and BCK-algebras are curtailed to two Boolean algebras. The previous was brought up in 1966 by Imai and Iseki. In 1991, Xi applied the idea of fuzzy sets to BCK-algebras math. In 1993, Jun and Ahmad applied it to BCI-algebras. After that Jun, Meng, Liu and a few specialists explored further properties of fuzzy-BCK-algebras and fuzzy subset(ideal). In 2017, Indhira and Kaviyarasu presented fuzzy-INK-ideal in INK-algebras and presented (IF) intuitionistic fuzzy-INK-ideal in INK-algebras. Lee et al. furthermore, Jun talked about (IT) fuzzy translation, (FE) fuzzy extensions and (FM) fuzzy multiplications of F-subalgebras and ideal in BCK/BCI-algebras. They examined relations among fuzzy translation, F-extension and F-multiplications. In this paper, we investigated all translation properties and extension condition of fuzzy-INK-ideal applied in Fuzzy-INK-algebra.

II. PRELIMINARIES

In this section, some elementary aspects that are necessary for this paper are included. An algebra (U; •, 0) is named a INK-algebra on the off chance that it fulfils the accompanying conditions for every p, q, r ∈ U.

- \((p \circ q) \circ (r \circ q) = 0\)
- \((p \circ r) \circ (q \circ r) = 0\)
- \(p \circ 0 = p\)
- \(p \circ q = 0\) and \(q \circ p = 0\) imply \(p = q\).

A subset A of a INK-algebra Û is named an INK-ideal of Û if,

- \(0 \in A\)
- \((r \circ p) \circ (r \circ q) \in A\) and \(q \in A\) imply \(p \in A\), \(\forall p, q, r \in Û\).

A FsN in a INK-algebra Û is named a fuzzy-INK-ideal of Û if,

- \(N(0) \geq N(p)\)
- \(N(p) \geq \min \{N(r \circ p) \circ (r \circ q), N(q)\}, \forall p, q, r \in Û\).

III. MAIN RESULTS

Throughout this paper, we take \(I = 1, sup\{N(p) / p \in Û\}\) for every fuzzy set \(N\) of Û.

A. Definition Let \(N \subseteq Û\) and \(\hat{a}, \phi \in [0, I]\). Is called F-\(\hat{a}\)-translation (F-\(\hat{a}\)) of \(N\) if it satisfies \(N_{\hat{a}}^{-1}(p) = N(p) + \hat{a}\), for all \(p \in Û\).

B. Theorem Prove that every F\(\hat{a}\)-translation \(N_{\hat{a}}^{-1}\) of \(N\) is a F-INK-ideal of Û, if \(N\) is a fuzzy INK-ideal of Û, for every \(\hat{a} \in [0, I]\).

Proof. We consider \(N\) is a F-INK-ideal of Û and let \(\hat{a} \in [0, I]\).

\(N_{\hat{a}}^{-1}(0) = N(p) + \hat{a} = N(p) + \hat{a}\)

\(\geq \min \{N(r \circ p) \circ (r \circ q), N(q)\} + \hat{a}\)

= \min \{N(r \circ p) \circ (r \circ q), N(q)\} + \hat{a}\)

= \min \{N_{\hat{a}}^{-1}(r \circ p) \circ (r \circ q), N_{\hat{a}}^{-1}(q)\}

for all \(p, q, r \in Û\). Hence complete the proof.

C. Theorem Let \(N\) be a F-subset of Û such that the F-\(\hat{a}\)-translation \(N_{\hat{a}}^{-1}\) of \(N\) is a F-INK-ideal of Û, then \(N\) is a F-INK-ideal of Û.

Proof. \(N_{\hat{a}}^{-1}\) is a F-of Û. Let \(p, q \in Û\).

\(N(0) + \hat{a} = N_{\hat{a}}^{-1}(0)\)

\(\geq N_{\hat{a}}^{-1}(p)\)

\(= N(p) + \hat{a}\)

\(N(0) \geq N(p)\).

Now,

\(N(p) + \hat{a} = N_{\hat{a}}^{-1}(p)\)

\(\geq \min \{N_{\hat{a}}^{-1}\circ (r \circ p) \circ (r \circ q), N_{\hat{a}}^{-1}(q)\}\)

= \min \{N(r \circ p) \circ (r \circ q), N(q)\} + \hat{a}\)

which implies

\(N(p) \geq \min \{N(r \circ p) \circ (r \circ q), N(q)\}\).

Hence \(N\) is a F-INK-ideal of Û.

D. Theorem Let \(N\) be a Fs of Û such that the F-\(\hat{a}\)-translation \(N_{\hat{a}}^{-1}\) of \(N\) is a F of Û, if \((p \circ e) * f = 0\), \(N_{\hat{a}}^{-1}(p) \geq \min \{N_{\hat{a}}^{-1}(p \circ e), N_{\hat{a}}^{-1}(e)\}\),

\(\geq \min \{N_{\hat{a}}^{-1}\circ (p \circ e) \circ (p \circ e), N_{\hat{a}}^{-1}(f)\}\),

\(N_{\hat{a}}^{-1}(e)\).

Proof. Let \(e, b, p \in Û\), then \((p \circ e) * f = 0\).

\(N_{\hat{a}}^{-1}(p) \geq \min \{N_{\hat{a}}^{-1}(p \circ e), N_{\hat{a}}^{-1}(e)\}\),

\(\geq \min \{N_{\hat{a}}^{-1}\circ (p \circ e) \circ (p \circ e), N_{\hat{a}}^{-1}(f)\}\),

\(N_{\hat{a}}^{-1}(e)\).
Therefore, if U is an INK-algebra, then the F-ideal of INK_U is a F-INK-subalgebra of U.

Proof. Let $(p_1, q_1) \in U$ such that $p_1, q_1 \in U$ and $p_1 \neq q_1$. Then INK_U is a fuzzy INK-subalgebra of U.

Therefore, INK_U is a fuzzy INK-subalgebra of U.

G. Theorem. If R is a fuzzy INK-subalgebra of U, then INK_R is a fuzzy INK-subalgebra of U.

Proof. Let $(p_1, q_1) \in U$ such that $p_1, q_1 \in U$ and $p_1 \neq q_1$. Then $\text{INK}_R(p_1) \leq \text{INK}_R(q_1)$.

Therefore, INK_R is a fuzzy INK-subalgebra of U.

H. Theorem. Let R be a fuzzy INK-algebra such that INK_R is a fuzzy INK-subalgebra of U. Then INK_R is a fuzzy INK-subalgebra of U.

Proof. Let $(p_1, q_1) \in U$ such that $p_1, q_1 \in U$ and $p_1 \neq q_1$. Then $\text{INK}_R(p_1) \leq \text{INK}_R(q_1)$.

Therefore, INK_R is a fuzzy INK-subalgebra of U.

I. Theorem. If R is a fuzzy INK-algebra such that INK_R is a fuzzy INK-subalgebra of U, then INK_R is a fuzzy INK-subalgebra of U.

Proof. Obviously, $\text{INK}_R(p_1, q_1) \leq \text{INK}_R(p_2, q_2)$. Then $\text{INK}_R(p_1, q_1) = \text{INK}_R(p_2, q_2)$.

Therefore, INK_R is a fuzzy INK-subalgebra of U.

IV. FUZZY η-MULTIPLICATION OF FUZZY INK-IDEAL.

A. Definition. Let K be a FS of U and $\eta \in [0,1]$, $\text{INK}_K : U \rightarrow [0, 1]$ is said to be a F-\(\eta\)-multiplication of K if it satisfies $\text{INK}_K(p) \geq \eta \text{INK}_K(p)$ for all $p \in U$.

B. Theorem. Let K be a FS of U such that INK_K is a F-INK-ideal of U. Then INK_K is a F-INK-ideal of U.

Proof. Let INK_K be a F-INK-ideal of U for some $\eta \in [0,1]$. Then $\text{INK}_K(p) \geq \eta \text{INK}_K(p)$ for all $p \in U$.

C. Theorem. If K is a fuzzy INK-ideal of U, then INK_K is a fuzzy INK-ideal of U.

Proof. Let INK_K be a fuzzy INK-ideal of U. Then $\text{INK}_K(p) \geq \eta \text{INK}_K(p)$ for all $p \in U$.

D. Theorem. Let $\eta \in [0,1]$ and let K be a fuzzy INK-ideal of U. Then INK_K is a fuzzy INK-ideal of U.

Proof. Let INK_K be a fuzzy INK-ideal of U. Then $\text{INK}_K(p) \geq \eta \text{INK}_K(p)$ for all $p \in U$.

E. Theorem. The F-\(\eta\)-multiplication INK_K of K is a fuzzy INK-ideal of U.

Proof. Let INK_K be a fuzzy INK-ideal of U. Then $\text{INK}_K(p) \geq \eta \text{INK}_K(p)$ for all $p \in U$.
F. **Theorem.** The U and ρF two FT of a F-INK-ideal Κ of \bar{U} is also a F-INK-ideal of \bar{U}.

Proof. Let Λ_k, Λ_{k_1} be FT of a F-INK-ideal Κ of \bar{U}, where $\rho, \vec{\rho} \in [0,1]$. Then Λ_k, Λ_{k_1} are F-INK-ideal of \bar{U}.

$$(\Lambda_k \cap \Lambda_{k_1})(p) = \min \{ \Lambda_k(p), \Lambda_{k_1}(p) \} = \min \{ \Lambda_k(p) \}, \Lambda_{k_1}(p) \}$$

And

$$(\Lambda_k \cup \Lambda_{k_1})(p) = \max \{ \Lambda_k(p), \Lambda_{k_1}(p) \} = \max \{ \Lambda_k(p) \}, \Lambda_{k_1}(p) \}$$

Hence $(\Lambda_k \cap \Lambda_{k_1})$ and $(\Lambda_k \cup \Lambda_{k_1})$ are fuzzy INK-ideal of \bar{U}.

V. FUZZY EXTENSIONS OF INK-IDEAL

A. Definition. Let Λ_1 and Λ_2 be fuzzy subsets of \bar{N}. If $\Lambda_1 \subseteq \Lambda_2$ for all p in \bar{N}, then Λ_2 is a \mathcal{F}_λ-F-extension of Λ_1.

B. Definition. Let Λ_1 and Λ_2 be F-subsets of \bar{N}. Then Λ_2 is named a F-INK-ideal S-extension of Λ_1 if the succeeding statements are valid:

1. Λ_2 is a \mathcal{F}_λ of Λ_1.
2. If Λ_1 is a F-INK-ideal \mathcal{N}-extension of Λ_1, then Λ_2 is a F-INK-ideal \mathcal{N}-extension of Λ_1.

Consider a INK-algebra $\bar{N} = \{0, 1, a, b\}$.

<table>
<thead>
<tr>
<th>Λ_1</th>
<th>Λ_2</th>
<th>Λ_3</th>
<th>Λ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>

$\Lambda_1(0) = 0.6$, $\Lambda_2(1) = 0.4$, $\Lambda_3(a) = 0.3$, $\Lambda_4(b) = 0.3$.

$\Lambda_5(0) = 0.7$, $\Lambda_6(1) = 0.6$, $\Lambda_7(a) = 0.5$, $\Lambda_8(b) = 0.2$. are fuzzy INK-ideal of \bar{N}.

C. Theorem. Intersection of any two F-INK-ideal extension of a F-INK-ideal \mathcal{N} of \bar{N} is a F-INK-ideal extension of \bar{N}.

Proof. Let Λ_1 and Λ_2 be a F-INK-ideal extension of a F-INK-ideal \mathcal{N} of \bar{N}. Then $\Lambda_1(p) \geq \Gamma(p)$ and $\Lambda_2(p) \geq \Gamma(p)$. Since Λ_1 is a fuzzy INK-ideal of U, Λ_1 and Λ_2 are F-INK-ideal of \bar{N}. Then $\Lambda_1 \cap \Lambda_2$ is also a F-INK-ideal of \bar{N}. Now

$\mathcal{N}_1 \cap \mathcal{N}_2(p) = \min \{ \mathcal{N}_1(p), \mathcal{N}_2(p) \}$

Therefore $\mathcal{N}_1 \cap \mathcal{N}_2$ is a F-INK-ideal extension.

D. Remark. Union of F-INK-ideal extension of a F-INK-ideal \mathcal{N} of \bar{N} need not be a F-INK-ideal extension of \bar{N}.

Consider the example the fuzzy sets \mathcal{N}, \mathcal{N}_1, and \mathcal{N}_2 of \bar{N} is defined as follows.

<table>
<thead>
<tr>
<th>\mathcal{N}</th>
<th>\mathcal{N}_1</th>
<th>\mathcal{N}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\mathcal{N}_1 \cap \mathcal{N}_2(p)$</th>
<th>$\mathcal{N}_1 \cup \mathcal{N}_2(p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\min { \mathcal{N}_1(p), \mathcal{N}_2(p) }$</td>
<td>$\max { \mathcal{N}_1(p), \mathcal{N}_2(p) }$</td>
</tr>
</tbody>
</table>

E. Theorem. Let \mathcal{N} be a fuzzy INK-ideal of \bar{N}. The F-ideal \mathcal{N} is a F-INK-ideal extension of \mathcal{N}.

Proof. If \mathcal{N} is a F-INK-ideal of \bar{N}, then we know that by theorem 1.5, the fuzzy \mathcal{F}_λ-translation $\mathcal{N}_1 \rangle$ of \mathcal{N} is F-INK-ideal of \bar{N}. Now, $\mathcal{N}_1 \rangle(p) = \mathcal{N}(p) \geq \mathcal{N}(p)$, for all p in \bar{N}. Hence \mathcal{N} is a fuzzy \mathcal{F}_λ-translation $\mathcal{N}_1 \rangle$ is a F-INK-ideal extension of \mathcal{N}.

F. Theorem. Let \mathcal{N} be a F-INK-ideal of \bar{N} and $\tilde{\rho} \geq \eta$, with $\rho, \eta \in [0,1]$, then F-\tilde{\mathcal{F}} translation $\mathcal{N}_1 \rangle \eta$ of \mathcal{N} is a F-INK-ideal extension of the F-\tilde{\mathcal{F}}-translation $\mathcal{N}_1 \rangle \eta$ of \mathcal{N}.

Proof. Let \mathcal{N} be a fuzzy INK-ideal of \bar{N}. Then by theorem 3.1.5 the fuzzy \mathcal{F}_η-translation $\mathcal{N}_1 \rangle \eta$ of \mathcal{N} and the fuzzy \mathcal{F}_η-translation $\mathcal{N}_1 \rangle \eta$ of \mathcal{N} are fuzzy INK-ideal of \bar{N}, for all $\tilde{\rho}, \eta \in [0,1]$. Since $\tilde{\rho} \geq \eta$, $\mathcal{F}_\eta(p) \geq \mathcal{F}_\eta(p)$.

Therefore, $\mathcal{N}_1 \rangle \eta(p) = \mathcal{N}_1 \rangle \eta(p)$.

Hence $\mathcal{N}_1 \rangle \eta$ is a fuzzy INK-ideal extension of $\mathcal{N}_1 \rangle \eta$.

G. Theorem. If \mathcal{N} is a fuzzy INK-ideal of \bar{N}, then the fuzzy η-multiplication of \mathcal{N} is a fuzzy INK-ideal of \bar{N}, for all $\eta \in [0,1]$.

H. Theorem. Let \mathcal{N} be a FS of $\tilde{\rho} \rho \eta$ in $[0,1]$ and $\eta \eta$ in $[0,1]$. If the F-η-multiplication $\mathcal{N}_1 \rangle \eta$ of \mathcal{N} is a F-INK-ideal of \bar{N}, then the F-$\tilde{\mathcal{F}}$-translation $\mathcal{N}_1 \rangle \eta$ of \mathcal{N} is a F-INK-ideal extension of $\mathcal{N}_1 \rangle \eta$.

Proof. Let $\tilde{\rho} \in [0,1]$, $\eta \in [0,1]$ and $\mathcal{N}_1 \rangle \eta$ of \mathcal{N} is a fuzzy INK-ideal of \bar{N}. Then \mathcal{N} is a F-INK-ideal of \bar{N}. By theorem 3.1.2, $\mathcal{N}_1 \rangle \eta(p) = \mathcal{N}_1 \rangle \eta(p)$ of \mathcal{N}. Now, $\mathcal{N}_1 \rangle \eta(p) \geq \mathcal{N}(p) \eta = \mathcal{N}_1 \rangle \eta(p)$.

Therefore $\mathcal{N}_1 \rangle \eta(p)$ is a fuzzy INK-ideal extension of $\mathcal{N}_1 \rangle \eta$.

VI. CONCLUSION

In this concept of translation of F-INK-ideal in INK-algebra are familiarized and examined some of their beneficial assets. We have exposed that the F-\tilde{\rho}-translation of a F-INK-ideal is a F-INK-ideal extension but then the converse is not factual. It is correspondingly exposed that intersection of F-INK-ideal extension of a FS- is a F-INK-ideal extension but union of F-INK-ideal extension of a fuzzy subset is not a F-INK-ideal extension. The associations are conversed between FT, FE and F-multiplications of F-INK-I in INK-algebras.
ACKNOWLEDGMENT

The author would identical to express since gratefulness to the referee used for their respected recommendation and observations caring in educating this research paper.

REFERENCES

AUTHOR PROFILE

Kaviyarasu M is working ph. D in Department of Mathematics at Vellore Institute of Technology (Deemed to be University), Vellore, Tamilnadu, India. He has completed Master of science in AVVM Sripoondhipushpam college in 2012. His research area is algebra and fuzzy algebra. He has published 11 research papers in international journals with in Scopus indexed.