

Application of Water Quality Index (WQI) For Ground Water Quality Interpretation

Jeyalakshmi Suresh Kumar, Natesan Manoharan, Rajangam Udayakumar

Abstract: Water Quality Index (WOI) is a widely used technique in defining the quality of groundwater and finding whether it is advisable for human use. It is utmost necessary steps to understand the physical and chemical parameters defining the water quality for particular period and location using WQI calculation as it gives information in a single value. WQI has been calculated in twenty ground water samples collected from selected sampling stations at Madurai in the pre-monsoon, monsoon and post monsoon seasons. The water quality index values suggested that almost all the ground water samples were above 150, which indicated that they were unfit for drinking and one sample from Vilangudi had WQI less than 100 which indicated the water as poor category for drinking but could be used for irrigation purposes. The groundwater quality is also defined to be little better during post monsoon season in all the samples than during pre-monsoon and monsoon season.

Keywords: Groundwater, Indian Standards Institution (ISI), Indian Council of Medical Research (ICMR), World Health Organization (WHO), Physicochemical, Water quality index (WQI),

I. INTRODUCTION

Water is a necessary prerequisite for a varied scope of human activities like drinking, agricultural, industrial, electricity production, product development, and disposal of garbage. Ground water is of high value than surface water as it is normally free from pollutants [1]. But such ground water too is contaminated by various reasons. The contamination of water is mainly because of increasing inhabitants, leading to urbanization, industrial development, excess use of chemicals in the fields, and other human interventions [2] and also failure of monsoon and improper management of rain water. Regular incessant checking of the physical, chemical and biological quality of ground water is needed to reduce the effect of the change in quality on mankind and other lives.

Water quality index (WQI) is widely used for evaluating the contamination in the ground water and so it may be outlined as "a rating, reflecting the composite influence of various quality parameters on the overall quality of water." [3]. The water quality index is generally categorized into two elements like physic-chemical and biological indices.

Revised Manuscript Received on October 30, 2019.

* Correspondence Author

Mrs. Jeyalakshmi*, Suresh Kumar, Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam – 612 002, Tamilnadu, India. Email: jeyavws2011@gmail.com

Dr. Natesan Manoharan, Department of Marine Science, Bharathidasan University, Tiruchirappalli – 620 024, Tamilnadu, India. Email: biomano21@gmail.com

Dr. Rajangam Udayakumar, Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam – 612 002, Tamilnadu, India. Email: udayabiochem@yahoo.co.in

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

The physic-chemical indices are built on the values of different physico-chemical parameters in every water sample [4].

In this calculation where mathematical equation is used, various water quality parameters applied in the formula gives back a single value as water quality index. This value calculated provided easy way to understand the water quality and decide on the proper use of any water body. It is the understanding of water quality for the doable uses by combining complicated information and generating a score that describes easy water quality standards. [5].

The chemical constituents of the thrown out trash on the land without disposing properly could penetrate and pollute the underground water table. Effect of contamination being reported in various studies at different study area paved way for the present study in Madurai to understand the pollution level of ground water during the study period.

II. METHODS

In this study, attempts have been made to calculate the WQI of ground water samples collected from selected stations of Madurai, Tamil Nadu, India. (Table-I) World Health Organization (WHO) standards were adopted for calculation of WQI based on physico-chemical data by using the methods proposed by Horton [3] and modified by Tiwari and Mishra [6]. By utilizing ten water quality parameters pH, Total Dissolved Solids, Total Hardness, Total Alkalinity, Calcium, Magnesium, Chloride, Nitrate, Potassium and Sulphate, WQI values are calculated in this study to understand the exact status of the water in the study area for various uses.

WQI CALCULATION

WQI was calculated using Horton's method [3]. Quality rating and unit weight of every water quality parameter was calculated using permissible limits as specified by Indian Standards Institution (ISI), Indian Council of Medical Research (ICMR) or World Health Organization (WHO).

Formula to calculate WQI is done using the Equation (1) as referred by Horton, 1965.

 $WQI = \sum qnWn/\sum Wn....(1)$

In the equation, qn specifies Quality rating of every nth water quality parameter.

Wn= Unit weight of every nth water quality parameter.

Application of Water Quality Index (WQI) For Ground Water Quality Interpretation

Table- I: GPS Coordinates of the Sample Locations in the Madurai (Study area).

	the Madurai (Study area).						
Sample Sites No.	Sampling Sites	Latitude (N)	Longitude (E)				
S1	Anna Nagar	9.91954	78.15568				
S2	Palanganatham	9.9081538	78.097039				
S 3	Kosakulam	9.96696	78.11795				
S4	Aanaiyur	9.96112	78.10811				
S5	Koodal Nagar	9.96159	78.10163				
S6	Theppakulam	9.913787	78.14545				
S7	Oomatchikulam	9.99773	78.13966				
S8	Thirunagar	9.88096	78.05691				
S9	Thiruparankundram	9.8813	78.0671				
S10	Nagamalai	9.93684	78.03268				
S11	Ponnagaram	9.93046	78.1114				
S12	KK Nagar	9.93358	78.1459				
S13	Pudur	9.94715	78.14998				
S14	Iyer Bungalow	9.96945	78.13855				
S15	Vilangudi	9.95446	78.08766				
S16	Avaniyapuram	9.87484	78.11008				
S17	Jaihindpuram	9.90625	78.11145				
S18	Thiruppalai	9.9754	78.13604				
S19	Kochadai	9.94065	78.08366				
S20	Thirumangalam	9.84474	78.01129				

Quality rating (q_n) calculation

Formula to calculate quality rating (q_n) is done using the equation (2).

$$q_{n} = \hbox{\tt [(\ V_{n} - V_{id})/(\ S_{n}\hbox{\tt -}\ V_{id})\]\ x\ 100......(2)}$$

In the equation,

 $V_{\rm n}$ specifies the exact value of every nth water quality parameter at a given sample location.

 V_{id} specifies Ideal value for every nth parameter in pure water. Here in this study, V_{id} for pH = 7 and 0 for all other parameters.

 $S_{n}% = S_{n} + S_{$

Unit weight (W_n) calculation

Formula to calculate unit weight (W_n) is done using the equation (3).

$$\mathbf{W}_{\mathbf{n}} = \mathbf{k} / \mathbf{S}_{\mathbf{n}} \qquad (3)$$

In the equation,

 $S_n = Standard$ permissible value of every nth water quality parameter.

k = Constant of proportionality and it is calculated using the equation (4).

 $k = [1 / (\sum 1/S_n=1,2,..n)]....(4).$

CLASS OF WATER USING WQI VALUES

Retrieval Number: L28661081219/2019@BEIESP

The WQI values calculated from the samples from the study area is classified within the ranges specified in Table-II to empathize the recommended usages of the ground water.

Table-II: WQI, class of water and recommended usage of water [7]

	of water [/].							
S.No.	WQI	Class of water	Recommended usages					
	range							
1	0-25	Excellent	Drinking, Irrigation and Industrial					
2	25-50	Good	Domestic, Irrigation and					
			Industrial					
3	51-75	Fair	Irrigation and Industrial					
4	76-100	Poor	Irrigation					
5	101-150	Very Poor	Restricted use for Irrigation					
6	Above	Unfit for	Proper treatment required before					
	150	Drinking or	use.					
		irrigational						
		purpose						

WQI OF THE SAMPLE LOCATIONS

The WQI values of the ground water samples collected from sampling locations for post monsoon, pre-monsoon and monsoon samples are calculated using ten physicochemical parameters given in Table-IV for the all the twenty samples.

III. RESULTS

The WQI values of the sample locations during premonsoon, post-monsoon and monsoon seasons are calculated and presented in Table-V.

Table-IV: Standard values of water quality parameters and their corresponding ideal values and unit weights

	Param	S _n	Recommend	Ideal	k	Unit
S.No	eters		ing Agency	Value	value	weight
			for S _n	(V_{id})		
1	pН	8.5	ISI	7	3.58	0.421368
2	TDS	500	ISI	0	3.58	0.007163
3	Tot.Alk	120	ICMR	0	3.58	0.029847
4	TH	300	ICMR	0	3.58	0.011939
5	Ca	75	ICMR	0	3.58	0.047755
6	Mg	50	ICMR	0	3.58	0.071633
7	NO3	45	ISI	0	3.58	0.079592
8	CL	250	ISI	0	3.58	0.014327
9	SO4	200	ISI	0	3.58	0.017908
10	K	12	wно	0	3.58	0.298469

Based on WQI values, it is clear that none of the study samples are found to be in the range of 0 to 75. Only one sample S15 is found to be within 76-100 range in all the three seasons. Most of the samples from the study area showed very poor quality of ground water as it had highest WQI values and so proved to be unfit for drinking or irrigation purpose. The results are shown in Table-VI.

WQI of pre-monsoon groundwater samples

The index values calculated for pre monsoon samples are shown in Table-V. S6 (Theppakulam) sample is found to be within 101 to 150 range which accounts to be very poor water. Almost all the pre monsoon ground water samples are very poor and unfit for drinking when compared with Table-II & VI. Only one sample (S15) of the study area is in good quality during pre-monsoon season.

WQI of post monsoon groundwater samples

The index values calculated for post monsoon samples are shown in Table-V. S6, S3, S4 and S9 samples are found to be within 101 to 150 range which accounts to be very poor water. Almost all the post-monsoon ground water samples are very poor and unfit for drinking when compared with Table-II & VI. Only one sample (S15) of the study area is in good quality during post monsoon season. WQI values are little lower in post monsoon samples than pre-monsoon and monsoon samples.

WQI of monsoon groundwater samples

The index values calculated for monsoon samples are shown in Table-V. S6 (Theppakulam) sample is found to be within 101 to 150 range which accounts to be very poor water. Almost all the monsoon ground water samples are very poor and unfit for drinking when compared with Table-II & VI. Only one sample (S15) of the study area is in good quality during monsoon season.

Table-V: WQI values of Pre-Monsoon, Post-Monsoon and Monsoon samples

lonsoon s	ampies	****				
	WQI					
Sample						
Id	Pre-	Post-	Monsoon			
14	Monsoon	Monsoon				
S1						
	460	434	458			
S2	179	155	174			
S3	158	139	152			
S4	176	145	194			
S5	225	193	233			
S6	121	102	129			
S7	189	168	212			
S8	750	697	788			
S9		150	187			
S10	193	338	456			
S11						
S12	717	646	769			
S13	327	295	392			
G1.4	840	805	913			
S14	344	269	393			

S15			
	88	63	83
S16			
	267	166	305
S17			
	342	289	357
S18			
	419	314	525
S19			
	369	260	377
S20			
	185	156	249

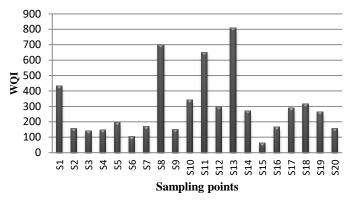


Fig. 1. Water quality index (WQI) values for Postmonsoon ground water samples

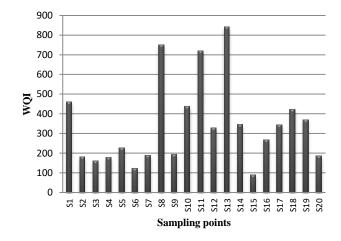
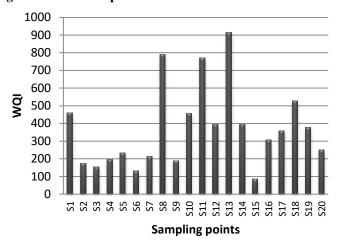


Fig. 2. Water quality index (WQI) values for Pre monsoon ground water samples

Table-VI. Water Quality Index values for the study area


C	Water	Class of	Study area - samples				
S. No	Quality Index	Class of Water	Pre- monsoon	Monsoon	Post- monsoon		
1	76-100	Poor	S15	S15	S15		
2	101- 150	Very Poor	S6	S6	S6, S3, S4, S9		

Application of Water Quality Index (WQI) For Ground Water Quality Interpretation

			S1, S2,	S3,	S1, S	2, S3,	S1, S	2, S5,
			S4, S5,	S7,	S4, S	5, S7,	S7,	S8,
			S8, S9, S	S10,	S8,	S9,	S10,	S11,
3	Above	Unfit for	S11,	S12,	S10,	S11,	S12,	S13,
3	150	Drinking	S13,	S14,	S12,	S13,	S14,	S16,
			S16,	S17,	S14,	S16,	S17,	S18,
			S18,	S19,	S17,	S18,	S19, S	S20
			S20		S19, S	S20		

Fig. 3. Water quality index (WQI) values for monsoon ground water samples

IV. DISCUSSION

WQI values of both pre-monsoon and monsoon samples share the same status, which shows 5% of the total ground water samples are poor and 5% are very poor and 90 % are totally unfit for drinking. S15 (Vilangudi) sample has poor status for drinking but it can be used for irrigation as it is only the recommended usage for this particular status. S6 (Theppakulam) sample has very poor quality which has restricted use for irrigation purpose also. 18 samples had WQI values above 150 which are totally unfit for drinking. This study is proved to be in agreement with the findings by Sirajudeen et al [8]. S15 (Vilangudi) water sample is far better than any other samples from the study area. The WQI value is less than 100. From the study it is clear that only in this sample pollution rate is comparatively less than any other samples in the study area.

And WQI of post monsoon samples states that 5% of the total groundwater samples are poor, 20% are very poor, 75% are unfit for drinking. S15 (Vilangudi) sample has poor status for drinking but it can be used for irrigation as it is only recommended usage for this particular status. S3 (Kosakulam), S4 (Aanaiyur), S9 (Thiruparankundram) samples has very poor quality and so these samples cannot be used as well for irrigation. According to WQI values, groundwater quality is proved to be little lower in samples collected in post-monsoon samples than in samples in premonsoon and monsoon season.

Earlier study showed that pollution with potassium, calcium, magnesium, nitrate, and sulphate in the sampling sites [9] has recommended us to suggest people living in the study area especially in S8, S11, S13 to carefully monitor the

quality of ground water and follow further treatment where needed before any human use.

V. CONCLUSION

From the above investigations it is clear that all the ground water samples under study are either very poor or poor or totally unfit for drinking. WQI values are slightly lower in post-monsoon season than pre-monsoon and monsoon season. This increase in WQI might be due to increased potassium and total dissolved solids. Therefore it is mandatory to carefully monitor these ground water sources immediately. So from the present study it is suggested to take steps in reducing the pollution load as ground water is the base for every other water sources.

REFERENCES

- Pramisha Sharma, Amit Dubey, Chatterjee, "Determination of heavy metals in surface and ground water in and around (Agrang Block) Raipur District, Chhattisgarh, India," International Journal of Scientific & Engineering Research, Vol 4, no.9, sept 2013, pp. 722-724.
- Rao, Mushini Venkata Subba, Vaddi Dhilleswara Rao and Bethapudi Samuel Anand Andrews. "Assessment of Quality of Drinking Water at Srikurmam in Srikakulam District', Andhra Pradesh, India," International Research Journal of Environmental

Science, vol.1, no.2, 2012, pp. 13-20.

- Horton, R. K. "An index number system for rating water quality," Journal-Water Pollution Control Federation, vol. 37, 1965, pp. 300-305.
- Dhirendra Mohan Joshi, Alok Kumar, and Namita Agrawal, "Studies on physicochemical parameters to assess the water quality of river Ganga for drinking purpose in Haridwar district," Rasayan J. Chem., Vol.2, no.1, 2009, pp.195-203.
- Devendra Dohare, Shriram Deshpande and Atul Kotiya. "Analysis of Ground Water Quality Parameters: A Review," Research Journal of Engineering Sciences, Vol. 3,no. 5, 2014, pp. 26-31.
- Tiwari, T.N. and M.A. Mishra, "A preliminary assignment of water quality index of major Indian rivers," Indian J. Environmental Protection, Vol.5, 1985, pp.276-279
- Brown RM, McClelland NI, Deininger RA, O'Connor MF, "A water quality index—crashing the physiological barrier," Indic Environ Qual, Vol. 1, 1972, pp.173–182.
- 8. J. Sirajudeen, Arul Manikandan and V. Manivel, Water Quality Index of Ground Water around Ampikapuram area near Uyyakondan channel, Tiruchirappalli, Tamilnadu, *Archives of Applied Science Research*, vol. 5, no. 3, 2013, pp. 21-26.
- Jeyalakshmi Suresh Kumar, Rajangam Udayakumar and Natesan Manoharan, "Statistical Assessment of Ground Water Quality Using Physicochemical Parameters in Madurai, Tamil Nadu, India," Journal of Theoretical and Experimental Biology (ISSN: 0972-9720),vol. 12, no. 3 and 4, 2016, pp. 111-125.

AUTHORS PROFILE

M. Jeyalakshmi Suresh Kumar, Ph.D Scholar, Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam – 612 002, Tamilnadu, India. And earlier she worked 10 years in Aravind Eye Care system, Madurai, Tamilnadu, India as Science Writer in Aravind Communications Department and Senior Technician and Junior Research Fellow in Aravind Medical Research Foundation. She published 4

papers in National and International journals. She has received the BEST SCIENTIFIC PAPER AWARD for the best paper (oral) presentation in the ASIA-ARVO meeting on Research in Vision and Ophthalmology 2009 held in Hyderabad. She can be reached at jeyavws2011@gmail.com

Dr. Natesan Manoharan, is working as an Associate Professor in the Department of Marine Science at Bharathidasan University, Tiruchirappalli - 620 024, Tamilnadu, India. He holds M.Sc., M.Phil and Ph.D degrees. He is handling classes for PG, M.Phil and Ph.D Levels. He is having more than 25 years of

teaching and 17 years of research experience. His research area is Drug development from Marine Cyanobacteria and Marine Pharmacology. He can be reached at biomano21@gmail.com.

Dr. Rajangam Udayakumar, is working as an Assistant Professor in the Department of Biochemistry at Government Arts College (Autonomous), Kumbakonam – 612 002, Tamilnadu, India. He holds M.Sc., M.Phil and Ph.D degrees. He is handling classes for UG, PG, M.Phil and Ph.D Levels. He is having more than 24 years of teaching and 15 years of research experience. He has also served as Full Time Instructor

in the Department of Biology & Medicinal Science at Pai Chai University, Daejeon 302-735, Republic of Korea from March 2008 to July 2009. He can be reached at udayabiochem@yahoo.co.in.

