Abstract: A T-coloring of a graph $G = (V, E)$ is the generalization of coloring of a graph. Given a graph $G = (V, E)$ and a finite set T of positive integers containing 0, a T-coloring of G is a function $f: V(G) \rightarrow \mathbb{Z}^+ \cup \{0\}$ for all $u \neq w$ in $V(G)$ such that if $uw \in E(G)$ then $|f(u) - f(w)| \notin T$. We define Strong T-coloring (ST-coloring, in short), as a generalization of T-coloring as follows. Given a graph $G = (V, E)$ and a finite set T of positive integers containing 0, a ST-coloring of G is a function $f: V(G) \rightarrow \mathbb{Z}^+ \cup \{0\}$ for all $u \neq w$ in $V(G)$ such that if $uw \in E(G)$ then $|f(u) - f(w)| \notin T$ and $|f(u) - f(w)| = |f(x) - f(y)|$ for any two distinct edges uw, xy in $E(G)$.

The ST-Chromatic number of G is the minimum number of colors needed for a ST-coloring of G and it is denoted by $\chi_{ST}(G)$. For a ST-coloring c of a graph G we define the c_{ST}-span $sp_{ST}(G)$ is the maximum value of $|c(u) - c(v)|$ over all pairs u, v of vertices of G and the ST-span $sp_{ST}(G)$ is defined by $sp_{ST}(G) = \min sp_{ST}(G)$ where the minimum is taken over all ST-coloring c of G. Similarly the c_{ST}-edge span $esp_{ST}(G)$ is the maximum value of $|c(u) - c(v)|$ over all edges uw of G and the ST-edge span $esp_{ST}(G)$ is defined by $esp_{ST}(G) = \min esp_{ST}(G)$ where the minimum is taken over all ST-coloring c of G.

Keywords: T-coloring, ST-coloring, span, edge span. AMS subject classification 05C15

I. INTRODUCTION

All graphs considered in this paper are finite, simple and undirected. For definitions not discussed in this paper one may refer [1]. In T-coloring, transmitters are represented as the vertices and if two transmitters interfere with each other then there is an edge between them. In that model, for all the interference we have one fixed set T see Ref([4, 2]). T-coloring of a graph $G = (V, E)$ is the generalization coloring of a graph. Let $T \subset \mathbb{Z}^+ \cup \{0\}$ be any fixed set. The graph G admits a T-coloring, if there exists $f: V(G) \rightarrow \mathbb{Z}^+ \cup \{0\}$, such that for every edge $uw \in E(G), |f(u) - f(w)| \notin T$. For more results on T-coloring one may refer [9, 6, 10] and the survey on T-coloring as discussed in [7]. The T-coloring of a graph is a good model to explain the interference between the transmitters. Suppose this fixed set T is allowed to vary for each interfering transmitter. In such a situation, one can have the model in terms of a new definition namely, Strong T-coloring of G, which indeed is a generalization of T-coloring of a graph.

II. MAIN RESULTS

Definition 2.1. Let G be a graph and T be any finite set of non-negative integers. A ST-coloring of G is a function $f: V(G) \rightarrow \mathbb{Z}^+ \cup \{0\}$ such that for all $u \neq w$ in $V(G)$ (i) $uw \in E(G)$ then $|f(u) - f(w)| \notin T$ and (ii) $|f(u) - f(w)| = |f(x) - f(y)|$ for any two distinct edges uw, xy in $E(G)$.

The ST-Chromatic number of G is the minimum number of colors needed for a ST-coloring of G and it is denoted by $\chi_{ST}(G)$.

The following observation is immediate.

Observation 1: (i) $\chi_{ST}(G) \geq \chi(G) = \chi_T(G)$.

Theorem 2.1. If G is a simple connected graph then there exists a ST-coloring.

Proof: Let G be a graph with $V(G) = \{v_1, v_2, \ldots, v_n\}$ and let T be the set of positive integers containing 0 with k as its largest element. Define ST-coloring of G as follows.

$c(v_i) = (k + 2)^{i+1}$ for $1 \leq i \leq n$

Now we need to prove that $|f(v_i) - f(v_j)| \neq |f(v_j) - f(v_m)|$ (1) where $v_i, v_j, v_m \in E(G)$.

If v_i, v_j and v_m are adjacent then clearly equation (1) holds. Hence, assume v_j and v_m are two non adjacent edges. Therefore i, j, l are distinct positive integers. W.l.g assume that l is the largest integer and m is the least integer. Then either $m \leq j \leq l \leq i$ or $m \leq l \leq j \leq i$.

Case(i): $m \leq j \leq l \leq i$.

Suppose (1) is not true. Then we have.

$|f(v_i) - f(v_j)| = |f(v_j) - f(v_m)|$

$(k + 2)^{n+1} - (k + 2)^{n+1} = (k + 2)^{n+1} - (k + 2)^{n+2}$

$(k + 2)^{j+1} - (k + 2)^{j+1} = (k + 2)^{j+1} - (k + 2)^{j+2}$

$(k + 2)^{l+1} - (k + 2)^{l+1} = (k + 2)^{l+1} - (k + 2)^{l+2}$

$(k + 2)^{i+1} + 1 = (k + 2)^{i+1} + (k + 2)^{i+2}$

Therefore $(k + 2)^i$ and $(k + 2)^i + 1$ are consecutive integers, where $i - m > l - m > j - m > 2$.

Let $k + 2 = a, i = m = x, l = m = y, j = m = z$.

$a^x + a^y - a^z \leq a^{x-1} + a^{y-2} - a^z \leq a^{z-2}(a + 1 - a^2) \leq 0$

Which in turn implies that $(k + 2)^{i+1} + (k + 2)^{i+2}$ is negative, a contradiction to (2). Similar is the case when $m \leq l \leq j \leq i$.

Theorem 2.2. Let T be any set. If H is the subgraph of a graph G then $\chi_{ST}(H) \leq \chi_{ST}(G)$.

Proof. Let T be any set and $\chi_{ST}(G) = l$. Then there exists a ST-coloring c of G that uses l colors. Obviously the coloring c is a ST-coloring of H for the same set T. Hence, $\chi_{ST}(H) \leq l = \chi_{ST}(G)$.

Corollary 2.1. For every graph, $\omega(G) \leq \chi_{ST}(G)$.

Revised Manuscript Received on October 05, 2019

S. Jai Roselin, Research scholar, Department of Mathematics, St.Joseph’s college (Autonomous) affiliated to Bharathidasan University, Trichy.
L. Benedict Michael Raj, Associate Professor, St.Joseph’s college (Autonomous) affiliated to Bharathidasan University, Trichy.
K.A. Germina, Associate Professor, Central University of Kerala, India.

Published By: Blue Eye Intelligence Engineering & Sciences Publication

Retrieved: L3575081219/2019©BEIESP
DOI: 10.35940/ijitee.L3575.1081219

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075, Volume-8 Issue-12, October 2019
Theorem 2.3. Let T be any set. For any positive integer q, $\chi_{ST}(K_{1,q}) = q + 1$.

Proof. Let T be any set and k be the largest element in T. Let v_1, v_2, \ldots, v_q be the pendant vertices of $K_{1,q}$ and v_0 be the center of $K_{1,q}$ that is adjacent to each, $v_i, 1 \leq i \leq q$. Define a function $c : V(K_{1,q}) \to \mathbb{Z}^+ \cup \{0\}$ by
$$c(v_i) = \begin{cases} 0 & \text{if } i = 0 \\ + & \text{if } 1 \leq i \leq q \end{cases}$$
It is clear that c is a ST-coloring of $K_{1,q}$. Hence, $\chi_{ST}(K_{1,q}) \leq q + 1$. Suppose that there exists a ST-coloring of $K_{1,q}$ using fewer than $q + 1$ colors say c_1, c_2, \ldots, c_q. Without loss of generality, v_0 is assigned some c_i and v_1, v_2, \ldots, v_q are assigned from the remaining $q - 1$ colors. Then there are two vertices, say v_k and v_l, received same color, which in turn implies that $\{f(v_0) - f(v_k)\}$ is a contradiction to the definition of ST-coloring. Hence, $\chi_{ST}(K_{1,q}) = q + 1$.

The following observations are immediate.

Observation 2:
(i) If G is a simple connected graph with $n \geq 3$ then $3 \leq \chi_{ST}(G) \leq n$.
(ii) $\chi(G) \leq \Delta(G) + 1 \leq \chi_{ST}(G) \leq n$.

Corollary 2.2. If W_n is the wheel graph and T is any set, then $\chi_{ST}(W_n) = n + 1$.

Proof. Let T be any set and k be the largest element in T. Let v_1, v_2, \ldots, v_n be the corner vertices of W_n and v_0 be the center of W_n that is adjacent to each $v_i, 1 \leq i \leq n$. Define a function $c : V(W_n) \to \mathbb{Z}^+ \cup \{0\}$ by
$$c(v_i) = \begin{cases} 0 & \text{if } i = 0 \\ + & \text{if } 1 \leq i \leq n \end{cases}$$
Hence, clearly c is a ST-coloring of W_n. Since $n + 1$ colors are used by the ST-coloring c, it follows that $\chi_{ST}(W_n) \leq n + 1$. Now invoking Theorem 2.2 and Theorem 2.3, $\chi_{ST}(K_{1,n}) \leq \chi_{ST}(W_n)$. Hence, $\chi_{ST}(W_n) = n + 1$.

The following are some known results which will be using in the next theorems.

Theorem 2.4. [3] A nontrivial connected graph G is Eulerian if and only if every vertex of G has even degree.

Theorem 2.5. [3] An connected graph G contains an Eulerian trail if and only two vertices have odd degree. Furthermore, each Eulerian trail of G begins at one of these odd vertices and ends at the other.

Theorem 2.6. [3] If G is a graph of size m, then $\sum_{v \in V(G)} \deg v = 2m$.

Lemma 2.1. Let k be a positive integer and G be a graph with more than $\binom{k}{2}$ edges then $\chi_{ST}(G) > k$.

Proof. Let G be a graph with more than $\binom{k}{2}$ edges. Suppose $\chi_{ST}(G) = r \leq k$. If $\chi_{ST}(G)$ is $\chi_{ST}(G) = k < r$ of G with r colors the end vertices of G are assigned by one of the r colors. So there can be at most $\binom{k}{2}$ edges whose absolute differences of the any two distinct edges are distinct. This is a contradiction to the fact that G has more than $\binom{k}{2}$ edges.

Hence, $\chi_{ST}(G) > k$.

Conjecture: If $\chi_{ST}(G) > k$, then $m(G) > k$.

Theorem 2.7. Let T be any set and P_n be the path on n vertices.

(i) For every even integer $k \geq 2$, there exists a unique integer $l \geq 0$ such that whenever $n \in [2l^2 + 1 + 2l + 2l + 2]$ then $\chi_{ST}(P_n) = k$ where $k = 2l + 2$.

(ii) For every odd integer $k \geq 3$, there exists a unique integer $l \geq 0$ such that whenever $n \in [2l^2 + 2 + 3l^2 + 5l + 4]$ then $\chi_{ST}(P_n) = k$ where $k = 2l + 3$.

Proof. Let T be any set and P_n be the path on n vertices.

Claim 1: For every positive integer k there exists an integer n such that $\chi_{ST}(P_n) = k$.

We proceed by induction on k. Certainly the result is true for $k = 1$. Assume the result is true for all integers less than k, where k is a positive integer. Thus for the positive integer $k - 1$, there exists an integer l such that $\chi_{ST}(P_l) = k - 1$. Assume P_l is the largest path with $V(P_l) = v_1, v_2, \ldots, v_l$ which satisfies the above property. Thus a new color needed for v_{l+1} in P_{l+1} for a ST-coloring. Which in turn implies that $\chi_{ST}(P_{l+1}) = k$, as desired.

Case(i): Let k be an even integer such that $k = 2l + 2, l \geq 0$. Certainly K_k has a perfect matching $X = \{e_1, e_2, \ldots, e_{l+1}\}$. Without loss of generality let $e_1 = uv$. Let $H = \Delta - \{e_2, e_3, \ldots, e_{l+1}\}$. Using Theorem 2.5 [3], H has an Eulerian trail on k vertices and $\binom{k}{2} - l$ edges.

Since the number of edges in H is more than $\binom{k}{2} - l$, we invoke Lemma 2.1. $\chi_{ST}(H) = k$. Now convert the Eulerian trail in H as a $u-v$ path on $\binom{k}{2} - l$ edges, by introducing new vertices whenever the vertices are repeated.

Certainly, the number of edges in P_l, where $t = \binom{k}{2} - l$, is $2l^2 + 2l + 2$ which is more than $\binom{k}{2} - l = 2l^2 + 1$. Thus $k = \chi_{ST}(H) \geq \chi_{ST}(P_l)$. $\chi_{ST}(P_l)$ is not possible. Hence again using Lemma 2.1, $\chi_{ST}(P_l) = k$. Now we need to prove that P_l is the largest graph with χ_{ST}-chromatic number k. Suppose $\chi_{ST}(P_{l+1}) = k$. This implies that there exists a χ_{ST}-partition $\Pi = \{V_1, V_2, \ldots, V_l\}$ for P_{l+1} . Every vertex in the color classes is adjacent to at most only one vertex from the other color classes and each V_i is independent set. Corresponding to the color partition Π, obtain a graph G' with k vertices and t edges from P_{l+1} by identifying all the vertices which are assigned the same color as a single vertex. The degree of each vertex of G' is equal to the sum of the degrees of P_{l+1} which are assigned the same color. Certainly, G' has either an Eulerian trail or Eulerian tour. Thus in G' either exactly two vertices are of odd degree or all the vertices are of even degree. Suppose all the vertices in G' are of even degree then $d(v) \leq k - 2$, for every $v \in V(G')$.

Invoking Theorem 2.6 [3],
$$k(k - 2) \geq \sum d(v) = 2t$$
$$K^2 - 2k \geq 2\binom{k}{2} - 2l + 2$$
$$\leq 0$$
$$4 \leq 0$$
which is a contradiction.

Hence, $\chi_{ST}(P_{l+1}) > k$ and the path P_l is the largest path with $\chi_{ST}(P_l) = k$.

To prove the lower bound, obtain a graph H from K_{k-1} by adding a vertex w with any one of the vertices of K_{k-1}.

Invoking Theorem 2.5 [3], H contains an Eulerian trial with $\binom{k}{2} + 1$ edges. Using

Lemma 2.1, $\chi_{ST}(H) = k$.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication
Now convert the Eulerian trail in H as a path P_i where $t = \binom{k-1}{2} + 2$ by introducing new vertices whenever the vertices are repeated. Hence, $\chi_{ST}(P_i) = k$, and this is the least path with ST-chromatic number k.

Case(i): Let k be an odd integer such that $k = 2l + 3, l \geq 0$. Now we prove that for every k there exists an integer $n \in [2l^2 + 2l + 3, 2l^2 + 5l + 4]$ such that $\chi_{ST}(P_i) = k$.

Consider K_k, obviously every vertex of K_k has even degree. Hence, invoking Theorem 2.4 [3], K_k contains an Eulerian tour on k vertices and $(\binom{k}{2})$ edges. Now convert this Eulerian tour as a path by introducing new vertices whenever the vertices are repeated. Thus we have, $k = \chi_{ST}(K_k) \geq \chi_{ST}(P_i)$, where $t = \binom{k}{2} + 1$ Using Lemma 2.1, $\chi_{ST}(P_i) = k$ and this is the largest path with the ST-chromatic number k and $n \leq t = 2l^2 + 5l + 4$. Now we prove that $n \geq 2l^2 + 2l + 3$. Since $k = 2l + 3, k - 1 = 2l + 2$. Thus $k - 1$ is even. Invoking Case (i), P_i, where $t = \binom{k}{2} - l + 1$ is the largest path with ST-chromatic number $k - 1$. Hence, $\chi_{ST}(P_{i+1}) = k$ and $n \geq 2l^2 + 2l + 3$.

Theorem 2.8. Let T be any set and C_n be the cycle on n vertices.

(i) For every integer $k \geq 4$, there exists a unique integer $l \geq 1$ such that whenever $n \in [2l^2 + 1 + 1, 2l^2 + 2l]$ then $\chi_{ST}(C_n) = k$ where $k = 2l + 2$.

(ii) For every integer $k \geq 5$, there exists a unique integer $l \geq 1$ such that whenever $n \in [2l^2 + 2l + 1, 2l^2 + 5l + 3]$ then $\chi_{ST}(C_n) = k$, where $k = 2l + 3$.

Proof:

Claim 2. Let T be any set and C_n be the cycle on n vertices. First we need to show that for every positive integer $k \geq 3$ there exists an integer n such that $\chi_{ST}(C_n) = k$. Proof is similar that of claim 1.

Case(ii): Let k be an even integer and $k = 2l + 2, l \geq 1$. Certainly K_k has a perfect matching $X = \{e_1, e_2, \ldots, e_{l+1}\}$. Without loss of generality let $e_l = uv$. Let $H = K_k - \{e_1, e_2, \ldots, e_{l+1}\}$. Using Theorem 2.4 [3], H has an Eulerian tour on k vertices and $(\binom{k}{2}) - (l + 1)$ edges. Since the number of edges in H is more than $(\binom{k}{2}) - (l + 1)$ invoking Lemma 2.1. $\chi_{ST}(H) = k$. Now convert the Eulerian trail in H as a cycle C_t where $t = \binom{k}{2} - (l + 1)$ edges, by introducing new vertices whenever the vertices are repeated. Certainly, the number of edges in C_t, where $t = \binom{k}{2} - (l + 1)$ is the largest cycle with ST-chromatic number k and $n \leq t = 2l^2 + 5l + 3$. Now we prove that $n \geq 2l^2 + 2l + 1$. Since $k = 2l + 3, k - 1 = 2l + 2$. Thus $k - 1$ is even. Invoking Case (i), C_t, where $t = \binom{k}{2} - (l + 1)$ is the largest cycle with ST-chromatic number $k - 1$. Hence, $\chi_{ST}(C_{t+1}) = k$ and $n \geq 2l^2 + 2l + 1$.

Theorem 2.9. $\chi(G) = \chi_{ST}(G)$ if and only if G is the complete graph K_n.

Proof: Let $\chi(G) = \chi_{ST}(G)$. By observation 2(ii), $\chi(G) = \chi_{ST}(G) = \Delta(G) + 1$. Using Brooks’ theorem, G is either complete graph or an odd cycle. Since $\chi_{ST}(C_{2k+1}) > 3, k \geq 2$. Hence $G = K_n$. The converse is obvious.

Lemma 2.2: Given any two integers a and b, $a \leq b$, will there exist a graph such that $\chi(G) = a$ and $\chi_{ST}(G) = b$?

Proof: Yes. Consider a graph G obtained from K_a by attaching $(b-a)$ pendant vertices to a common vertex of K_a. Clearly $\chi(G) = a + (b-a) = b$ and $\chi_{ST}(G) = a$.

Theorem 2.10: Let G be a bipartite graph with partite set X and Y. G is complete iff $\chi_{ST}(G) = n$ where $t + l = n$.

Proof: Let G be a bipartite graph with $X \cup Y$ such that $|X| + |Y| = n$ and $|X| = t, |Y| = l$. Let $\chi_{ST}(G) = n$. This implies that all the n vertices of G are assigned distinct colors in any ST-coloring of G. We need to prove that $G \cong K_t \cup K_l$. Suppose not. Then there exist a vertex $u \in X$ and $v \in Y$ such that u is not adjacent to v. Since all the colors are distinct and $d(u, v) \geq 3, u$ and v may be assigned the same color.
III. THE ST-SPAN AND THE ST-EDGE SPAN

Let c be a ST-coloring of G. If k is the largest color assigned to a vertex of G by the ST-coloring c then the coloring \overline{c} of G defined by $\overline{c}(v) = k + 1 - c(v)$ for each vertex v of G is also a ST-coloring of G, called the complementary coloring of c.

For a ST-coloring c of a graph G we define the c_{ST}-span $s_p^{ST}(G)$ is the maximum value of $|c(u) - c(v)|$ over all pairs u,v of vertices of G and the ST-span $s_p^{ST}(G)$ is defined by $s_p^{ST}(G) = \min s_p^{ST}(G)$ where the minimum is taken over all ST-colorings of G. Similarly the c_{ST}-edgespan $e_p^{ST}(G)$ is the maximum value of $|c(u) - c(v)|$ over all edges uv of G and the ST-edge span $e_p^{ST}(G)$ is defined by $e_p^{ST}(G) = \min e_p^{ST}(G)$ where the minimum is taken over all ST-colorings of G.

For each ST-coloring of a graph G, we may assume that some vertex of G is assigned the color 0. For example c' is a ST-coloring of a graph G in which $t \geq 1$ is the smallest color assigned to any vertex of G, then the coloring c of G defined by $c'(v) = c(v') - a$ for each $v \in V(G)$ is a ST-coloring of G in which some vertex of G is assigned the color 0 by c and in which c_{ST}-span of G is the same as the c'-span of G. Hence for a given finite set of non negative integers $s_p^{ST}(G) = \min c(v)$ where the maximum is taken over all vertices v of G and the minimum is taken over all ST-colorings of G. Thus if $s_p^{ST}(G) = 1$ then there exist a ST-coloring of $c : V(G) \rightarrow \{0,1,2,.., t\}$ of G in which at least one vertex of G is colored 0 and at least one vertex is colored t. It is also true that $\chi_{ST}(G) \leq s_p^{ST}(G)$ for every graph G.

Theorem 3.1. For all graphs G,

(i) $s_p(T) \leq s_p^{ST}(G)$, (ii) $e_p(T) \leq e_p^{ST}(G)$

Proof: Let T be any finite set of non negative integers containing 0. Every ST-coloring of G is also a T-coloring of G. Hence, $s_p(T) \leq s_p^{ST}(G)$, $e_p(T) \leq e_p^{ST}(G)$.

Theorem 3.2. Let H be a subgraph of a graph G. For each finite set N of nonnegative integers containing 0,

(i) $s_p(H) \leq s_p^{ST}(G)$ (ii) $e_p(H) \leq e_p^{ST}(G)$

Proof. (i) Let f and g be ST-colorings of G and H respectively such that $s_p^{ST}(G) = s_p^{ST}(G), s_p^{ST}(H) = s_p^{ST}(H)$.

(ii) Let f be a ST-coloring of G, then $f(H)$ is a ST-coloring of H.

Therefore $s_p^{ST}(G) \geq s_p^{ST}(H)$. Now $s_p(H) = s_p^{ST}(H) \leq s_p^{ST}(H) \leq s_p^{ST}(G) = s_p^{ST}(G)$.

Since $s_p^{ST}(H) \leq s_p^{ST}(G)$, $e_p^{ST}(H) \leq e_p^{ST}(G)$.

Corollary 3.1. If G is weakly γ-perfect then $s_p^{ST}(G) = e_p^{ST}(G)$.

In closing this paper, we mention some most important questions which remain.

Conjecture: Let T be a finite set of non negative integers containing 0. If G is a graph with $\chi_{ST}(G) = k$ and $\omega(G) = l$, then $s_p^{ST}(K_l) \leq s_p^{ST}(G) \leq s_p^{ST}(K_k)$.

Open problems:

(i) For certain families of graphs, determine $\chi_{ST}(G)$.

(ii) For which graph $\chi_{ST}(G) = |V(G)|$?

(iii) Find the values of $s_p^{ST}(K_n)$ and $e_p^{ST}(K_n)$ when T is a k-initial set.

(iv) For certain families of graphs, compute $s_p^{ST}(G)$ and $e_p^{ST}(G)$.

IV. CONCLUSION

T coloring and Strong T-coloring are generalized graph coloring problems which are variants of the channel assignment problems in the broadcast networks. We may introduce the class of distance graphs as a device for studying the complete ST-coloring problem, and study about the complexity of this Strong T-coloring problem. Further studies of the structure of distance graphs may well give an additional insight to the ST-coloring problem.

REFERENCES

AUTHORS PROFILE

First Author MS. S. Jai Roselin,a full time Research scholar, Department of Mathematics, St.Joseph’s college (Autonomous) affiliated to Bharathidasan university, Trichy. She has published papers in National and International journals and presented paper in International Conference on Discrete Mathematics 2019 and international conferences. Her area of interest are Graph Theory especially Graph colorings and labelings.

Second Author Dr. L Benedicth Michael Raj, M.Sc., M.Phil., PGDCIA, Ph.D. is Head and Associate Professor, St.Joseph’s college (Autonomous) affiliated to Bharathidasan university, Trichy. He was the Doctoral committee member(wiee) at SASTRA university, Tanjore. He has published papers in National and International journals. He conducted International, National Conferences. He has attended and presented paper in 17 International, National Conferences. His area of interests are Graph Theory especially Graph colorings and labelings and Algebraic Topology.
Third Author Dr. K.A. Germina, M.Sc, M.Phil., PGDCA, Ph.D. is Head and Associate Professor, Central University of Kerala, India. She received a prestigious international award “Bharath Shiksha Ratan Award” and Outstanding women educator and scholar award. Organized 03 international and 04 national workshops/conferences/group Discussions. Chaired the doctoral committee and research council committee for two terms at Kannur University and one term Central University of Kerala, India. Coordinator for the IQAC for Kannur University and Central University of Kerala, India. Chairperson for Discipline Committee and Women Empowerment Cell at Kannur University and Central University of Kerala, India. She reviewed 256 research articles for review journals. She published 170 research articles in National/International journals. Her area of interests are Discrete Mathematics: Graph Theory, Combinatorics, Algebra and Topology.