

Ternary r-SO-semirings-3

Bhagyalakshmi Kothuru, V.Amarendra Babu

Abstract: "In this paper we are introducing the notions of subtractive and strong subsets in partial ternary Γ - semirings.

We show that in a ternary Γ - SO semiring satisfying that every non-zero ideal is strong and subtractive Further we will show that join of any two ideals is equal to the sum of those two ideals in a ternary Γ - SO semiring satisfying the decomposition property. In a ternary Γ - SO semiring satisfying the decomposition property then ideal(R) is a distributive lattice".

Keywords: Subtractive, strong, austere, join, entire.

I. INTRODUCTION

T he notion of ideals in SO-rings studied by G.V.S Acharyulu [1] and M.MuralikrishnaRao[8] studied ideals in Γ - semirings. Further ideals of SO-Partial Γ - semirings investigated by Sivamala.M, Siva Prasad.K [19]. Recently the study of ideals in ternary Γ - semiring [12].

II. PRELIMINARIES

Throughout this paper ternary Γ -SO –semiring refers to T Γ SS. And CT Γ -SS refers to complete ternary Γ -SO –semiring. From below some important definitions is given: **Definition2.1:** [8] "Let R and Γ be two additive commutative semi groups. R is said to be a *ternary* Γ -semiring if there exist a mapping from $R \times \Gamma \times R \times \Gamma \times R \to R$ which maps $(x_1,\alpha,x_2,\beta,x_3) \to [x_1\alpha x_2\beta x_3]$ satisfying the conditions (i) $(a\alpha b\beta c)\gamma d\delta e = a\alpha (b\beta c\gamma d)\delta e = a\alpha b\beta (c\gamma d\delta e)$

(ii) $[(a+b)\alpha c\beta d] = [a\alpha c\beta d] + [b\alpha c\beta d]$

(iii) $[a\alpha(b+c)\beta d] = [a\alpha b\beta d] + [a\alpha c\beta d]$

 $(iv) \left[a\alpha b\beta(c+d) \right] = \left[a\alpha b\beta c \right] + \left[a\alpha b\beta d \right]$

for all $a, b, c, d \in R$ and $\alpha, \beta, \gamma, \delta \in \Gamma$ ".

Definition 2.2: [12] "Let M be a ternary Γ -SO-semiring. A non-empty subset A of M is known as *left (lateral, right) ternary* Γ -*ideal* of M, if it satisfies the following:

(i) A is a left (lateral, right) partial ternary Γ -ideal of M.

(ii) $x \in M$ and $y \in A$ such that $x \le y$ then $x \in A$.

If A is left, lateral as well as right ternary Γ -ideal of M, then A is known as ternary Γ -ideal of M".

Revised Manuscript Received on October 30, 2019. * Correspondence Author

Bhagyalakshmi Kothuru*, Research Scholar Department of Mathematics, Acharya Nagarjuna University **and** Department of Mathematics, KKR&KSR Institute of Technology &Sciences Vinjanampadu, Guntur-17, Email:mblakshmi12@gmail.com

V.Amarendra Babu, Department of Mathematics, AcharyaNagarjuna University. Email: amarendrab4@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Definition 2.3: [12] "A partial ternary Γ -semiring said to have a *left (lateral, right) unity element* provided there exist a family $(e_i : i \in I)$ of M and $(\alpha_i, \beta_i : i \in I)$ of Γ Σ $\sum_{e_i} \alpha_i e_i \beta_i a = a(\sum_{e_i} \alpha_i a \beta_i e_i = a, \sum_{e_i} a \alpha_i e_i \beta_i e_i = a) \text{ for any } \Gamma$

Definition2.4:[12] "A TTSS M is said to be **CTT-SS** (*complete ternary* Γ -SO-semiring) if every family of elements in M is sum able".

And for more preliminaries the references [12] [13] [14] [15][16][17] and [18].

III. MAIN RESULTS

Definition3.1: U is known as non empty subset PTFS ("partial ternary Γ - semiring") if u_1 , $u_2 \in \mathbb{R}$, $u_1 + u_2 \in \mathbb{U}$ and $u_2 \in \mathbb{U} \Rightarrow u_1 \in \mathbb{U}$ then R is called *subtractive*.

Definition3.2: U is known as non empty subset of a PTIS R is known as *strong* if $u_1, u_2 \in \mathbb{R}$, $u_1 + u_2 \in \mathbb{U} \Rightarrow u_1$, $u_2 \in \mathbb{U}$. Since strong subset is clearly subtractive.

Example: 3.3: Let $R = \{0, u_1, u_2, u_3, u_4, u_5\}$, $\Gamma = \{\alpha, \beta\}$ by using R, Σ is described.

$$x_{j} \text{ if } x_{i} = 0 \ \forall i \neq j, \text{ for some } j$$

$$\sum_{i} x_{i} = \begin{cases} z \text{ if } x_{j} = u_{1}, x_{k} = u_{2} \text{ for some } j, k \text{ and } x_{i} = 0 \forall i \neq j, k \end{cases}$$

$$\infty, \text{ otherwise}$$

 Γ –monoid is defined by R.

 $R \times \Gamma \times R \times \Gamma \times R \longrightarrow R$ is mapped as given below:

α	0	u_1	u_2	u_3	u_4	u_5
0	0	0	0	0	0	0
u ₁	0	0	0	0	0	0
u_2	0	0	0	0	0	0
u ₃	0	0	0	0	0	0
u ₄	0	0	0	0	0	0
u ₅	0	0	0	0	0	0

β	0	u_1	u_2	u_3	u_4	u_5
0	0	0	0	0	0	0
u_1	0	u_1	0	u_3	0	u_1
u_2	0	0	u_2	0	u_4	u_2
u_3	0	0	u_3	0	u_1	u_3
u_4	0	u ₄	0	u_2	0	u ₄
u ₅	0	u_1	u_2	u_3	u_4	u_5

Then R is a PTTS. Here the subset $\{0, u_1, u_2, u_5\}$ is strong. Therefore it is subtractive subset.

Example 3.4: In example 3.3 the subset $U = \{0, u_3, u_5\}$ is subtractive but not strong because $u_1 + u_2 = u_5$ and both $u_1, u_2 \notin U$.

Published By:

Ternary Γ -SO-semirings-3

Theorem3.5: In a $T\Gamma SS$ R every non-zero ideal is strong and hence subtractive.

Proof: R is non zero which is ideal in condition. Let $x, y \in R$ such that x+y exists in R and $x+y \in X$.

Since X is an ideal and $x \le x+y$, $y \le x+y \Rightarrow x$, $y \in X$. Therefore X is a strong ideal of R.

Definition3.6: "A PTΓS R is said to be *left austere*. R has no non-zero subtractive left partial ideals. A TΓSS R is left Austere if it has no non-zero left ideals".

Definition3.7: A PTTS R is said to be **entire** If it satisfies the conditions $a\alpha b\beta c = 0$ \Rightarrow either b=0 and a=0 and c=0 where $\forall a, b, c \in R$, $\alpha, \beta \in \Gamma$.

Theorem3.8: If R is a left austere TTSS with left unity then R is entire.

Proof: Let $x, y, z \in \mathbb{R}$. Suppose $x\alpha y\beta z = 0 \ \forall \alpha, \beta \in \Gamma$. Let us take $A = \{r \in \mathbb{R}/r\alpha y\beta z = 0 \ \forall \alpha, \beta \in \Gamma\}$

First we show that A is a left ideal of R.

Clearly $0 \in A$. Suppose $x \neq 0$ then $x \in A \neq \{0\}$.

Let $\{a_i : i \in I\}$ in R and $a_i \in A \ \forall i \in I$

then for all $\alpha, \beta \in \Gamma$ each $a_i \alpha y \beta z = 0$

 $\Rightarrow \forall \alpha, \beta \in \Gamma(\sum_i a_i) \ \alpha y \beta z = 0 \Rightarrow \sum_i a_i \in A.$

Let $s \in \mathbb{R}$, and $t \in \mathbb{A}$ such that $s \leq t$ since $t \in \mathbb{A}$,

 $t\alpha y\beta z = 0 \ \forall \alpha, \beta \in \Gamma$. Since $s \leq t$

 $\Rightarrow s\alpha y\beta z \leq t\alpha y\beta z \forall \alpha, \beta \in \Gamma$

 $\Rightarrow s\alpha y\beta z = 0 \ \forall \alpha, \beta \in \Gamma \Rightarrow s \in A.$

Let $q, r \in \mathbb{R}, \gamma, \delta \in \Gamma$ and $x \in \mathbb{A}$

Here $x \in A \Rightarrow x\alpha y\beta z = 0 \forall \alpha, \beta \in \Gamma$

Consider

 $(q\gamma r\delta x)\alpha y\beta z = q\gamma r\delta(x\alpha y\beta z) = q\gamma r\delta(0) = 0 \forall \alpha, \beta \in \Gamma$

 $\Rightarrow q \gamma r \delta x \in A$.

The value of R is obtained as ideal in left position if the value of A is maintained at non zero condition.

Since R has left unity, then there exist a family $(e_i : i \in I)$ in R and γ_i , $\beta_i \in \Gamma$ such that $\sum_i e_i \gamma_i e_i \beta_i r = r \ \forall \ r \in R$. Since A=R, and hence $(e_i : i \in I) \in A$. $\Rightarrow e_i \alpha y \beta z = 0$ $\forall \alpha, \beta \in \Gamma$.

Therefore in particular $e_i \gamma_i y \beta_i z = 0 \ \forall \ i \in I$

 $\Rightarrow \sum_{i} e_{i} \gamma_{i} y \beta_{i} z = 0 \Rightarrow y = 0 \text{ or } z = 0.$

Hence R is entire.

Note3.9: In general 3.8 theorem is converse which is not true for this consider the following example.

Example 3.10: Let R = [0, 1] is the real number for unit interval. $(a_i : i \in I)$ is the family in R which defines $\sum_i a_i = Sup\{a_i/i \in I\}$ and after that partial ternary monoid R is defined. If we take $\Gamma = W$ then R is a partial ternary Γ -monoid. Consider the mapping $(x, \alpha, y, \beta, z) \to \inf(x, \alpha, y, \beta, z)$ of $R \times \Gamma \times R \times \Gamma \times R \to R$ then R is a PTTS. Then R is a TTSS with usual \leq of real numbers. For any non-zero $x \in R$, [0, x] is a non-zero ideal of R and hence R is not left Austere. Since $x\alpha y\beta z = \inf(x, \alpha, y, \beta, z) = 0 \ \forall \alpha, \beta \in \Gamma \Rightarrow x = 0 \ \text{or } y = 0 \ \text{or } z = 0$. And hence R is an entire TTSS.

Theorem3.11: CTT-SSR is the principal idea to join the two principles of CTT-SSR.

Remark3.12: In any CTT-SS $V_i < a_i > = < \sum_i a_i >$.

Definition3.13: Let X, Y be two ideals of a TISS then $X+Y=\{x+y/x \in X, y \in Y\}$.

Definition3.14: A TTSS R is known as have the *decomposition property* iff for any a_1 , a_2 , $a_3 \in \mathbb{R}$, $a_1 \leq a_2 + a_3$ then there exist b_1 , $b_2 \in \mathbb{R}$ such that $0 \leq b_1 \leq a_2$, $0 \leq b_2 \leq a_3$, and $a_1 = b_1 + b_2$.

Theorem3.15: let a T Γ SS R satisfying the decomposition property and P+Q is obtained for the ideal value of R.

Proof: First we show that R is an ideal value for P+Q. In R the summable family is assumed as $(x_i / i \in I)$ and $x_i \in P + Q \forall i \in I$ then $x_i = a_i + b_i$ for some $a_i \in P$ and $b_i \in Q \forall i \in I$

 $\Rightarrow \sum_{i} x_{i} = \sum_{i} a_{i} + \sum_{i} b_{i} \text{ where } \sum_{i} a_{i} \in P \text{ and } \sum_{i} b_{i} \in Q.$ $\Rightarrow \sum_{i} x_{i} \in P + Q$

Let $x \in \mathbb{R}$, $b \in \mathbb{P} + \mathbb{Q}$ for some $p \in \mathbb{P}$ and $q \in \mathbb{Q}$ the value $x \le b \Rightarrow x \le b = p + q$.

By decomposition property there exist $0 \le p_1 \le p$, $0 \le q_1 \le q$ such that $x = p_1 + q_1$.

Since $p_1 \le p$, $p \in P \Rightarrow p_1 \in P$ and $q_1 \le q$,

 $q \in \mathbb{Q} \Rightarrow q_1 \in \mathbb{Q}$

Therefore $x=p_1+q_1 \in P+Q$.

Let $r_1, r_2 \in R, x \in P + Q$ and $\alpha, \beta \in \Gamma$

then $r_1, r_2 \in R$, x=p+q where $p \in P$, $q \in Q$ and $\alpha, \beta \in \Gamma$.

Consider

 $r_1 \alpha r_2 \beta x = r_1 \alpha r_2 \beta (p+q) = r_1 \alpha r_2 \beta p + r_1 \alpha r_2 \beta q$ Where $r_1 \alpha r_2 \beta p \in P$, $r_1 \alpha r_2 \beta q \in Q$.

 $\Rightarrow r_1 \alpha r_2 \beta x \in P + Q$ And

 $r_1 \alpha x \beta r_2 = r_1 \alpha (p+q) \beta r_2 = r_1 \alpha p \beta r_2 + r_1 \alpha q \beta r_2$ where $r_1 \alpha p \beta r_2 \in P$, $r_1 \alpha q \beta r_2 \in Q$

 $\Rightarrow r_1 \alpha x \beta r_2 \in P + Q$

Now

 $x\alpha r_1\beta r_2 = (p+q)\alpha r_1\beta r_2 = p\alpha r_1\beta r_2 + q\alpha r_1\beta r_2$ where $p\alpha r_1\beta r_2 \in P$, $q\alpha r_1\beta r_2 \in Q$

 $\Rightarrow x\alpha r_1\beta r_2 \in P + Q$. Hence P+Q is an ideal of R.

Since $P \subseteq P + Q$, $Q \subseteq P + Q$.

 $P+Q\subseteq K$ is obtained based on $P\subseteq K$ & $Q\subseteq K$, when R is the ideal value. Here P and Q is obtained as the smallest value of R which is given as P+Q.

Note3.16: A TTSS R which does not satisfy the decomposition property then there exist two ideals P and Q such that R is independent of P+Q.

Example 3.17: "Let R= $\{0, r_1, r_2, r_3, r_4, r_5\}$, $\Gamma = \{\alpha, \beta\}$ define Σ on R as

 $\sum_{i} x_{i} = \begin{cases} x_{j} & \text{if } x_{i} = 0 \ \forall \ i \neq j \text{, for some } j \\ & \text{undefined, otherwise} \end{cases}$

Then R is a ternary SO -monoid.

Published By:

Define the mapping $R \times \Gamma \times R \times \Gamma \times R \longrightarrow R$ as follows:

α	0	r_1	r_2	r_3	r_4	r_5
0	0	0	0	0	0	0
r_1	0	0	0	0	0	0
r_2	0	0	0	0	0	0
r_3	0	0	0	0	0	0
r_4	0	0	0	0	0	0
r_5	0	0	0	0	0	0

β	0	r_1	r_2	r_3	r_4	r_5
0	0	0	0	0	0	0
r_1	0	0	0	0	0	r_1
r_2	0	0	0	0	0	r_2
r_3	0	0	0	0	0	r_3
r_4	0	0	0	0	0	r_4
r_5	0	r_1	r_2	r_3	r_4	r_5

Then R is a TTSS. In R we have $r_3 \le r_4 = r_1 + r_2$ and there exist no x, $y \in R$ such that $0 \le x \le r_1$, $0 \le y \le r_2$ and $r_3 = x + y$ implies that the decomposition property fails. Take $P = \{0, r_1\}$, $Q = \{0, r_2\}$. Then P, Q are ideals of R and $P + Q = \{0, r_1, r_2, r_4\}$ is not ideal. Since $r_3 \le r_4$ and $r_3 \notin \{0, r_1, r_2, r_4\}$ ".

Theorem3.18: "Let R be a TTSS satisfying the decomposition property then ideal(R) is a distributive lattice".

Proof: Note that ideal(R) together with set inclusion forms a lattice where $\inf\{I, J, K\} = I \land J \land K$, $\sup\{I, J\} = I \lor J$. Let J, K, L, M are the ideal values of R.

Let $x \le p + q$ is obtained for $x \in (J \land K \land L) \lor (J \land K \land M)$

where $q \in (J \land K \land M)$, $p \in (J \land K \land L) \Rightarrow x \leq p + q$ where $p, q \in J, p, q \in K, p \in W$ and $q \in Y$. Since p, qare in J, K and J, K implies the ideals of R that is given as $p + q \in J \& p + q \in K$. So $x \in J, x \in K$.

Since $x \le p + q, p \in W$ Land $q \in M$

 $\Rightarrow x \le p + q \in L + M = L \vee M$

 $\Rightarrow x \in L \vee M$. Therefore $x \in J \wedge K \wedge (L \vee M)$.

Hence $(J \land K \land L) \lor (J \land K \land M) \subseteq J \land K \land (L \lor M)$.

Let $x \in J \land K \land (L \lor M) \Rightarrow x \in J, x \in K$ and

 $x \in L \vee M$ then by theorem3.11 $L \vee M = L + M$

And the value x = p + q for some $p \in L$ and $q \in M$, Since we have $p, q \in J$, $p, q \in K$ for $p \le p + q$,

 $q \le p + q$. Therefore for

 $p \in (J \wedge K \wedge L)$

 $q \in (J \wedge K \wedge M)$ the value x = p + q

 $\Rightarrow x \in (J \land K \land L) \lor (J \land K \land M)$

Thus $J \wedge K \wedge (L \vee M) \subseteq (J \wedge K \wedge L) \vee (J \wedge K \wedge M)$

Hence $J \wedge K \wedge (L \vee M) = (J \wedge K \wedge L) \vee (J \wedge K \wedge M)$

Note3.19: The decomposition property in a TFSS fails then the lattice of ideals is not distributive for this considers the following example. Consider the TFSS R given in example 3.17 take $A = \{0, r_1\}$, $B = \{0, r_2\}$, $C = \{0, r_3\}$, $Q = \{0, r_4\}$. Then $A \land B \land (C \lor D) = \{0, r_1\}$, whereas $(A \land B \land C) \lor (A \land B \land D) = \{0\}$.

Theorem3.20: "Let R be a CTT-SS R then ideal(R) forms a complete lattice with supremum as V and infimum as Λ ". Proof: Obviously, ideal(R) with set inclusion forms a lattice with $\{0\}$ as the least element and R as the greatest element $\{R_i/i \in I\}$ family of ideals of R, $\bigcap_{i \in I} R_i$ and $\bigcap_{i \in I} R_i$ are ideals

of R. So $\inf\{R_i/i \in I\}$ and $\sup\{R_i/i \in I\}$ are in ideal(R) and hence ideal (R) is a complete lattice.

Theorem3.21: "For any ideals A, B, C, D of CTT-SS R, $A\Gamma B\Gamma$ (CVD) = $(A\Gamma B\Gamma C) \vee (A\Gamma B\Gamma D)$ ".

Proof: Let $x \in A\Gamma B\Gamma(C \vee D)$ then $x \leq \sum_i a_i \alpha_i b_i \beta_i c_i$ for some $a_i \in A$, $b_i \in B$, $c_i \in C \vee D$ and α_i , $\beta_i \in \Gamma$. Since $c_i \in C \vee D$, $c_i \leq d_i + e_i$ for some $d_i \in C$ and $e_i \in D$. So $x \leq \sum_i a_i \alpha_i b_i \beta_i (d_i + e_i)$ $\Rightarrow x \leq \sum_i a_i \alpha_i b_i \beta_i d_i + \sum_i a_i \alpha_i b_i \beta_i e_i$ where $a_i \in A$, $b_i \in B$, $d_i \in C$, $e_i \in D$ and α_i , $\beta_i \in \Gamma$. $\Rightarrow x \in (A\Gamma B\Gamma C) \vee (A\Gamma B\Gamma D)$.

Conversely if $x \in (A\Gamma B\Gamma C) \lor (A\Gamma B\Gamma D)$ then $x \leq x_1 + x_2$ where $x_1 \in A\Gamma B\Gamma C$ and $x_2 \in A\Gamma B\Gamma D$ Since $x_1 \in A\Gamma B\Gamma C$, $x_1 \leq \sum_i \alpha_i \alpha_i b_i \beta_i c_i$ for some $a_i \in A$, $b_i \in B$, $c_i \in C$ and α_i , $\beta_i \in \Gamma$

Since $x_2 \in A \cap B \cap D$, $x_2 \leq \sum_j d_j \gamma_j e_j \delta_j f_j$ where $d_j \in A$, $e_j \in B$, $f_j \in C$ and γ_j , $\delta_j \in \Gamma$. Therefore $x \leq \sum_i a_i \alpha_i b_i \beta_i c_i + \sum_j d_j \gamma_j e_j \delta_j f_j \leq \sum_i \sum_j (a_i + d_j) (\alpha_i + \gamma_j) (c_i + f_j) (\beta_j + \delta_j) (b_i + \delta_j) (b_j + \delta_j) (b_j$

 $\begin{aligned} & 2_i \, 2_j \, (a_i + a_j) \, (a_i + \gamma_j) \, (b_i + \gamma_j) \, (b_j + b_j) \, (b_i + e_j) \\ & \text{Where} \quad (a_i + d_j) \in \mathbf{A} \quad , \quad (b_i + e_j) \in \mathbf{B} \end{aligned}$

 $(c_i + f_j) \in C \lor D \text{ and } (\alpha_i + \gamma_j), (\beta_i + \delta_j) \in \Gamma$ $\Rightarrow x \in A\Gamma B\Gamma(C \lor D) \text{ and hence}$

 $A\Gamma B\Gamma (C \lor D) = (A\Gamma B\Gamma C) \lor (A\Gamma B\Gamma D)$

IV. CONCLUSION

Mainly we introduced in this paper about regular TFSS and characterized TFSS. In this paper we introduce the notions of subtractive and strong subsets in partial ternary Γ - semirings. We conclude that join of any two ideals is equal to the sum of those two ideals in a TFSS

ACKNOWLEDGMENT

we are very thank full to Dr. D. MadhusudhanaRao, Professor in Mathematics, VSR & NVR College, Tenali and Dr. P. Siva Prasad, Associate Professor, Vignan University, Vadlamudi, Guntur(Dt).

REFERENCES

- G.V.S. Acharyulu, Matrix representable So-rings, Semigroup Forum, Springer-Verlag,46(1993), 31-47, doi: 10.1007/BF02573542.
- G.V.S. Acharyulu, A Study of Sum-Ordered Partial Semirings, Doctoral thesis, AndhraUniversity, 1992.
- M.A. Arbib, E.G. Manes, Partially Additive Categories and Flow-diagram Semantics, Journal of Algebra, 62(1980), 203-227.
- 4. T.K. Dutta, S.K. Sardar, Semiprime ideals and irreducible ideals of Γ -semirings, NoviSad J. Math., 30(1)(2000), 97-108.
- 5. T.K. Dutta, S.K. Sardar, On the Operator Semirings of a
- 6. Γ -semiring, Southeast AsianBulletin of Mathematics, 26(2)(2002), 215-225.
- Jonathan S. Golan.: Semirings and their Applications, Kluwer Academic Publishers. 1999.

Ternary Γ -SO-semirings-3

- E.G. Manes, D.B. Benson, The Inverse Semigroup of a Sum-Ordered Partial Semiring, Semigroup Forum, 31(1985), 129-152, doi: 10.1007/BF02572645.
- 9. M. Murali Krishna Rao, Γ -semirings-I, Southeast Asian Bulletin of Mathematics, 19(1)(1995), 49-54.
- 10. M. Murali Krishna Rao, Γ -semirings-II, Southeast Asian Bulletin of Mathematics, 21(1997), 281-287.
- 11. M. Murali Krishna Rao, The Jacobson Radical of a Γ -semiring, Southeast Asian Bulletin of Mathematics, 23(1999), 127-134.
- 12. M. Murali Krishna Rao, Γ -Semirings, Doctoral thesis, Andhra University, 1995.
- SajaniLavanya. M., MadhusudhanaRao. D., and V. Syam Julius Rajendra, On Quasi-Ternary F-Ideals and Bi-Ternary F-Ideals in Ternary F-Semirings-International Journal of Mathematics and Statistics Invention, Volume 6, Issue 3, (September-2015), PP 05-14.
- SajaniLavanya. M., MadhusudhanaRao. D., and V. Syam Julius Rajendra, On Lateral Ternary Γ-Ideals of Ternary Γ-Semirings-American International Journal of Research in Science, Technology, Engineering &Mathematics (AIJRSTEM), 12(1), September-November, 2015, pp: 11-14.
- SajaniLavanya. M., MadhusudhanaRao. D., and V. Syam Julius Rajendra, *Prime Bi-ternary I-Ideals in Ternary I-Semirings-*British Journal of Research, Volume 2, Issue 6, November-December, 2015, pp. 156-166.
- SajaniLavanya. M., MadhusudhanaRao. D., and V. Syam Julius Rajendra, A Study on Jacobson Radical of a Ternary Γ-Semieing-International Journal of Mathematics and Computer Applications Research, Volume 6, Issue 1, (Feb-2016), PP 17-30.
- SajaniLavanya. M., MadhusudhanaRao. D., and VB. SubrahmanyeswaraRaoSeetamraju, On Right Ternary Γ-ideals of Ternary Γ-Semiring, IMPACT-International Journal of Applied, Natural and Social Sciences, Vol. 4, Issue 5, May 2016, 107-114.
- SajaniLavanya. M., MadhusudhanaRao.D., and Vasantha. M, A Study on Inverses Strongly Ternary Gamma Semiring-Accepted for publication in Associated Asia Research Foundation.
- SajaniLavanya. M., MadhusudhanaRao. D., and VB. SubrahmanyeswaraRaoSeetamraju, Properties of Right Strongly Prime Ternary Gamma Semiring- Accepted for publication in International Organization of Scientific Research Journal of Mathematics.
- M. Siva Mala, K. Siva Prasad, Partial 1 -Semirings, Southeast Asian Bulletin of Mathematics, 38(6)(2014), 873-885.
- 21. M. Siva Mala, K. Siva Prasad, (ϕ, ρ)-Representation of -So-Rings, IranianJournal of Mathematical Sciences and Informatics, 10(1)(2015), 103-119, :10.7508/ijmsi.2015.01.008.
- M. Siva Mala, K. Siva Prasad, Ideals of Sum-Ordered partial
 -Semirings, SoutheastAsian Bulletin of Mathematics, 40(2016), 413-426
- 23. K. Siva Prasad, M. Siva Mala, P.V. SrinivasaRao, Green's Relations in Partial Γ -Semirings, International Journal of Algebra and Statistics(IJAS), 2(2)(2013), 21-28, doi:10.20454/ijas.2013.755.
- M. Siva Mala, K. Siva Prasad, Prime Ideals of 1 -So-rings, International Journal of Algebra and Statistics(IJAS), 3(1)(2014), 1-8, doi: 10.20454/ijas.2014.774.
- M. Siva Mala, K. Siva Prasad, Semiprime Ideals of □-So-rings, International Journal ofAlgebra and Statistics(IJAS), 3(1)(2014), 26-33, doi: 10.20454/ijas.2014.814.
- M.E. Streenstrup, Sum-Ordered Partial Semirings, Doctoral thesis, Graduate school ofthe University of Massachusetts, Feb 1985 (Department of Computer and Information Science).
- P.V. SrininvasaRao, Ideals of Sum Ordered Partial semirings, International Journal of Computational Cognition (IJCC), 7(2)(2009), 59-64
- P.V. SrinivasaRao, Ideal Theory of Sum-Ordered Partial Semirings, Doctoral thesis, AcharyaNagarjuna University, 2011.
- Syamjuliusrajendra. V, Dr. Madhusudhanarao. D, Sajanilavanya. M-A Study on Completely Regular po-Ternary □-Semiring, Asian Academic Research Journal of Multidisciplinary, Volume 2, Issue 4, September 2015, PP: 240-246.
- Syam Julius Rajendra. V, Dr.MadhusudhanaRao. D and SajaniLavanya. M-On Pure PO-Ternary Γ-Ideals in Ordered Ternary Γ-Semirings, IOSR Journal of Mathematics (IOSR-JM), Volume 11, Issue 5 Ver. IV (Sep. - Oct. 2015), PP 05-13.

AUTHORS PROFILE

K.Bhagyalakshmi: She is working as an Assistant Professor in the Department of Mathematics, KKR&KSR Institute of Technology & Sciences. She completed her M.Phil., in Acarya Nagarjuna University, Guntur, A.P, India. She is pursuing her Ph.D. under the guidance of Dr.V.Amarendra Babu. She published more than 10- research papers in

popular international journals to her credit. Her areas of interests are algebra and topology. Presently she is working on Ternary So-semirings.

Dr.V.Amarendra Babu completed his Ph.D. from Acharya Nagarjuna University, Andhra Pradesh India. He joined as Assistant Professor, in department of mathematics, Acharya Nagrajuna University. In his guidance 5 Ph.D's and 3 M.Phil., were awarded . At

present he guided 5 more Ph.D., scalars in the department of Mathematics Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, A.P. A major part of his research work is topology and algebra concepts. He published more than 40 reseach papers in different international journals in the last 7 academic years.

