

On Soft Semi Weakly Generalized Closed Set in Soft TopologicalSpaces

Sasikala V.E, Sivaraj .D ,Ponraj A.P

Abstract—Soft sets has helped the development of soft topological space and it was also applied in the field of life science, Social science and Engineering. Many researchers developed various ideas based on the properties of soft topology. The article deals with study of properties in soft topological space based on soft semi weakly generalized closed set.

Keywords—Soft swg-closed set, Softswg-open set, Soft swg-closure set, Soft swg-interior.

Subject Classification: 06D72,54A05

I. INTRODUCTION

Intheyear1999, the idea of soft set theory was introduced by Molodstov[2]tofindanswerstoseveral problemsinlifescience, engineering, and in practical situationetc.,Later theresults wereapplied indifferent fieldsoft study viz., operations research, gametheoryetc.,. C_a gmanN[1]introduced softtopologyfromwhich manyresearchers applieditas abase toworkon softtopologicalspaceanditwasthe

beginningforsoftmathematical concepts.Here we introduced the idea of soft topological space in the basis of soft semi weakly generalized closed set. The collection of soft sets over F_A was stuided by Shabir M and Naz M, [7] and denoted fewnotions of topological space.

The properties of soft topological spaces were studied by the authors [3-8] Let U be an universal set and E set of parameters; P(U) the power set of U. The collection of all soft sets over U and E is denoted by S(U). If $A \subseteq E$, then the pair (F, A) is said to be the soft set over U and it is denoted by F_A or F_E where F is a mapping of A onto P(U). Note that for $e \notin A$, $F(e) = F_{\emptyset}$ [2]. Let F_B and G_C be the soft sets in a universe set U and B, $C \subseteq E$. Soft subset of G_C represented F_B , symbolized by $F_B \cong G_C$, when (i) $B \subseteq C$ and (ii) $\forall e \in B$, F(e) = G(e). The relative complement of a soft set F_A , denoted by F_A^c , is being represented by the function $f_{A^C}(e) = f_A^c(e)$, that is $f_A^c(e) = U - f_A(e) \forall e \in E$. In other words $(F_A^c)^c = F_A, F_G^c = F_E$ and $F_E^c = F_{\emptyset}[1]$. Let $F_A \in S(U)$.

Revised Manuscript Received on October 30, 2019.

* Correspondence Author

Sasikala V.E*, Research Scholar, Vels Instituteof Science, Technology and Advanced Studies, Chennai, Tamil nadu, India. (E-mail: sasikala.rupesh@gmail.com)

Sivaraj .D, Meenakshi Academy of Higher Education and Research, Chennai ,Tamil Nadu, India.

Ponraj A.P, Meenakshi Academy of Higher Education and Research, Chennai ,Tamil Nadu, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

A soft topology on (FA, T), which is a group of soft subsets of F_A has the following properties(i) F_{φ} , F_A \in $\tilde{\tau}.(ii)\big\{F_{A_i}\widetilde{\subseteq}F_A:i\in I\big\}\underline{\widetilde{\subseteq}}\tilde{\tau} \Rightarrow \tilde{U}_{i\in I}F_{A_i}\in \tilde{\tau}.\ (iii)\big\{F_{A_i}\widetilde{\subseteq}F_A:1\leq$ $i \le n$, $n \in \mathbb{N}$ $\subseteq \widetilde{\tau} \Rightarrow \widetilde{\cap}_{i=1}^n F_{A_i} \in \widetilde{\tau}$. The pair $(F_A, \widetilde{\tau})$ is known assoft topological spaces [7].Let(F_A , $\tilde{\tau}$)be a soft topological space and F_B be a soft set overF_A. (i) Soft interior of F_B is the soft set $int(F_B) = \tilde{U}\{F_C: F_C \text{ is soft open set and } F_B \subseteq F_C\}.$ (ii) Soft closure of F_B is the soft set $cl(F_B) = \widetilde{\cap} \{F_C : F_C$ is soft closed set and $F_C \cong F_R$ [7]. (i) Soft α -closed set, when $cl(int(cl(F_B))) \cong F_B$ [3]. (ii) Soft β -closed set (or) Soft semipre closed set, when $int(cl(int(F_B))) \subseteq F_B$ [3]. (iii) Soft semiclosed set, when $int(cl(F_B)) \cong F_B$ [5]. (iv) Soft pre-closed set, when $cl(int(F_B)) \cong F_B$ [6]. (v) Soft regular closed set, when $cl(int(F_B)) = F_B$ [8]. (vi) Soft generalized closed set, when $\mathit{cl}(F_B)\widetilde{\subseteq}F_C$, whenever $F_B\widetilde{\subseteq}F_C$ and F_C is a soft open set and Soft weakly closed set, if every $cl(F_B) \cong F_C$, whenever $F_{B} \cong F_{C}$ and F_{C} is a soft semi-open set [8].

II. SOFT SEMI WEAKLY GENERALIZED CLOSED SET AND SOFT SEMI WEAKLYGENERALIZED CLOSED SETS IN THEIR PROPERTIES

Definition 2.1.Let $(F_A, \tilde{\tau})$ is a soft topological space and $F_B \cong F_A, F_B$ is identified to be a *Soft Semi Weakly Generalized closed set*(briefly, *soft swg-closed set*) if every $cl(int(F_B)) \cong F_C$, whenever $F_B \cong F_C$ and F_C (soft semi-open set).

Example 2.2.Let $U = \{a,b,c\}, E = \{e_1, e_2, e_3\}, A = \{e_1, e_2\} \subseteq E.$

 $F_A = \{(e_1, \{a,b,c\}), (e_2, \{a,b,c\})\},\$

 $\begin{array}{l} F_1 = \{(e_1,\ \{b,c\}),\ (e_2,\ \{b,c\})\},\ F_2 = \{(e_1,\ \{c\}),\ (e_2,\ \{a,b\})\},\ F_3 = \{(e_1,\ \{a,c\}),\ (e_2,\ \{b\})\},\ F_4 = \{(e_1,\ \{c\}),\ (e_2,\ \{b\})\},\ F_5 = \{(e_1,\ \{a,b,c\}),\ (e_2,\ \{a,b,c\})\},\ F_6 = \{(e_1,\ \{a,b,c\}),\ (e_2,\ \{a,b\})\},\ F_8 = \{(e_1,\ \{a,b\}),\ (e_2,\ \{a,b\})\},\ F_{10} = \{(e_1,\ \{a,b\}),\ (e_2,\ \{a,c\})\},\ F_{11} = \{(e_1,\ \{a,b\}),\ (e_2,\ \{a,c\})\},\ F_{12} = \{(e_1,\ \{a\})\},\ F_{13} = \{(e_2,\ \{a\})\},\ F_{14} = \{(e_1,\ \{b\}),\ (e_2,\ \{c\})\},\ F_{15} = F_A,\ F_{16} = F_\Phi.\ \text{Let}\ \tilde{\tau} = \{F_\Phi,\ F_A,\ F_1,F_2,F_3,\ F_4,\ F_5,F_6,\ F_7\}.\ \text{Then}\ (F_A,\ \tilde{\tau}) \text{is a soft topological space. Soft open set are}\ \{F_A,\ F_\Phi,\ F_1,F_2,F_3,\ F_4,\ F_5,F_6,\ F_7\}.\ \text{Soft closed set are}\ \{F_A,\ F_\Phi,\ F_8,F_9,F_{10},\ F_{11},\ F_{12},F_{13},\ F_{14}\}. \end{array}$

(i) Let us consider $F_B = F_8 = \{(e_1, \{a\}), (e_2, \{a\})\}, F_8 \cong F_A$ and $F_C = \{(e_1, \{a\}), (e_2, \{a,b\})\}$ where F_C is soft semi-open set, then $int(F_B) = F_{\varphi}$, $cl(int(F_B)) = F_{\varphi}$. So $cl(int(F_B)) \cong F_C$. F_B is soft semi-weakly generalized closed set (soft swg-closed set) but not soft semi-open set.

On Soft Semi Weakly Generalized Closed Set in Soft TopologicalSpaces

(ii) Let us consider $F_B = \{(e_1, \{c\}), (e_2, \{b, c\})\}$ and $F_C = \{(e_1, \{a, b, c\}), (e_2, \{b, c\})\}$ where F_C is a soft semi-open set, then $int(F_B) = F_4$, $cl(int(F_B)) = F_A$. So, $cl(int(F_B)) \not\subseteq F_C$. F_B is a soft semi-open set but it is neither a soft semi-weakly generalized closed set(soft swg-closed set) nor soft closed set or soft open set.

Theorem 2.3. All soft closed sets represent soft swg-closed set.

Proof.LetF_Bbe a soft closed set in(F_A, $\tilde{\tau}$). Now $int(F_B) \cong F_B$ andF_B $\cong F_C$ always, if F_Bis a soft closed set and soft open set. So, if F_B $\cong F_C$, where F_C is a soft semi-open set in F_A, then $cl(int(F_B)) \cong cl(F_B) \cong F_C$. Thus $cl(int(F_B)) \cong F_C$, whenever F_B $\cong F_C$, whereF_C denotes soft semi-open set. Therefore, F_Bis a soft swg-closed set.□

Example 2.4.We have following example 2.2., LetF_B= $\{(e_1, \{c\}), (e_2, \{a, b, c\})\}$ and F_C = $\{(e_1, \{a, c\}), (e_2, \{a, b, c\})\}$, where F_C is a soft semi-open set, then $int(F_B)$ = F_{φ}, $cl(int(F_B))$ = F_{φ}, so, $cl(int(F_B))$ \subseteq F_C. NowF_B is soft swg-closed set but it is not a soft closed set.

Theorem 2.5. All soft g-closed sets represent soft swg-closed set.

Proof.Let F_B stands soft g-closed set, then $cl(F_B) \subseteq F_C$ whenever $F_B \subseteq F_C$ and F_C remains a soft open set. Each soft open set denotes soft semi-openset. $int(F_B) \subseteq F_B$, if F_B is a soft open set. Now $cl(int(F_B)) \subseteq cl(F_B) \subseteq F_C$. Therefore, F_B refers asasoft swg-closedset.□

Example 2.6.We have following example 2.2., LetF_B= $\{(e_1, \{c\}), (e_2, \{a\})\}, F_C = \{(e_1, \{c\}), (e_2, \{a, b\})\}$ and $F_B \cong F_C$ where F_C represents soft open set and soft semi-open set. Then $int(F_B) = F_{\varphi}, cl(int(F_B)) = F_{\varphi}, cl(int(F_B)) \cong F_C$. Therefore, F_B be a soft swg-closed set but it is not a soft g-closed set.

Theorem 2.7. All soft regular closed set represent soft swg-closed set.

Proof. Let F_B refer to a soft regular closed set, if $cl(int(F_B) = F_B$. Since $F_B \cong F_C$, where F_C remains soft semi-openset. Now $cl(int(F_B)) = F_B \cong F_C$. Therefore, F_B refers as a soft *swg*-closed set.

Example 2.8.We have following example 2.2., LetF_B= $\{(e_1, \{a\}), (e_2, \{b\})\}, F_C = \{(e_1, \{a\}), (e_2, \{b, c\})\} \text{ and } F_B \cong F_C \text{ where } F_C \text{ is soft semi-open set, then } int(F_B) = F_{\phi}, cl(int(F_B)) \cong F_C.$ Therefore, F_B refers as asoft swg-closed set but it is not a soft regular closed set

Theorem 2.9. The intersection of two soft *swg*-closed sets gives another soft *swg*-closed set.

Proof. Let F_B and F_C stay any two soft swg-closed sets and F_D remains any soft semi-open set comprise F_B and F_C . By definition of soft swg-closed set, $cl(int(F_B) \cong F_D$ and $cl(int(F_C)) \cong F_D$. Hence $cl(int(F_B \cap F_C)) \cong cl(int(F_B)) \cap cl(int(F_C)) \cong F_D$. Therefore, $cl(int(F_B \cap F_C)) \cong F_D$. Therefore, $F_B \cap F_C$ refers assoft swg-closed set in F_A . \Box

Remark2.10.If F_B and F_C are soft *swg*-closed sets the $F_B \ \widetilde{\cup} \ F_C$ does not need be a soft *swg*-closed set.

Example 2.11. From 2.2., Let $F_B = \{(e_1, \{c\})\}$ and $F_C = \{(e_2, \{b\})\}$, then F_B and F_C are soft *swg*-closed sets. $F_B \widetilde{\cup} F_C = \{(e_1, \{c\}), (e_2, \{b\})\}$ is not a soft *swg*-closed set

Theorem 2.12.Let $(F_A, \tilde{\tau})$ be a soft topological space. Then a soft subset F_B of F_A is soft *swg*-closed set in $(F_A, \tilde{\tau})$ iff $cl(int(F_B)) - F_B$ contains empty soft semi-closed set

Proof.LetF_C be a non empty soft semi-closed set subset of $cl(int(F_R)) - F_R$. $\text{NowF}_{\text{C}} \subseteq cl(int(F_{\text{B}})) - F_{\text{B}}.$ implies that $F_C \subseteq cl(int(F_B)) \cap F_B^c$. Since $cl(int(F_B)) F_B = cl(int(F_B)) \cap F_B^c$. $F_C \subseteq cl(int(F_B)).$ Thus $F_C \cong F_B^c$ which implies that $F_B \cong F_C^c$. When F_C^c represents soft semi-open set and F_Brepresents soft swg-closed set, we have $cl(int(F_R)) \cong F_C^c$ which implies that $(cl(int(F_R)))^c \cong (F_C^c)^c$ which implies that $F_C \subseteq (cl(int(F_B)))^c$ which implies that $F_C \subseteq cl(int(F_B)) \cap (cl(int(F_B)))^c = F_{\phi}$ contradiction. Therefore, $F_C = F_{\phi}$. Therefore, $cl(int(F_B))$ – F_B contains empty soft semi-closed set. Conversely, Assume $cl(int(F_B)) - F_B$ containsempty soft semi-closed sets. Let $F_B \cong F_C$, where F_C is a soft semi-open set. Presume, cl(int(FB)) is not contained in FC. Then $cl(int(F_B)) \not\subseteq F_C$, then $cl(int(F_B)) \cap F_C^c$ is a non empty soft semi-closed set of $cl(int(F_B)) - F_B$, which is a contradiction. Then $\mathit{cl}(\mathit{int}(F_B)) \cong F_C$ whenever $F_B \cong F_C$. Therefore, F_{B} is a soft *swg*-closed set. \Box

Theorem 2.13. The soft swg-closed sets be a soft regular closed set, $\Leftrightarrow cl(int(F_B)) - F_B$ softsemi-closed set.

Proof. Presume that F_B be soft regular closed set. Since $cl(int(F_B)) = F_B$. Since $cl(int(F_B)) - F_B = F_{\varphi}$ besoft regular closed set and it is soft semi-closed set. Conversely, Assume $cl(int(F_B)) - F_B$ is a soft semi-closed set [From Theorem 2.12]. Since, $cl(int(F_B)) - F_B = F_{\varphi}$ contains empty soft semi-closed set. Thus F_B proved as soft regular closed set

Theorem 2.14.Soft topological space(F_A , $\tilde{\tau}$) and $F_C \cong F_B \cong F_A$.If F_C is a soft swg-closed set in F_A , then F_C is a soft swg-closed set in relation to F_B and mutually soft open set and soft swg-closed are subset of F_A , then F_C , soft swg-closed set relative to F_A

Proof. Assume $F_C \cong F_D$ and F_D be the soft open set over F_A . the known result $F_C \subseteq F_B \subseteq F_A$. Then and $F_C \cong F_D$ which implies that $F_C \cong F_B \cap F_D$. Since F_C denoted as a soft swg-closed set relative to F_B , $cl(int(F_C) \cong F_B \cap F_D$ which implies that $F_B \cap cl(int(F_C)) \subseteq F_B \cap F_D$ which implies $F_B \cap (cl(int(F_C))) \cong F_D$. Thus $F_B \cap cl(int(F_C)) \cup (cl(int(F_C)))^c \subseteq F_D \cup (cl(int(F_C)))^c$ whice h implies that $F_B \widetilde{U}(cl(int(F_C)))^c \subseteq F_D \widetilde{U}(cl(int(F_C)))^c$. Since F_B is a soft swg-closed set in F_A. We have $\mathit{cl}(\mathit{int}(F_B) \cong F_D \ \widetilde{\mathsf{U}}(\mathit{cl}(\mathit{int}(F_C)))^c$. Also, $F_C \cong F_B$ which implies $cl(int(F_C)) \cong cl(int(F_B)).$ Thus $\mathit{cl}(\mathit{int}(F_C)) \widetilde{\subseteq} \mathit{cl}(\mathit{int}(F_B)) \widetilde{\subseteq} F_D \ \widetilde{\mathsf{U}}(\mathit{cl}(\mathit{int}(F_C)))^c.$ Hence, F_C proved as soft swg-closed set in relation to F_A

Theorem 2.15. When soft topological space(F_A , $\tilde{\tau}$) and $F_C \cong F_B \cong F_A$. If F_C is soft *swg*-closed set relative to F_B and F_B is soft *swg*-closed set(F_A , $\tilde{\tau}$). Then F_C , soft *swg*-closed set in relation to (F_A , $\tilde{\tau}$)

Proof. Let $F_C \cong F_D$, where F_D is soft semi-open set in F_A . Then $F_C \cong F_B \cap F_D$. Since F_C is soft swg-closed set relative to F_B , then $cl(int(F_C)) \cong F_B \cap F_D$. i.e., $F_B \cap cl(int(F_C)) \cong F_B \cap F_D$.

We have $F_B \cap cl(int(F_C)) \cong F_D$ and then $F_B \cap cl(int(F_C)) \cup (cl(int(F_C)))^c \cong F_D \cup (cl(int(F_C)))^c$. Since F_B is a soft swg-closed set inF_A , we obtain $cl(int(F_B)) \cong F_D \cup (cl(int(F_C)))^c$. Also, $F_C \cong F_B$ which implies that $cl(int(F_C)) \cong cl(int(F_B))$, therefore $cl(int(F_C)) \cong F_D$. Since $cl(int(F_C))$ is not contained in $(cl(int(F_C)))^c$. Hence, F_C proved as soft swg-closed set in F_A .

Theorem 2.16. Let $(F_A, \tilde{\tau})$ considered as soft topological space, then a soft subset F_B inside F_A is soft nowhere dense, then F_B , soft swg-closed set in F_A

Proof. When a soft subset F_B of F_A is soft nowhere dense, then $int(F_B) = F_{\varphi}$.Let $F_B \cong F_C$ where F_C represent soft semiopen set, which denotes that $cl(int(F_B)) = cl(F_{\varphi}) = F_{\varphi} \cong F_C$. Therefore, F_B proved as soft swg-closed set in F_A .

Theorem 2.17.Let(F_A , $\tilde{\tau}$)be a soft topological space. For every soft subset $f_A \in F_A$, either $\{f_A\}$ refers assoft semiclosed set, or $\{f_A\}^c$, soft swg-closed set in $(F_A, \tilde{\tau})$

Proof. Assume that $\{f_A\}$ does not belongs to soft semiclosed set of $(F_A, \tilde{\tau})$. Then $\{f_A\}^c$ is a soft semi-open set and the only soft semi-open set containing in F_A itself. Therefore, $cl(int(\{f_A\}^c)) \cong F_A$ and so $\{f_A\}^c$ proved as soft *swg*-closed set in $(F_A, \tilde{\tau})$

Theorem 2.18. If F_B state soft semi-open set and soft swg-closed set inF_A, both these constitute soft g-closed set

Proof.Let F_Bbe both soft swg-closed set and softsemiopen

set. Let $F_B \cong F_C$ where F_C is soft open set. Then by definition of soft swg-closed set, $cl(int(F_B)) \cong F_C$. Since F_B is soft semi-open set $cl(F_B) \cong cl(int(F_B)) \cong F_C$. Which implies that $cl(F_B) \cong F_C$, where F_C shows as soft open set.

Hence F_B proved as softg-closed set.

Theorem 2.19.Let F_B be soft *swg*-closed set and F_D is soft closed set, then $F_B \widetilde{\cap} F_D$ is soft *swg*-closed set

Proof. Let F_B be a soft swg-closed set and F_D is soft closed set. Now, show that $F_B \widetilde{\cap} F_D$ is soft swg-closed set. Let $F_B \widetilde{\cap}$

 $F_D \cong F_C$ where F_C is soft semi-open set. Since F_D is soft closed set, $F_B \cap F_D$ is soft closed set in F_B which implies that $F_B \cap F_D \cong F_B$. It implies that $Cl(int(F_B \cap F_D)) \cong Cl(F_B \cap F_D) = F_B \cap F_D \cong F_C$. It implies that $Cl(int(F_B \cap F_D)) \cong F_C$. Therefore, $F_B \cap F_D$ proved as soft swg-closed set.

Theorem 2.20. Let $(F_A, \tilde{\tau})$ be soft topological space. If F_B

softswg-closed set in $(F_A, \tilde{\tau})$ and $F_B \subseteq F_C \subseteq cl(int(F_B))$, then F_C is soft swg-closed set in $(F_A, \tilde{\tau})$.

Proof. Given that: $F_C \subseteq cl(int(F_B))$, then $cl(int(F_C)) \subseteq cl(int(F_B))$.

Which implies that $\mathit{cl}(\mathit{int}(F_C)) - F_C \subseteq \mathit{cl}(\mathit{int}(F_B)) - F_B$. Since

 $F_B \cong F_C$ and F_B is soft *swg*-closed set in $(F_A, \tilde{\tau})$ [From

Theorem 2.12]. Let $cl(int(F_B))$ — F_B contains empty soft semi

closed set and $cl(int(F_C)) - F_C$ contains no non empty soft

semi-closed set. Therefore, F_C proved as soft swg-closed set.

III. SOFT SEMI WEAKLY GENERALIZED OPEN SET AND SOFT SEMI WEAKLY GENERALIZED OPEN SETS IN THEIR PROPERTIES

Definition 3.1.A soft subset F_B of $(F_A, \tilde{\tau})$ refers assoft semi weakly generalized open set (briefly, softswg-open set), if its compliment is soft swg-closed set in $(F_A, \tilde{\tau})$.

Theorem 3.2. A soft subset F_B of $(F_A, \tilde{\tau})$ is softregular open set, then it is soft *swg*-open set.

Proof.LetF_Bbe a soft regular open set in $\tilde{\tau}$, then F^c_Bis soft regular closed set. It implies F^c_B = $cl(int(F^c_B).Let\ F^c_B \cong F_C$, since F_C is soft semi-open set in $\tilde{\tau}$. It implies that $cl(int(F^c_B) \cong F_C$ where F_C representsoft semi-open set. Since F^c_B representsoft swg-closed set. Therefore,F_Bproved as soft swg-open set.

Theorem 3.3. A soft subset F_B of a soft topological space $(F_A, \tilde{\tau})$ is softswg-open set iff $F_C \cong int(cl(F_B))$ when $F_C \cong F_B$ and F_C is a soft semi-closed set.

Proof. Presume that F_B is a softswg-open setin F_A , then F_B^c represent soft swg-closed set. Let F_C be a soft semi-closed set in $(F_A, \tilde{\tau})$ contained in F_B . Then F_C^c is soft semi-open set containing F_B^c . i.e., $F_B^c \subseteq F_C^c$. It implies $cl(int(F_B^c)) \subseteq F_C^c$. Since F_B^c is soft swg-closed set. $\therefore F_C \subseteq int(cl(F_B))$. Conversely, suppose $F_C \subseteq int(cl(F_B))$ when $F_C \subseteq F_B$ and F_C is a soft semi-closed set. Then F_C^c is soft semi-open set containing F_B^c and $F_C^c \subseteq (int(cl(F_B)))^c$. It follows $F_C^c \subseteq (cl(int(F_B^c)))$. F_B^c is soft swg-closed set and so, F_B proved as soft swg-open set. □

Theorem 3.4. If $int(cl(F_B)) \cong F_C \cong F_B$ and F_B is soft swg-open set inF_A , then F_C is softswg-open set

Proof. Let $int(cl(F_B)) \cong F_C \cong F_B$ it implies $(F_B)^c \cong (F_C)^c \cong (int(cl(F_B)))^c$ which implies that $(F_B)^c \cong (F_C)^c \cong (cl(int(F_B^c)))$ where F_B^c is soft swg-closed set in F_A and also F_C^c is soft swg-closed set. Therefore, F_C proved as soft swg-open set in F_A .

Theorem 3.5. While F_B and F_C are soft *swg*-open sets in F_A . Let F_B , $F_C \cong F_A$. If F_C is soft *swg*-open set and $int(cl(F_C)) \cong F_B$, then $F_B \cap F_C$ is soft *swg*-open set

Proof. Let F_B and F_C are soft swg-open sets in F_A and F_B^c are soft swg-closed sets in F_A . Since $F_B \cong int(cl(F_C))$ it implies $int(cl(F_C)) \cong F_B \cap F_C \cong F_B[By]$ Theorem 3.4], then $F_B \cap F_C$ proved as soft swg-open set

Theorem 3.6. A soft set F_B is a soft *swg*-open sets in F_A , $\Leftrightarrow F_C = F_A$, when F_C is soft semi-openset and $int(cl(F_B)) \widetilde{\cup} F_C^e \cong F_C$

Proof. Let F_B be soft swg-open set. F_C besoft semi-open set and $int(cl(F_B))\widetilde{U}$ $F_B^c \cong F_C$. Which implies that $(F_C)^c \cong (int(cl(F_B))\widetilde{U}$ $F_B^c)^c = (int(cl(F_B)))^c \widetilde{\cap} F_B = (int(cl(F_B)))^c - F_B^c = cl(int(F_B^c)) - F_B^c$. Which implies that $F_C^c \cong cl(int(F_B^c)) - F_B^c$. Since F_B^c represent soft swg-closed set and F_C^c represent soft semi-closed set, based on that $F_C^c = F_{\varphi}$. Therefore, $F_C = F_A$. Conversely, assume that F_D is a soft semi-closed set in F_A and $F_D \cong F_B$. Then $int(cl(F_B))\widetilde{U}$ $F_B^c \cong int(cl(F_B))\widetilde{U}$ F_D^c . Since both $int(cl(F_B))$ and F_D^c are soft semi-open set, their union $int(cl(F_B))\widetilde{U}$ F_D^c is also a soft semi-open set. It follows by hypothesis that $int(cl(F_B))\widetilde{U}$ $F_D^c = F_A$ and hence $F_D \cong int(cl(F_B))$.

On Soft Semi Weakly Generalized Closed Set in Soft TopologicalSpaces

Therefore, F_Bproved as soft swg-open sets in F_A

Theorem 3.7.If $F_B \subseteq F_C \subseteq F_A$, where F_B is soft *swg*-open set is in relation to F_C and F_C is soft *swg*-open set is in relation to F_A , then F_B is a soft *swg*-open set is in relation to F_A .

Proof. Let F_D be a soft semi-closed set and suppose $F_D \cong F_B$. Then F_D , a soft semi-closed is in relation to F_C and hence $F_D \cong int(cl(F_B))$. Therefore, a soft semi-open set F_E exists such that $F_D \cong F_E \cap F_C \cong F_B$. But $F_D \cong F_E^* \cong F_C$ for soft semi-open set F_E^* , since F_C is soft swg-open set in F_A . Thus $F_D \cong F_E^* \cap F_E \cong F_C \cap F_E \cong F_B$. It follows that $F_D \cong int(cl(F_B))$. Because soft set F_B is soft swg-open set. It implies $F_D \cong int(cl(F_B))$ whenever F_D is a soft semi-closed set and $F_D \cong F_B$. Therefore, F_B is soft swg-openset in F_A .

IV. SOFT SWG-CLOSURE And SOFT SWG-INTERIOR& RESULTS

Definition 4.1.Let $(F_A, \tilde{\tau})$ be soft topological space, $F_B \cong F_A$. The soft swg-closure of F_B (briefly, swg- $cl(F_B)$) to be the intersection of all softswg-closed subsets containing F_B . In symbols, swg- $cl(F_B) = \{F_C: F_B \cong F_C \text{ and } F_C \text{ is a soft } swg$ -closed set in F_A }

Theorem 4.2. While any soft subset F_B of soft topological space F_A , $F_B \subseteq swg-cl(F_B) \subseteq cl(int(F_B))$

Proof. It is based on Theorem 2.3.

Example 4.3. We have following example 2.2., $F_B = \{(e_1, \{c\}), (e_2, \{a, b\})\}$, then $swg\text{-}cl(F_B) = \{(e_1, \{b, c\}), (e_2, \{a, b\})\}$ and $int(F_B) = F_2$, $cl(int(F_B)) = F_A$. Therefore, $F_B \subseteq swg\text{-}cl(F_B) \subseteq cl(F_B)$ in F_A .

Theorem 4.4. The soft swg-closure operator is soft Kuratowski closure operator on F_A .

Proof.(i) $swg\text{-}cl(F_{\Phi}) = F_{\Phi}$.

- (ii) $F_B \subseteq swg-cl(F_B)$ by Theorem 4.2.,
- (iii) Let $F_{B_1} \widetilde{\cup} F_{B_2} \subseteq F_C$ and F_C belongs to softswg-closed set in F_A , then $F_{B_i} \cong F_C$ and by Definition 3.1. swg $cl(F_{B_i}) \cong F_C$ for each i=1, 2. Therefore, $swg-cl(F_{B_1}) \widetilde{\cup} swg-cl(F_{B_1}) \widetilde{\cup} s$ $\mathit{cl}(F_{B_2}) \underline{\widetilde{\subseteq}} \bigcap \{F_C \colon F_{B_1} \ \widetilde{\cup} \ F_{B_2} \underline{\widetilde{\subseteq}} F_C \ \text{ and } \ F_C \text{issoft } \mathit{swg-closed } \text{ set}$ in F_A }=swg- $cl(F_{B_1} \widetilde{U} F_{B_2})$. For the reverse insertion,let $f_A \in swg-cl(F_{B_1} \widetilde{U} F_{B_2})$ and suppose that $f_A \notin swg$ $cl(F_{B_1})\widetilde{U}swg-cl(F_{B_2})$. Then there exist soft swg-closed sets F_{C_1} and F_{C_2} with $F_{B_1} \cong F_{C_1}$, $f_A \notin F_{C_1}$ and $F_{B_2} \cong F_{C_2}$, $f_A \notin F_{C_2}$. We have $F_{B_1} \widetilde{\cup} F_{B_2} \widetilde{\subseteq} F_{C_1} \widetilde{\cup} F_{C_2}$ and $F_{C_1} \widetilde{\cup} F_{C_2}$ is a soft swgclosed set such that $f_A \notin F_{C_1} \widetilde{\cup} F_{C_2}$. Thus $f_A \notin swg$ $cl(F_{B_1} \widetilde{\cup} F_{B_2})$. Which is a contradiction to $f_A \in swg$ $cl(F_{B_1} \widetilde{\cup} F_{B_2})$.Henceswg- $cl(F_{B_1})\widetilde{\cup} swg$ - $cl(F_{B_2})$ =swg $cl(F_{B_1} \widetilde{U} F_{B_2}).$
- (iv) Let $F_B \cong F_C$ and F_C is soft swg-closed set within F_A . Then by Definition 3.1.swg- $cl(F_B) \cong F_C$ and swg-cl(swg- $cl(F_B)) \cong F_C$, we have swg-cl(swg- $cl(F_B)) \cong \cap \{F_C: F_B \cong F_C \text{ and } F_C \text{ is a soft } swg$ -closed set in $F_A \} = swg$ - $cl(F_B)$. [By Theorem 3.2.], swg- $cl(F_B) \cong swg$ -cl(swg- $cl(F_B)$) and therefore, swg- $cl(F_B) = swg$ -cl(swg- $cl(F_B)$). Hence softs swg-closure operator is a soft Kuratowski closure operator on F_A

Theorem 4.5. While any soft subset F_B of soft topological space in F_A .

- (i) $swg\text{-}cl(F_B)$ is smallest soft swg-closed set containing F_B .
 - (ii) F_B is soft swg-closed set $\Leftrightarrow swg$ - $cl(F_B) = F_B$.

Proposition 4.6. While two soft subsets F_{B_1} and F_{B_2} of soft topological space in F_A .

- (i) $F_{B_1} \cong F_{B_2}$, then $swg\text{-}cl(F_{B_1}) \cong swg\text{-}cl(F_{B_2})$.
- (ii) $swg-cl(F_{B_1} \widetilde{\cap} F_{B_2}) \subseteq swg-cl(F_{B_1}) \widetilde{\cap} swg-cl(F_{B_2})$.

Theorem 4.7. For any $f_A \in F_A$, $f_A \in swg$ - $cl(F_B)$, $\Leftrightarrow F_C \cap F_B \neq F_{\varphi}$ for every soft swg-open set F_C containing f_A .

Proof. Let $f_A \in swg\text{-}cl(F_B)$ for any $f_A \in F_A$. Suppose there exists a softswg-open set F_C containing f_A such that $F_C \cap F_B = F_{\varphi}$. Then $F_B \subseteq F_C^c$. Since F_C^c is a soft swg-closed set containing F_B , we obtain $cl(int(F_B)) \subseteq F_C^c$ which implies that $f_A \notin swg\text{-}cl(F_B)$, which is a contradiction. On the contrary, assume that $f_A \notin swg\text{-}cl(F_B)$. From Definition 4.1. there exists a softswg-closed set F_D containing F_B such that $f_A \notin F_D$. Thereafter $f_A \in F_D^c$ and F_D^c is a softswg-open set in F_A . Also, $F_D^c \cap F_B = F_{\varphi}$ which is a contradiction to the hypothesis. Therefore, $f_A \in swg\text{-}cl(F_B)$.

Theorem 4.8.For any $F_B \subseteq F_A$, soft *swg*-interior of F_B (briefly, *swg-int*(F_B)) is illustrated as the union of the entire soft *swg*-open sets containing in F_B . In symbols, *swg-int*(F_B)= $\bigcup \{ F_C : F_C \subseteq F_B \text{ and } F_C \text{ is a soft } swg\text{-openset in } F_A \}$

Remark 4.9. For any soft subset F_B of soft topological space F_A ,

- (i)swg-int(F_B) is soft swg-open set in F_A , Since arbitrary union of every soft swg-open sets in F_A is in factsoft swg-open sets in F_A .
- (ii) $swg-int(F_B)$ is the largest soft swg-open set in F_A contained in F_B .

Theorem 4.10.Let F_B represents of S_B open set in F_A , $\Leftrightarrow F_B = S_B = S_B$

Proof. Let F_B is soft *swg*-open set. Now, F_B being soft *swg*-open set in F_A , F_B is the largest soft *swg*-open set in F_A . Therefore, F_B =*swg-int*(F_B). Conversely, let *swg-int*(F_B) = F_B and by definition, *swg-int*(F_B) is a soft *swg*-open set. Then it follows that, F_B is also a soft *swg*-open set.

Proposition 4.11. For the two soft subset F_B and F_C of soft topological space F_A , then the following holds.

- (i) $int(cl(F_B)) \cong swg-int(F_B) \cong F_B$.
- (ii) If $F_B \cong F_C$, then $swg-int(F_B) \cong swg-int(F_C)$.
- (iii) $swg-int(F_B \widetilde{\cap} F_C) \subseteq swg-int(F_B) \widetilde{\cap} swg-int(F_C)$.
- (iv) $swg-int(F_B \widetilde{U} F_C) \subseteq swg-int(F_B) \widetilde{U} swg-int(F_C)$.
- (v) $swg-int(F_A) = F_A$.
- (iv) $swg-int(F_{\phi}) = F_{\phi}$.

Remark 4.12. In any soft topological space F_A , if *swg-int*(F_B) = *swg-int*(F_C) for subsets F_B and F_C of F_A , then it does not imply that $F_B = F_C$.

Example 4.13. We have following example 2.2., Let $F_B = \{(e_1, \{c\})\}$, $F_C = \{(e_2, \{b\})\}$, then $swg\text{-}cl(F_B) = F_{\varphi}$ and $swg\text{-}cl(F_C) = F_{\varphi}$. Therefore, $swg\text{-}int(F_B) = swg\text{-}int(F_C)$ but $F_B \neq F_C$.

Theorem 4.14. While soft subset F_B of soft topological space F_A , then the following holds.

- (i) $(swg\text{-}int(F_B))^c = swg\text{-}cl(F_B^c)$.
- (ii) $swg-int(F_B) = (swg-cl(F_B^c))^c$.
- (iii) $swg-cl(F_B) = (swg-cl(F_B^c))^c$.

Proof. Let $f_A \in (swg\text{-}int(F_B))^c$. Then $f_A \notin swg\text{-}int(F_B)$ and so every soft swg-open set F_C containing f_A is such that $F_C \ncong F_B$. That is every soft swg-open set F_C containing f_A is such that $F_C \widetilde{\cap} F_B^c = F_{\varphi}$ [By Theorem 4.7.], $f_A \in swg\text{-}cl(F_B^c)$ and therefore, $(swg\text{-}int(F_B))^c \cong swg\text{-}cl(F_B^c)$. Conversely, let $f_A \in swg\text{-}cl(F_B^c)$. Then [by Theorem 3.4]., every soft swg-open set F_D containing f_A is such that $F_D \widetilde{\cap} F_B^c \neq F_{\varphi}$ and so every soft swg-open set F_D containing f_A is such that $F_D \ncong F_B$. This implies by definition 4.8., $f_A \notin swg\text{-}int(F_B)$ implies $f_A \in (swg\text{-}int(F_B))^c$ and $swg\text{-}cl(F_B^c)$ $\cong (swg\text{-}int(F_B))^c$. Thus $(swg\text{-}int(F_B))^c = swg\text{-}cl(F_B^c)$. (ii) and (iii) follows from (i).

REFERENCES

- Naim C, a gman, Serkan Karata, s, and Serdar Enginoglu, Soft topology, Computers and Mathematics with Applications, 62(1)(2011),351-358.Doi. 10.1016/j.camwa.2011.05.016.
- D. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications, 37(4-5), (1999), 19-31.doi.10.1016/S0898-1221(99)00056-5.
- 3. Sasikala V E*, Sivaraj D, On soft β-open sets, International Journal ofFuzzy Mathematics and systems, 7(1), (2017), 25-36.
- Shabir M and Naz M, On soft topological spaces, Computers and Mathematics with Applications, 61(7), (2011), 1786-1799.
- Sasikala V E*, Sivaraj D, On Soft Semi-Open Sets, International Journal of Scientific and Engineering Research, 7(12), (2016), 31-35.
- Sasikala V E*, Sivaraj D, A Study on Soft Pre-open Sets, International Journals of Mathematical Archive-8(3), (2017), 138-143.
- Zorlutuna I, Akdag M, Min W K, and Atmaca S, Remarks on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 3(2), (2012), 171-185.
- 8. Nirmala Rebecca Paul, Remarks on soft $\,\omega$ -closed sets in soft topological spaces, Bol. Soc. Paran. Mat., 33(1), (2015), 181-190.

