Design and Development of Linux Based Quadcopter Cameraman System using Raspberry Pi Microcontroller

Shaik Masood Ahamed, V. Lobo

Abstract - The motto of this paper is to develop an unmanned aerial vehicle equipped with modern technologies used for auto pilot video recording Application. In this paper we proposed a method to design a quadcopter to record the video in any location using Linux operating system. We use Raspberry Pi microcontroller for flight control operation. We have developed a cloud based solution by creating a Wi-Fi network connection between the laptop and flight controller board with the help of Raspberry Pi microcontroller to produce “Hard Real Time output”. The quadcopter will be able to acquire Additional characteristics such as • Altitude and longitude • Auto pilot • Speed • Detects ground level and height • Geographic coordinates. The Raspberry Pi Microcontroller is interfaced with two cameras having 1080-pixel resolution and captures 30 frames per second. The camera size is very small and light weight with good quality interfaced with quadcopter to record the videos. The proposed system can reduce the manpower involved in live outdoor video recording camera man system.

Keywords—Accelerometer, Raspberry pi µ-controller, Brushless DC-Motor, KK2.1.5 Flight controller Board, Electronic speed controller, Radio Calibration, Transmitter and receiver, Wi-Fi Module.

I. INTRODUCTION

Quadcopter is an assistive device which has a high demand in the industrial & surveillance sector. Remote location control quadcopters can be controlled by using microprocessors or dedicated flight controllers. In this proposed Auto pilot video recording quadcopter can be controlled by using Raspberry-pi microcontroller running on Linux operating system. It controllers all the flight control operations without using any additional support of micro controller like Arduino-UNO. Many people have thought that Raspberry Pi doesn’t work in real time mode, because it may have trouble in reading/receiving the sensor data and transmits commands to the motor at appropriate timing, otherwise it will leads to instability. In this method our Raspberry Pi microcontroller will resolve all the problems without using any additional micro controller. Initially we have developed a cloud based system by creating a secure Wi-Fi network connection between the laptop and the flight controller through the help of raspberry pi microcontroller to produce “Hard Real Time output” running on a Linux operating system. The auto pilot video recording flight control operating code are written by using C- python Language using the code the quad copter will be able to acquire the characteristics such as • Altitude and longitude • Auto pilot • Speed • Detects ground level and height • Geographic coordinates.

Figure 1 Block Diagram of cloud Based system.

II. HARDWARE DESIGN SPECIFICATION OF QUADCOPTER

The proposed design of Auto pilot quadcopter based video recording system has to follow ten different steps in a sequential manner

1. Arranging the Frame
2. Soldering the PCB board
3. Interfacing the Electronic Speed Controller
4. Placing of Brushless DC - motors
5. Propellers Arrangement
6. Interfacing the Flight controller KK2.1.5
7. Radio Calibration Transmitter
8. Interfacing Auto pilot channel with Receiver
9. Adjusting the receiver parameters to IDLE
10. Testing the Quad copter Frame principle

2.1 ARRANGING THE FRAME

Frame is the physical structure of quad-copter.it is used to attach all the components together.
And it can be arranged in three different fashion they are ‘+’, ‘X’,’ H’. The selection of frame arrangement fashion is depends upon user choice. To construct the frame we can use three different materials they are metal, plastic, and wood. To construct a wooden frame, take a wooden sheet and add a rectangular piece in the central part of this frame. Frame size here we used as 15 cm height and 6 cm breath, and 2 mm thickness. To inter-connect these frames use nails and glue. In case if we decide to construct the metal frame or plastic, the dimensions are same but connections are different.

Security protection methods:
Before flying the quad copter various security protection methods to be followed they are.
- During flying mode Place the quad copter away from objects and obstacles
- Don’t go closer to the propeller when it is in flying mode.
- During flying mode Don’t touch the BLDC motors and propellers.
- Don’t overload multi-rotor brushless DC-motor.
- Check that the Brushless DC-motor and Propeller configurations are arranged properly before flying the drone.
- During flying mode, Check the rotation of each propeller rotating in appropriate direction or not.

2.2 Soldering the PCB
Chassis which is inbuilt with HJ-450 frame, it has to be soldered for connecting the Electronic Speed Controller. The frame Chassis operates as a printed circuit board to ensure the power supply for the frame. We have used Insulating material for soldering. During soldering there should not be any open or close circuit.

2.3 Interfacing the Electronic Speed Controller
After the arrangement of HJ450 frame with the Chassis. The next step is to Interface Electronics speed controller at four junctions to HJ450 frame chassis using cables and after connecting the four nodes with electronic Speed controller (ESC). Proper soldering have to be done at four junctions. Otherwise it tends to get short circuit.

2.4 Placing of Brushless DC Motors
After connecting the Electronic Speed Controller with the Frame chassis. Next step we have to place four brushless DC motors of 1000 KV each. Interfacing the Brushless DC motor to Electronic Speed Controller is to be done very carefully without getting any burst in winding. The three bullets are connected to brushless DC motor is to be connected with Electronic Speed Controller.
2.5 Propeller Arrangement
Multi-rotor brushless DC motor enables a high-speed and stable flight control operation. Each rotor of brushless DC motor works with other's Brushless DC motor thrust points. Each brushless DC motor rotor is connected with 9-inch metal Propeller. It is available for low price in the market. These are highly durable and it won't bend easily if the quad copter hits any obstacle during flying.

After attaching brushless DC motors we need to four metal propellers. Place two propellers in clockwise direction and two Propellers in Anti clock wise direction.

2.6 Interfacing The Flight controller KK2.1.5
After connecting the propellers the next step is to set the values in the Flight controller KK2.1.5. in the “LOAD MOTOR LAYOUT”. The Next step is to Check the directions of motors which rotates in clock wise and counter clock wise direction. Second we need to set PI controller settings as:

Roll/Pitch Axis:
Pgain = 50
Plimit = 100
Igain = 25
Ilimit = 20

Yaw Axis:
Pgain = 50
Plimit = 20
Igain = 25
Ilimit = 10

Default gains are set to 50/50/50 (roll/pitch/yaw) P-term, and 25, 25, 50 I-term.

2.7 RADIO CALIBRATION
Radio Calibration transmitter is used for controlling the quad copter motion control management. it has six channels and two modes they are Channel 1: Roll, Channel 2: Pitch, Channel 3: Throttle, Channel 4: Yaw, Channel 5: Flight modes (AUTO TO ANUAL), Channel 6: Operates geared gripper mechanism.

All the combined control signals are integrated to the Radio calibration transmitter and Receiver through autopilot channels from the Respective receiver.

Calibrating every input signal from sticks/switches of Radio calibration transmitter controls/channels can be done by simply rotating the switches/sticks from minimum position to Maximum value. And Record the maximum and minimum positions value.

2.7.1 Transmitter configuration
There are two main transmitter configurations:
Mode 1: left stick/switches movement will controls the channel 2 : pitch and channel 4 : yaw operation, and the proper stick/switch can controls the operation of Channel 3 : throttle and channel 1 : roll operation.

Mode 2: left switch can control the channel 3: throttle and channel 4: yaw operation, the proper stick can control the operation of channel 2: pitch and channel 1: roll operation.

2.8 Interfacing Auto pilot channel with Receiver
Using the USB port interface the autopilot channel with Receiver and turn on the Radio Calibration transmitter. Test the Radio calibration transmitter is connected to the receiver (by checking the receiver displays a solid inexperienced light).

III. OVERVIEW OF DIFFERENT COMMUNICATION PROTOCOL
The local control STM32F3 first step it communicate with Raspberry PI module via USB-cable. Through a unin- manned area vehicles Talk2 protocol and it also communicate with high level objects. Because the UAVTalk protocol act as a bi-directional communication interface. In one end it is interfaced local control and other end is interfaced with global control, all useful parts of data are available as a UAVObject.

Global control algorithms will approach all the data inputs available to the local control, and it can impact and modify all directions of the local control by writing modified new values to these objects.
The UAVObiects data information on the local control which can be easily accessible on a laptop, using a WiFi or an Ethernet connection.

3.1 Laptop

The flight controller is connected through the laptop through the Wi-Fi adaptor module and it runs on Linux operating system, so it gives provisional to create a cloud based data environment to share the data from one remote location to another location through internet connection.

3.2 Barometer

The barometer peripheral is interfaced with Raspberry PI module by using PC current driver module. The Raspberry PI module transfers the latitude, longitude and attitude data from barometer to the STM32F3-Discovery using the UAV-Objects and the UAV-Talk protocol.

3.3 Camera

The cameras are interfaced to the Raspberry PI module with flat-cable through CSI3-interface.

To enhance more features in the quad copter, the Raspberry PI microcontroller has acamera peripheral interface (CSI) interface. CSI supports the camera to record 1080 pixel quality resolution through a five megapixel sensor and it records 30 frames per second. The Raspberry PI provides an open-source driver for the camera used for processing the images which provides good quality resolution output. The camera software provides two commands to operate the camera; raspivid and raspistill. raspivid is a command line application that allows to record the video, while the second command raspistill allows you to capture images. By using this we can record and capture the image and videos. using this feature we have implemented an auto pilot Video recording system.

![Camera interfaced with raspberry Pi Module](image)

Fig 10 Camera interfaced with raspberry Pi Module

IV. SOFTWARE IMPLEMENTATION AND EXECUTION

To make the quadcopter for flying and recording the videos, we need control software to control from ground to top. (i.e local control and global control)

4.1 Local control

Here we use the open source software project module named as TauLabs4For local control operation. We choose this open source software project module, because it easy to interface the hardware STM32F3Discovery.

4.2 Global control

The software for “Ground Control Station” (GCS) programmed in Python language to control local and ground station. This program runs on your computer and communicated with the local control to provide configuration options and means of debugging and monitoring.

We have written own programming for global control station by using python language. This program runs on a Raspberry PI module which allows, it to communicate with the local control using UAVObiect.

4.2.1 Recorder plugin

This plugin monitors the “Armed” flag in the “Flight Status” UAVObiect, and as soon as the quad copter gets armed, it starts recording video on both Raspberry PIs. On disarming, the recording stops. This allows us to easily create in-flight footage with the cameras.

4.3 Python coding in Linux operating system

```
from Adafruit_10 import *
import time
from dronekit import connect, VehicleMode, LocationGlobalRelative

vehicle = connect("/dev/ttyS0", baud=57600, wait_ready=True)

def take_off(TargetAltitude):
    print("Taking off")
    # Don't try to arm until autopilot is ready
    while not vehicle.is_armable:
        print("Waiting for vehicle to initialise...")
        time.sleep(1)

    print("Arming motors")
    # Copter should arm in GUIDED mode
    Vehicle_MODE = VehicleMode("GUIDED")
    vehicle.mode = VehicleMode

    # Confirm vehicle armed before attempting to take off
    while not vehicle.armed:
        print("Waiting for arming...")
        time.sleep(1)

    print("Taking off!")
    vehicle.simple_takeoffs(TargetAltitude)  # Take off to target altitude
```
V. SOFTWARE EXECUTION IN LINUX OPERATING SYSTEM

STEP-1: OPEN THE PUTTY SOFTWARE

STEP-2: TYPE IP ADDRESS TO CONNECT WITH RASPBERRYPI

STEP-3: LOGIN AS “PI” & ENTER THE PASSWORD AS “RASPBERRY”

STEP-4: WHEN CONNECTED TYPE COMMAND “python_test_connection.py” AND ENTER.

STEP-5: PROGRAM STARTS EXECUTING

STEP-6: DRONE STARTS AUTONOMOUSLY

STEP-7: DRONE REACHES LOCATION AND STARTS RECORDING THE VIDEO

VI. CONCLUSION

Our Proposed model has achieved a successful development of Linux and raspberry pi-based Quadcopter for Autopilot cameraman system in affordable price. Quadcopter can be easily designed and assembled by using these shelf components. It can be used as a low-cost alternative to various applications which includes pesticide sprinkling in Agricultural Lands, end to end delivery within the transmitter’s RF range, surveillance in defense and other sensitive places like nation border, mapping through remote sensing, etc. with very high level of precision. In future we are planning to implement additional applications.
such as pollution control, weather forecasting and live recording through the quadcopter. The proposed system has successfully reduced the manpower involved in outdoor video recording camera man system.

REFERENCES
1. Akki, V. V. R., & Kumar, G. D. Gs Based Frequency Reconfigurable Microstrip Patch Antenna For Cognitive Radio And Wi-Max Applications.
5. 5QuadcorderDynamicsSimulationandControlJanuary 26, 2010.
6. David Roberts, "Construction and Testing of a Quadcopter," California Polytechnic State University, San Luis Obispo, CA, 93407, June,2013.

AUTHORS PROFILE

Dr. Shaik Masood Ahamed, B.E, M.Tech, Ph.D, LMISTE, LMCSI, MIE, MNSPE(USA), MAISES(USA) Professor-Dept. of CSE, Aurora’s Scientific and Technological Research Academy, Hyderabad Dr. Shaik Masood Ahamed received his Bachelors degree in Engineering from Osmania University, Hyderabad in 1991 and Masters in CSE in 1999. He did his Ph.d in CSE. He started his professional career as an academician who turns into a Software Consultant in various Positions in USA with EDS,IBM in Illinois, USA and Accenture in India and USA for over 10 years. Later after returning from Accenture he headed in reputed Engineering colleges in India. He has published 18 research papers to his credit in many National,International Journals and many Conference Proceedings. He has 23 years of experience in both teaching and Research fields. His areas of interests are Artificial Intelligence, Wireless Sensor Networks and Image Processing. He is reviewer for many reputed National and International Journals.

Prof. V. Lobo did his graduation (B.Sc.), post-graduation (M.Sc.) and doctoral (Ph.D.) research from the University of Bombay, Bombay. He did his doctoral research with a Minor Research Project awarded by the University Grants Commission (UGC), New Delhi. The topic of his research was “Separation of some elements using ion-exchangers and neutron activation analysis”. He has also completed a research project sponsored by the University of Bombay. He has presented several research papers in various conferences in India and abroad. He has published six research papers in journals of national and international repute. He has visited several countries such as Austria, Qatar, Slovakia, Turkey, USA and Yemen for Symposia / Seminar /Educational activities. He is a member of the Royal Society of Chemistry, UK, and Chemical Society of Ethiopia. Currently he is serving as Professor of Chemistry in ASTRA, Moosarambagh, Hyderabad. He teaches engineering chemistry, environmental science and soft skills to B.Tech students as Professor of Chemistry. He has also taught Instrumental Methods I, Instrumental Methods II in Modular Programme of European Credit Transfer System. He has also been assigned teach post-graduate students in chemistry. I have completed National Programme on Technology Enhanced Learning courses in chemistry, soft-skills, Intellectual Property Rights and Leadership.