Thermal & Mechanical Analysis of Silver Nanoparticle/Graphene Nanocomposite

Arvind Kumar

Abstract— These days the application and use of the composite products are rising exponentially in the various engineering fields due to their balanced characteristics because of the great strength to the weight ratio are the crucial characteristics. The purpose of this study/research is to develop an economical compound/composite material with improved mechanical & thermal characteristics. Styrene Acrylonitrile (SAN) is an economical, transparent (see through), rigid, chemically & thermally steady material. The stable material propose the solution with the assistance of Silver Nanoparticles (Ag-NP) & Graphene. The projected nanoparticle is ready by “One Step Melt Compounding Method” of SAN, Ag-NP & Graphene in co-rotating twin screw extruder in various lots with various weight fractions (wt. %) of the Ag-NP & graphene subsequently, and the specimen preparation was done by the compression modeling. Tensile test is executed to execute mechanical properties while Thermogravimetric study/Analysis (TGA) is done to consider/evaluate the thermal degradation temperature range. Assess of morphology of surface of the nanoparticle/nanocomposites is executed by the Scanning Electron Microscopy (SEM). These properties of material provides basis to design the product with greater mechanical & thermal characteristics.

Keywords: Styrene Acrylonitrile (SAN), Graphene, Silver nanoparticles (AgNP), Thermo-gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM)

I. INTRODUCTION

The properties & applications of polymer systems by modifying or copolymerizing with other polymers can be adjusted to a great extent to allow the performance of the resulting materials to the first standards. Thus, in recent ages, an interesting shot has been made to exploit the potential use of various copolymers for mixing & sometimes even the potential useful properties of each component to yield invalid properties. The characteristics & applications of polymer systems by modifying or comparing them with other polymers can be varied, to a great extent, so that the performance of the resulting materials can meet leading standards. Therefore, an interesting attempt is being focused towards the interest of the various complexes of mixing and sometimes the potential for the useful properties of each component to be reached at the level of invalid properties [1]–[4].

Matter is the source of human evolution and together with humans, materials also evolved. Nowadays polymer is the most versatile/resourceful material as the properties & applications of polymer materials can be reformed to a highly wasteful range as it can be effortlessly modified to encounter the desired standards. One of the ways to change the polymer properties is by adding a strengthening material. These strengthening materials are typically blend/inserted to matrix to boost the mechanical & thermal properties [5]–[10].

But now through the introduction of nanoparticles, this property boom has attained new heights. These constituents have a particularly extraordinary surface area by reason of their small sizes and thus the interaction with the matrix is better than ever & therefore converts characteristics better than other conventional strengthening materials. Graphene, unique sexiest atoms of carbon held in hexagonal bonds, is a high-strength nonconductive material with superior thermal & electrical conditioning. Attributable to its exclusive physical, & chemical & biological characteristics, silver nanoparticles are widely employed in numerous fields such as medical, & food, & health & industrial [11]–[15].

II. MATERIALS & METHOD OF THE EXPERIMENT

Materials Used:
The proposed Nano-complex consists of:
- Styrene Acrylonitrile (SAN) provided by INEOS Styrolution India Ltd., Vadodara, & Gujarat.
- Silver Nanoparticles (AgNP) Available from Nano Research/Study Lab., Jamshedpur, & Jharkhand.
- Graphene is available from Research Nano, Jamshedpur, & Jharkhand.

Method Operated for the Experiment:
The proposed nanocomposite design begins with the preparation of different coatings by applying different matrices & reinforcing materials in diverse weight scales (%).

<table>
<thead>
<tr>
<th>Batch</th>
<th>SAN</th>
<th>Graphene</th>
<th>AgNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Batch 2</td>
<td>98</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Batch 3</td>
<td>96</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 1. Batch Composition in wt. %
The proposed nanocomposite is fabricated by an assortment of layers of SAN, AgNP & graphene. The SAN / Ag-NP / Graphene is chained into a foil chassis and then transferred to a subsequent extruded chip containing its devices, whose settings are as underneath:

Revised Manuscript Received on September 14, 2019.

Arvind Kumar, Research: Department of Mechanical Engineering, Sanskriti University, UttarPradesh India. (E-mail: sanpubhp@gmail.com)
Thermal & Mechanical Analysis Of Silver Nanoparticle/Graphene Nanocomposite

<table>
<thead>
<tr>
<th>Zone</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. (°C)</td>
<td>Zone 1</td>
<td>Zone 2</td>
<td>Zone 3</td>
<td>Zone 4</td>
<td>Zone 5</td>
</tr>
<tr>
<td>210</td>
<td>220</td>
<td>230</td>
<td>250</td>
<td>260</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Extruder Temperature

The extrudate that came out of a screw couple die extruder is in the form of a wire that is pulled out and cooled to room temperature in a water bath & then transformed into an essential size pallet using a palletizer. Then, for sampling, these pallets were prepared at 80°C for 2 hours in the heating oven and burned to burn the contents of the mantle, and then these pallets were anchored in the workplace by a compressor sealer at their temperature. 230°C and a pressure of 100 ps are washed for 4 minutes before cooling. The compression molding exit is a box of 180x150 cm file that is used on the sample size required and returns using the contour.

III. TESTING

Tensile Test

All samples are tensile tested using Universal Testing Machine (UTM) according to the ASTM D638 standard to evaluate tensile strength of the nanocomposite i.e. to determine how much uniaxial pressure it can withstand before failure.

Test speed – 50.0 mm/min

Thermo-gravimetric Study/Analysis:

TGA is a heat analyzer that can be used for mass analysis or sample weight as a purpose of temperature (in scanning mode) & as a purpose of time (in). It is a technology that is used to basically find the thermal solidity/stability of the material.

Test conditions:
Minimum temperature: 0°C
Minimum temperature: 800°C
Rate: 20°C / min.

Scanning Electron Microscopy

SEM is the kind of instrument that produces image of the sample/section through scanning with the concentrated beam of electron. SEM is done to analyse the surface/exterior morphology of specimen. For this test the fractured/distorted surface from the tensile test is used for scanning.

IV. RESULTS & DISCUSSION

Tensile Test

<table>
<thead>
<tr>
<th>Density (g/cm³)</th>
<th>Tensile Strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 1</td>
<td>1.04</td>
</tr>
<tr>
<td>Batch 2</td>
<td>1.1468</td>
</tr>
<tr>
<td>Batch 3</td>
<td>1.253</td>
</tr>
</tbody>
</table>

Figure 4. Tensile Strength

A good mechanical strength is an outstanding feature of what kind of material can be employed to make any product available. It is apparent in this research/study that the nanomaterials were compatible with the SAN core materials at low concentrations & thus produced strong mechanical strength but as the Graphene and AgNP loading percentage exceeded 2% wt. could be the starting properties as the material sounds, basically are completely mature and thus excessive Nano material may cause the material to collapse quickly.

Thermo-gravimetric Study/Analysis

Figure 5. TAG of SAN

Figure 6. TGA of SAN+ 1% Graphene+ 1% Ag-NP
antibacterial properties & EMI shielding due to AgNP & Graphene & thus this Nano-composite material/substance can be employed in electronics & healthcare industry.

REFERENCE

5. “Current Topics in Nutraceutical Research.”

V. CONCLUSION

The mechanical & thermal properties & the SEM categorization of the anticipated Nano-composite revealed that the mechanical & thermal stability of the material is greatly increased due to the synergetic influence of the Graphene & AgNP when blended in SAN matrix. As a result of its light weight, raised strength & better thermal properties & other important properties it can provide