Fractional Order-PID Controlled Closed-loop MLI based DP-FC for Fourteen-Bus System

D Narasimha Rao, P Srinivasa Varma

Abstract: This work manages improvement of time response in fourteens- bus-framework utilizing MLI based Distributed Power Flow Controller (DP-FC) with PI and FOPID which is made out of a Distributed Power Flow, new gadget inside the group of FACTS. The DP-FC has a similar control capacity as the UP-FC, however with much lower cost and higher unwavering quality. This effort tends to one of the implementations of the DP-FC to Compensate Voltage list in Transmissions Systems. Fourteen-bus-framework with ordinary VSI and with nine-level-MLI based DP-FC is mimicked and their outcomes are exhibited. Closed-loop-fourteen bus-framework With PI &FOPID-controllers are mimicked and the dynamic reaction shows that FOPID-controlled-DP-FC produces better reaction when-make-out with-PI-controlled-DP-FC.

Index Terms: About four key words or phrases in alphabetical order, separated by commas.

I. INTRODUCTION

The Power quality issues like voltage varieties &flow varieties exhibited in the electrical systems are because of the customer's utilities. Voltage sag occurs due to addition of heavy loads. Voltage distortion occurs due to non—linear loads like cell-charger , furnaces, laptops etc. Guda Priyanka[1] introduced another part inside the ‘Flexible-AC-Transmission-Framework (FACTS) family’, called ‘Distributed-Power-Flow-Controller(DP-FC)’.

The DP-FC is obtained from the ‘unified-power-flow-controller (UPFC)’. The DP-FC can be considered as an UP-FC with a wiped out normal dc-connect. The ‘dynamic power-exchange’ between the shunt &series-converters, which is through the regular dc-interface in the UP-FC, is presently through the transmission-lines at the ‘3rd-harmonic-recurrence’.

‘Double-changes are done in DP-FC’ by Rashmi[2], i.e., the basic dc-interface through which dynamic-power is traded between ‘the-shunt&series-converters in UP-FC’ is currently through the transmission lines at the third-harmonic-recurrence in DP-FC &TPSC(three-phase-series-converter) is isolated to a few SPSCD(single-phase-series-distributed-converters) which gives repetition, subsequently makes the framework increasingly dependable.

The connection and elements of the series-inverters of the DP-FC, the structure and the control standard of the series-inverters were proposed by Menglu Gao[3].

‘DP-FC-utilizing single-stage-DS-SC to acknowledge dynamic-power stream control through transmission-line’ was proposed by Sandeep[4]. Breaking down the execution of DP-FC in transmission framework was exhibited by A. Gayathri Reddy[5]. Plan of a neural system based DP-FC for power-framework-stability was exhibited by G. Madhusudhana Rao[6].

To defeat this issue, an appropriated power stream controller was proposed by Anantha lakshmi [7] to moderate the voltage and current varieties because of three-phase-fault in a solitary machine framework. Oscillation-damping with DP-FC utilizing improvement procedures was exhibited by Monika Sharma[8]. In this, ideal plan issue is understood utilizing Genetic-Algorithm(GA)& Differential-Evolution(D E) calculation to optimize the damping controller-parameters.

DP-FC to enhance the power nature of thirty-three-bus-radial framework was proposed by S. Vadivel[9]. ‘Effect of DP-FC to enhance power-quality dependent on synchronous reference output line technique’ was displayed by Ahmad Jamshidi[10].

K. S. Srikanthi[11] displayed ‘structure&usage of new DP-FC to control power-quality’. This DP-FC strategy is same as the UP-FC used to repay the voltage sag &the current-swell. In DP-FC, it wipe out the basic dc-connect capacitor and rather than single three stage-series-converter it has three individual single-phase-converters. Kuldeep[12] proposed examination of DP-FC in power framework for enhancing power steam control. ‘DP-FC-application in power framework’ to alleviate voltage-sag &swell was proposed by Meghan[13].

A near report on power quality enhancement in a hybrid-framework utilizing DVR &STATCOM versus DP-FC was exhibited by Anju Antony[14]. Gaurav proposed ‘usage of DP-FC to enhance PQ(power-quality)for 220KV transmission-line’[15].

Correlation of execution of DP-FC& UPFC was proposed by Nikita[16]. Upgrade of DP-FC amid series converter-failures was proposed by V. Sudheer Kumar[17]. Displaying and reenactment of DP-FC framework for power quality enhancement was proposed by Ranga rao[18]. The control ability of DP-FC is to control the transmission impedance, the load-edge, and the greatness of the bus-voltage.

M. Bindu[19] introduced power-quality upgrade &moderation of voltage -sag utilizing DP-FC. “The-DP-FC can control the...
transmission-line-parameters, for-ex... line-impedance(Z), transmission-point(O), &bus-voltage size”. The issues got with power-quality issues, for example, voltage-droop and swell can be moderated by utilizing DP-FC. Ideal arrangement of DP-FC for misfortune decrease utilizing firefly &genetic-calculation was displayed by P.Ramesh[20]. The organization of this paper is as follows:

Section-I deals with introduction and literature-survey. Section-II deals with research-gap,Section-III deals with system-description. Section-IV deals with simulation-results of DP-FC system. The present-work is concluded in section-V.

II. RESEARCH - GAP

The exceeding-writing does not pact with FOPID-controlled-DP-FC-system. This investigation recommends with FOPID-controller for DP-FC-system. The exceeding-writing do not report the evaluation of PI &FOPID controlled DP-FC-systems. This effort evaluates the results of PI & FOPID - controlled- DP-FC-systems in Fourteen – Bus - System (F-B-S).

III. SYTEM DESCRIPTION

“Block-diagram of basic – Distributed – Power – Flow – Controller (DP-FC)” is appeared in Fig.1. In the multi-bus system, DPFC is inserted between bus-i and bus-j. The control-circuit generates pulses required for DP-FC. The ‘proposed-block-diagram of DP-FC’ is appeared in Fig-2.

![Fig-1. ‘Block-Diagram of Basic-DP-FC-system’](image1)

Fig-1. ‘Block-Diagram of Basic-DP-FC-system’

Block-diagram of closed-loop - Distributed – Power - Flow -Controller (DP-FC) system” is appeared in Fig-2. In the multi-bus system, DPFC is inserted between bus-i and bus-j. Load-voltage is sensed and it is compared with reference-voltage. The voltage error is applied to the FOPID-controller. The out-put of FOPID is used to updatethe pulse-width of DPFC.

![Fig-2. ‘Block-diagram of proposed-DP-FC-system’](image2)

Fig-2. ‘Block-diagram of proposed-DP-FC-system’

IV. SIMULATION RESULTS

‘Circuit-diagram of Open-loop-14-bus DP-FC-system with Disturbance’ is delineated in Fig.3. An additional-load is associated at bus-9 produces a ‘fall in voltage of bus-9’. There are five-generator buses &nine-load buses. Each-generator is represented as series-R.L-branch. Each- load is represented as a shunt-R.L-branch.

![Fig-3. ‘Circuit-diagram of Open-loop-FBS-DP-FC-system with Disturbance’](image3)

Fig-3. ‘Circuit-diagram of Open-loop-FBS-DP-FC-system with Disturbance’

‘Voltage at bus-10’ is delineated in Fig-4 &the-value is 0.78* 10 4V. The ‘voltage-decreases at Bus-10’ due to increase in load by 0.3 sec.

![Fig-4. ‘Voltage at bus-10 of Open-loop-FBS-DP-FC-system’](image4)

Fig-4. ‘Voltage at bus-10 of Open-loop-FBS-DP-FC-system’

‘Circuit-diagram of boost with Multilevel-inverter’ is delineated in Fig-5. ‘Re-boost converter’ is introduced between DC-source and M-L-I.

![Fig-5. ‘Circuit-diagram of Boost with multilevel-inverter’](image5)

Fig-5. ‘Circuit-diagram of Boost with multilevel-inverter’
‘Voltage-across multilevel-inverter’ is delineated in Fig-6 and the-value is 180V. ‘RMS-voltage at bus-10’ is delineated in Fig-7 and the-value is 5500V.

‘Real-power at bus-10’ is delineated in Fig-8 and the-value is 5.7 * 10^5 W. ‘Reactive-power at bus-10’ is delineated in Fig-9 and the-value is 3.4 * 10^4 VAR. The ‘fall in real-power is due to fall in voltage’.

‘Circuit-diagram of Closed-loop-14-bus DP-FC-system with PI-controller’ is delineated in Fig-10. ‘Voltage at bus-10’ is delineated in Fig-11 and the-value is 0.8 * 10^4 V. ‘Voltage at Bus-9 is sensed and it is evaluated with the reference-voltage to get Voltage-Error (VE). The ‘VE is directed to a PI-controller’. The ‘yield of PI’ is used to adjust the Pulse-Width(PW) of boost-converter.
‘Voltage across multilevel-inverter of FBS DP-FC system with PI-controller’ is delineated in Fig-13 and the peak-value is 180 V.

‘RMS-voltage at bus-10 of FBS DP-FC system with PI-controller’ is delineated in Fig-14 and the value is 5800 V. ‘Real-power at bus-10 of FBS DP-FC system with PI-controller’ is delineated in Fig-15 and the value is 6.2 * 10^5 Watts. ‘Reactive-power at bus-10 of FBS DP-FC system with PI-controller’ is delineated in Fig-16 and the value is 3.8 * 10^4 VAR.

‘Voltage at bus-10 of FBS DP-FC system with FOPID-controller’ is delineated in Fig-18 and the value is 0.8 * 10^4 V. VE is given to FOPID-controller. The ‘yield of FOPID’ is used to update the Pulse Width (PW) of BC to bring the bus-voltage to normal-value.

‘Circuit-diagram of closed-loop FBS DP-FC system with FOPID-controller’ is delineated in Fig-17.

‘Circuit-diagram of Re-boost with multilevel-inverter’ is delineated in Fig-19. DC-voltage of boost converter is stepped-up using Re-boost converter and it is applied to the MLI.
‘Voltage-across-multilevel-inverter of FBS-DP-FC-system with FOPID-controller’ is delineated in Fig-20 and the value is 180V.RMS- voltage at bus-10of FBS-DP-FC-system with FOPID-controller is delineated in Fig-21 and the value is 5800V. ‘Real-power at bus-10 of FBS-DP-FC-system with FOPID-controller’ is delineated in Fig-22 and the value is 6.1 * 10 5Watts. ‘Reactive-power at bus-10 of FBS-DP-FC-system with FOPID-controller’ is delineated in Fig-23 and the value is 3.8 * 10 4VAR.

![Fig-20.] Voltage-across-multilevel-inverter of FBS-DP-FC-system with FOPID-controller’

![Fig-21.] RMS-voltage at bus-10 of FBS-DP-FC-system with FOPID-controller’

![Fig-22.] ‘Real-power at bus-10 of FBS-DP-FC-system with FOPID-controller’

![Fig-23.] ‘Reactive-power at bus-10 of FBS-DP-FC-system with FOPID-controller’

Comparison of time-domain-parameters with PI and FOPID-controller for a reference value of 5800 V is given in Table-1. By using FOPID-controller, the ‘rise-time’ is reduced from 0.36 Sec to 0.35 Sec; ‘peak-time’ is reduced from 0.58 Sec to 0.45 Sec; ‘Settling-time’ is reduced from 0.63Sec to 0.56Sec &’steady-state-error’ is reduced from 0.09V to 0.05 V.

<table>
<thead>
<tr>
<th>Controllers</th>
<th>Rise-time (s)</th>
<th>Peak-time (s)</th>
<th>Settling-time (s)</th>
<th>Steady-state-error (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>0.36</td>
<td>0.5</td>
<td>0.63</td>
<td>0.09</td>
</tr>
<tr>
<td>FOPID</td>
<td>0.35</td>
<td>0.4</td>
<td>0.56</td>
<td>0.05</td>
</tr>
</tbody>
</table>

‘Comparison of time-domain-parameters with PI and FOPID-controller for a reference value of 5850 V’ is given in Table-2. By using FOPID-controller, the ‘rise-time’ is reduced from 0.37 Sec to 0.36 Sec; ‘peak-time’ is reduced from 0.59 Sec to 0.47 Sec; ‘Settling-time’ is reduced from 0.65Sec to 0.57Sec and ‘steady-state-error’ is reduced from 0.11V to 0.06 V.

<table>
<thead>
<tr>
<th>Controller (s)</th>
<th>Rise-time (s)</th>
<th>Peak-time (s)</th>
<th>Settling-time (s)</th>
<th>Steady-state-error (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>0.37</td>
<td>0.59</td>
<td>0.65</td>
<td>0.11</td>
</tr>
<tr>
<td>FOPID</td>
<td>0.36</td>
<td>0.47</td>
<td>0.57</td>
<td>0.06</td>
</tr>
</tbody>
</table>

V. CONCLUSION

Re-boost-converter MLI-based DPFC is proposed for FBS.Closed loop DP-FC based FBS systems with PI and FOPID-controllers are simulated using MATLAB-SIMULINK. The settling-time is as low as 0.56 Sec. &steady state error is 0.05 V with FOPID controller. The outcome represents that the ‘settling time &steady state error’ are diminished using FOPID-controller. Hence, Closed loop 14 bus DP-FC-system with FOPID-controller is superior to Closed loop 14 bus DP-FC system with PI-controller. The benefits of DP-FC is that the bus voltage profile is improved and the drawback of DP-FC is that it needs multiple-series-converters.

The present-work deals with ‘Closed loop 14 bus DP FC system with FOPID controller’.'Closed loop 14 bus DP-FC system with PR controller’ will be done in future.

REFERENCES

7. V.Ananthalakshmi;TR.Jyothsna,“Mitigation of voltage & current variations due to three phase fault in a single machine system using distributed power flow controller”, 2016 Intern.Conf. on Electrical, Electronics,& Optimization Technique- (IC-EEOT) DOC: 5-Mar-2016

8. MonikaSharma;Annapurna Bhargava;Pinky Yadav,“Oscillation Damping with DP-FC Using Optimization Techniques”,2016 Intern...Conf on micro electronics & telecommunication engineering(ICM-ETE) 2016 , Page- 343 - 348

9. S.Vadivel, B.Baskaran, “Distributed power flow controller(DP-FC) to improve the power quality of thirty three bus radial system”, Intern...jour... of engin...inventions ISSN-2278-7261, Volu-5, Issue-10 (Nov-2016)-PP 31-44

